Loading [Contrib]/a11y/accessibility-menu.js
Review Special Issues

Mass spectrometry imaging for early discovery and development of cancer drugs

  • A drug delivery system (DDS) is a method for delivering a drug to its site of action in the body, with the goal of achieving therapeutic benefits while reducing adverse effects. Pharmacokinetics (PK) and pharmacodynamics (PD) studies have been conducted to evaluate drug delivery, but these approaches are rarely used in the early stages of drug discovery and development. We demonstrated that the tumor stromal barrier inhibits drug distribution within tumor tissue, especially in refractory cancers such as pancreatic cancer. This poses an obstacle to the discovery of new drugs, and is difficult to overcome using conventional in vitro drug discovery methods. In addition, we are also developing new DDS drugs and antibody-drug conjugates (ADCs). These agents act via four steps: Systemic circulation, the enhanced permeability and retention (EPR) effect, penetration within the tumor tissue, and action on cells including controlled drug release. Most of these activities can be evaluated by conventional biological or pharmacological assays. However, it is difficult to examine drug distribution and controlled drug release within targeted tissues. Recent advances in mass spectrometry imaging (MSI) allow examining drug delivery much more conveniently with the off-labeling. A mass microscope, a new type of matrix-associated laser desorption/ionization (MALDI)-MSI analyzer, is a microscope coupled with an atmospheric MALDI and quadruple ion trap time-of-flight (TOF) mass spectrometer, and can provide imaging data with enhanced resolution and high sensitivity. Using a mass microscope, we succeeded in visualizing the EPR effect of a polymeric micelle drug and controlled drug release by an ADC. Currently, we are developing a new drug imaging method using electrospray ionization (ESI)-MSI. Here, we review the use of MSI in early stages of drug discovery and development, as well as our related recent work.

    Citation: Masahiro Yasunaga, Shino Manabe, Masaru Furuta, Koretsugu Ogata, Yoshikatsu Koga, Hiroki Takashima, Toshirou Nishida, Yasuhiro Matsumura. Mass spectrometry imaging for early discovery and development of cancer drugs[J]. AIMS Medical Science, 2018, 5(2): 162-180. doi: 10.3934/medsci.2018.2.162

    Related Papers:

    [1] Wai Yuen Chan . Simultaneous blow-up of the solution for a singular parabolic system with concentrated sources. AIMS Mathematics, 2024, 9(3): 6951-6963. doi: 10.3934/math.2024339
    [2] Varadharaj Dinakar, Natesan Barani Balan, Krishnan Balachandran . Identification of Source Terms in a Coupled Age-structured Population Model with Discontinuous Diffusion Coefficients. AIMS Mathematics, 2017, 2(1): 81-95. doi: 10.3934/Math.2017.1.81
    [3] Saleh Almuthaybiri, Tarek Saanouni . On coupled non-linear Schrödinger systems with singular source term. AIMS Mathematics, 2024, 9(10): 27871-27895. doi: 10.3934/math.20241353
    [4] Zihan Cai, Yan Liu, Baiping Ouyang . Decay properties for evolution-parabolic coupled systems related to thermoelastic plate equations. AIMS Mathematics, 2022, 7(1): 260-275. doi: 10.3934/math.2022017
    [5] Nataliya Gol’dman . Nonlinear boundary value problems for a parabolic equation with an unknown source function. AIMS Mathematics, 2019, 4(5): 1508-1522. doi: 10.3934/math.2019.5.1508
    [6] Dengming Liu, Luo Yang . Extinction behavior for a parabolic $ p $-Laplacian equation with gradient source and singular potential. AIMS Mathematics, 2022, 7(1): 915-924. doi: 10.3934/math.2022054
    [7] Jincheng Shi, Yan Liu . Spatial decay estimates for the coupled system of wave-plate type with thermal effect. AIMS Mathematics, 2025, 10(1): 338-352. doi: 10.3934/math.2025016
    [8] Xiaomin Wang, Zhong Bo Fang . New Fujita type results for quasilinear parabolic differential inequalities with gradient dissipation terms. AIMS Mathematics, 2021, 6(10): 11482-11493. doi: 10.3934/math.2021665
    [9] Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Nasser-Eddine Tatar . On a nonlinear system of plate equations with variable exponent nonlinearity and logarithmic source terms: Existence and stability results. AIMS Mathematics, 2023, 8(9): 19971-19992. doi: 10.3934/math.20231018
    [10] Najmeddine Attia, Amal Mahjoub . On the vectorial multifractal analysis in a metric space. AIMS Mathematics, 2023, 8(10): 23548-23565. doi: 10.3934/math.20231197
  • A drug delivery system (DDS) is a method for delivering a drug to its site of action in the body, with the goal of achieving therapeutic benefits while reducing adverse effects. Pharmacokinetics (PK) and pharmacodynamics (PD) studies have been conducted to evaluate drug delivery, but these approaches are rarely used in the early stages of drug discovery and development. We demonstrated that the tumor stromal barrier inhibits drug distribution within tumor tissue, especially in refractory cancers such as pancreatic cancer. This poses an obstacle to the discovery of new drugs, and is difficult to overcome using conventional in vitro drug discovery methods. In addition, we are also developing new DDS drugs and antibody-drug conjugates (ADCs). These agents act via four steps: Systemic circulation, the enhanced permeability and retention (EPR) effect, penetration within the tumor tissue, and action on cells including controlled drug release. Most of these activities can be evaluated by conventional biological or pharmacological assays. However, it is difficult to examine drug distribution and controlled drug release within targeted tissues. Recent advances in mass spectrometry imaging (MSI) allow examining drug delivery much more conveniently with the off-labeling. A mass microscope, a new type of matrix-associated laser desorption/ionization (MALDI)-MSI analyzer, is a microscope coupled with an atmospheric MALDI and quadruple ion trap time-of-flight (TOF) mass spectrometer, and can provide imaging data with enhanced resolution and high sensitivity. Using a mass microscope, we succeeded in visualizing the EPR effect of a polymeric micelle drug and controlled drug release by an ADC. Currently, we are developing a new drug imaging method using electrospray ionization (ESI)-MSI. Here, we review the use of MSI in early stages of drug discovery and development, as well as our related recent work.


    Let $ a $ and $ b $ be positive real numbers, $ c $ be a positive constant, $ x_{0} $ be a fixed point in a $ n $-dimensional space $ \mathbb{R} ^{n} $ with $ n = 1, \ 2, ... $, and $ B_{1}\left(x_{0}\right) $ be a $ n $ -dimensional open ball with the center $ x_{0} $ and radius $ 1 $ such that $ B_{1}\left(x_{0}\right) = \left\{ x\in \mathbb{R} ^{n}:\left\vert \left\vert x-x_{0}\right\vert \right\vert < 1\right\} $ where $ \left\vert \left\vert x-x_{0}\right\vert \right\vert $ represents the Euclidean distance between $ x $ and $ x_{0} $. We also let $ \overline{ B_{1}\left(x_{0}\right) } $ and $ \partial B_{1}\left(x_{0}\right) $ denote the closure and boundary of $ B_{1}\left(x_{0}\right) $, respectively. Let $ L $ be the parabolic operator such that $ Lu = u_{t}-\Delta u $. In this paper, we deal with the quenching problem of a coupled semilinear parabolic system with nonlinear singular localized sources at $ x_{0} $. This problem is described below:

    $ \begin{equation} \left\{ \begin{array}{c} Lu\left( x, t\right) = af\left( v\left( x_{0}, t\right) \right) \text{ for }~~ x\in B_{1}\left( x_{0}\right) \text{ and }~~t > 0, \\ Lv\left( x, t\right) = bg\left( u\left( x_{0}, t\right) \right) \text{ for }~~ x\in B_{1}\left( x_{0}\right) \text{ and }~~t > 0, \end{array} \right. \end{equation} $ (1.1)
    $ \begin{equation} \left\{ \begin{array}{c} u\left( x, 0\right) = 0\text{ for }~~x\in \overline{B_{1}\left( x_{0}\right) }, \text{ }u\left( x, t\right) = 0\text{ for }~~x\in \partial B_{1}\left( x_{0}\right) \text{ and }~~t > 0, \\ v\left( x, 0\right) = 0\text{ for }~~x\in \overline{B_{1}\left( x_{0}\right) }, \text{ }v\left( x, t\right) = 0\text{ for }~~x\in \partial B_{1}\left( x_{0}\right) \text{ and }~~t > 0. \end{array} \right. \end{equation} $ (1.2)

    In the problem (1.1)-(1.2), we assume that the source functions $ f $ and $ g $ are differentiable over the interval $ \left[0, c\right) $ and satisfy the following hypotheses:

    (H$ _{1} $) $ f > 0 $, $ f^{\prime } > 0 $, $ f^{\prime \prime } > 0 $, $ g > 0 $, $ g^{\prime } > 0 $, $ g^{\prime \prime } > 0 $;

    (H$ _{2} $) both $ f $ and $ g $ being unbounded when $ u $ and $ v $ tend to $ c $, that is, $ f\left(v\right) \rightarrow \infty $ when $ v\rightarrow c^{-} $ (that is, $ v $ approaches $ c $ from the left) and $ g\left(u\right) \rightarrow \infty $ when $ u\rightarrow c^{-} $.

    The problem (1.1)-(1.2) describes the instabilities in some dynamic systems of certain reactions that have localized electrodes immersed in a bulk medium at the point $ x_{0} $, see [1,12]. Li and Wang [10] used the equation (1.1) to explore a thermal ignition driven by the temperature at a single point. Chadam et al. [2] examined the blow-up set of solutions.

    The quenching problem is able to illustrate the polarization phenomena in ionic conductors and the phase transition between liquids and solids, see [11]. We say that the solution $ \left(u, v\right) $ quenches at a point in $ \overline{B_{1}\left(x_{0}\right) } $ if there exists a finite time $ T\ \left(>0\right) $ such that

    $ \max \{u\left( x, t\right) :x\in \overline{B_{1}\left( x_{0}\right) } \}\rightarrow c^{-}\text{ and }~~\max \{v\left( x, t\right) :x\in \overline{ B_{1}\left( x_{0}\right) }\}\rightarrow c^{-}\text{ as }t\rightarrow {T}^{-}, $

    where $ t\rightarrow T^{-} $ represents $ t $ approaching $ T $ from the left. $ T $ is called the quenching time. Quenching and blow-up problems are related. Under some transformations, quenching problems are able to change to blow-up problems, see [5,6].

    Ji et al. [7] studied simultaneous and non-simultaneous quenching of one-dimensional coupled system with the singular nonlinear reaction sources on the boundary. They used this model to describe heat propagations between two different materials. The multi-dimensional quenching problem of coupled semilinear parabolic systems describes non-Newtonian filtration systems incorporated with the effect of singular nonlinear reaction sources inside the domain, see Jia et al. [8]. Their model is

    $ \begin{eqnarray*} Lu\left( x, t\right) & = &\left( 1-u\left( x, t\right) \right) ^{-p_{1}}+\left( 1-v\left( x, t\right) \right) ^{-q_{1}}, \ x\in \Omega , \ t > 0, \\ Lv\left( x, t\right) & = &\left( 1-u\left( x, t\right) \right) ^{-p_{2}}+\left( 1-v\left( x, t\right) \right) ^{-q_{2}}, \ x\in \Omega , \ t > 0, \\ u\left( x, 0\right) & = &u_{0}\left( x\right) , \ v\left( x, 0\right) = v_{0}\left( x\right) , \ x\in \bar{\Omega}, \\ u\left( x, t\right) & = &0, \ v\left( x, t\right) = 0, \ x\in \partial \Omega , \ t > 0, \end{eqnarray*} $

    where $ p_{1} $, $ p_{2} $, $ q_{1} $, and $ q_{2} $ are positive real numbers, and $ \Omega $ is a bounded domain in $ \mathbb{R} ^{n} $. When $ \Omega = B_{R}\left(x_{0}\right) $, they proved that the solution $ \left(u, v\right) $ quenches simultaneously if $ p_{2}\geq p_{1}+1 $ and $ q_{1}\geq q_{2}+1 $. Depending on the initial data $ u_{0} $ and $ v_{0} $, they also showed that both simultaneous and non-simultaneous quenching may occur when $ p_{2} < p_{1}+1 $ and $ q_{1} < q_{2}+1 $. Zheng and Wang [16] studied simultaneous and non-simultaneous quenching for the coupled system: $ Lu = v^{-p} $, $ Lv = u^{-q} $ in $ B_{R}\left(x_{0}\right) \times \left(0, T\right) $ subject to the Dirichlet boundary condition. When $ \Omega $ is a square domain in $ \mathbb{R} ^{2} $, Chan [3] studied the simultaneous quenching for the coupled system: $ Lu = a/\left(1-v\left(0, 0, t\right) \right) $, $ Lv = b/\left(1-u\left(0, 0, t\right) \right) $ in $ \Omega \times \left(0, T\right) $ with the homogeneous first boundary condition. He also computed an approximated critical value of $ a $ and $ b $ by a numerical method.

    The main goals of this paper are to study (a) simultaneous quenching and (b) non-simultaneous quenching of the solution $ \left(u, v\right) $ under some conditions on $ \int_{0}^{c}f\left(\omega \right) d\omega $ and $ \int_{0}^{c}g\left(\omega \right) d\omega $. In this article, simultaneous quenching means that the maximum of $ u $ and $ v $\tends to $ c $ in the same finite time. Non-simultaneous quenching means that either the maximum of $ u $ or $ v $ tends to $ c $\ in a finite time, but the other remains bounded by $ c $. We are going to study cases (a) and (b) of the problem (1.1)-(1.2) when these two integrals are either infinite or finite. Without loss of generality, let us assume $ x_{0} $ being the origin $ 0 $. The problem (1.1)-(1.2) becomes

    $ \begin{equation} \left\{ \begin{array}{c} Lu = af\left( v\left( 0, t\right) \right) \text{ in }B_{1}\left( 0\right) \times \left( 0, T\right) , \\ Lv = bg\left( u\left( 0, t\right) \right) \text{ in }B_{1}\left( 0\right) \times \left( 0, T\right) , \end{array} \right. \end{equation} $ (1.3)
    $ \begin{equation} \left\{ \begin{array}{c} u\left( x, 0\right) = 0\text{ for }~~x\in \overline{B_{1}\left( 0\right) }, \text{ }u\left( x, t\right) = 0\text{ for }~~\left( x, t\right) \in \partial B_{1}\left( 0\right) \times \left( 0, T\right) , \\ v\left( x, 0\right) = 0\text{ for }~~x\in \overline{B_{1}\left( 0\right) }, \text{ }v\left( x, t\right) = 0\text{ for }~~\left( x, t\right) \in \partial B_{1}\left( 0\right) \times \left( 0, T\right) . \end{array} \right. \end{equation} $ (1.4)

    Similar consideration is also available in [4,8,16]. In section 2, we provide some properties of the solution $ \left(u, v\right) $. The results of simultaneous and non-simultaneous quenching are going to illustrate in section 3.

    In this section, we are going to show some properties of the solution $ \left(u, v\right) $. One of the main results is to prove that $ u $ and $ v $ attain their maximum at $ x = 0 $, and they both quench only at $ x = 0 $. In the sequel, we assume that $ k_{j} $ are positive constants for $ j = 1, \ 2, ..., \ 19. $ We also let $ Y\left(x, t\right) $ and $ Z\left(x, t\right) $ be nontrivial and nonnegative bounded functions on $ \overline{B_{1}\left(0\right) }\times \left[0, \infty \right) $. Here is the comparison theorem.

    Lemma 2.1. Assume that $ \left(u, v\right) $ is the solution to the problem below:

    $ \left\{ \begin{array}{c} Lu\geq Y\left( x, t\right) v\left( 0, t\right) ~~{ in }~~ B_{1}\left( 0\right) \times \left( 0, T\right) , \\ Lv\geq Z\left( x, t\right) u\left( 0, t\right) ~~{ in }~~B_{1}\left( 0\right) \times \left( 0, T\right) , \end{array} \right. $
    $ \left\{ \begin{array}{c} u\left( x, 0\right) = 0~~for~~x\in \overline{B_{1}\left( 0\right) }, u\left( x, t\right) = 0~~for~~\left( x, t\right) \in \partial B_{1}\left( 0\right) \times \left( 0, T\right) , \\ v\left( x, 0\right) = 0~~for~~x\in \overline{B_{1}\left( 0\right) }, v\left( x, t\right) = 0~~for~~\left( x, t\right) \in \partial B_{1}\left( 0\right) \times \left( 0, T\right) , \end{array} \right. $

    then $ u\left(x, t\right) \geq 0 $ and $ v\left(x, t\right) \geq 0 $ on $ \overline{B_{1}\left(0\right) }\times \left[0, T\right) $.

    Proof. Let $ \varepsilon $ be a positive real number, and

    $ \begin{eqnarray*} \Phi \left( x, t\right) & = &u\left( x, t\right) +\varepsilon \hat{\phi} _{1}\left( x\right) e^{\gamma t}, \\ \Psi \left( x, t\right) & = &v\left( x, t\right) +\varepsilon \hat{\phi} _{1}\left( x\right) e^{\gamma t}, \end{eqnarray*} $

    where $ \gamma $ is a positive real number to be determined and $ \hat{\phi} _{1} $ is the first eigenfunction of the following eigenvalue problem:

    $ \Delta \hat{\phi}+\lambda \hat{\phi} = 0\text{ in }B_{1}\left( 0\right) \text{ and }~~\frac{\partial \hat{\phi}}{\partial \nu }+\hat{\phi} = 0\text{ on } \partial B_{1}\left( 0\right) , $

    where $ \partial /\partial \nu $ is the outward normal derivative on $ \partial B_{1}\left(0\right) $. Let $ \hat{\lambda}_{1} $ be the corresponding eigenvalue. By Theorem 3.1.2 of [13], $ \hat{\phi}_{1} $ exists and $ \hat{\phi}_{1} > 0 $ on $ \overline{B_{1}\left(0\right) } $ and $ \hat{\lambda}_{1} > 0 $. Based on the construction, we know that $ \Phi \left(x, 0\right) > 0 $ and $ \Psi \left(x, 0\right) > 0 $ on $ \overline{B_{1}\left(0\right) } $. By a direct calculation, we obtain the inequality below

    $ \begin{eqnarray*} &&L\Phi -Y\Psi \left( 0, t\right) \\ & = &u_{t}+\varepsilon \gamma \hat{\phi}_{1}e^{\gamma t}-\left( \Delta u+\varepsilon \Delta \hat{\phi}_{1}e^{\gamma t}\right) -Y\left( v\left( 0, t\right) +\varepsilon \hat{\phi}_{1}\left( 0\right) e^{\gamma t}\right) \\ &\geq &\varepsilon e^{\gamma t}\left( \gamma \hat{\phi}_{1}+\hat{\lambda}_{1} \hat{\phi}_{1}-Y\hat{\phi}_{1}\left( 0\right) \right) . \end{eqnarray*} $

    Since $ \hat{\phi}_{1} > 0 $ on $ \overline{B_{1}\left(0\right) } $, $ Y $ is nonnegative and bounded, and $ \hat{\lambda}_{1} > 0 $, we are able to choose $ \gamma $ such that $ \gamma > Y\hat{\phi}_{1}\left(0\right) /\hat{\phi}_{1}- \hat{\lambda}_{1} $ in $ B_{1}\left(0\right) $. Thus,

    $ L\Phi -Y\Psi \left( 0, t\right) > 0\text{ in }B_{1}\left( 0\right) \times \left( 0, T\right) . $

    Suppose $ \Phi \left(x, t\right) \leq 0 $ somewhere in $ B_{1}\left(0\right) \times \left(0, T\right) $. Then, the set $ \left\{ t:\Phi \left(x, t\right) \leq 0\text{ for some }x\in B_{1}\left(0\right) \right\} $ is non-empty. Let $ \tilde{t} $ denote the infimum of this set. Then, $ 0 < \tilde{t} < T $ because $ \Phi \left(x, 0\right) > 0 $ on $ \overline{B_{1}\left(0\right) } $. Thus, there exists some point $ x_{1}\in B_{1}\left(0\right) $ such that $ \Phi \left(x_{1}, \tilde{t}\right) = 0 $ and $ \Phi _{t}\left(x_{1}, \tilde{t} \right) \leq 0 $. On the other hand, $ \Phi $ attains its local minimum at $ \left(x_{1}, \tilde{t}\right) $. Then, $ \Delta \Phi \left(x_{1}, \tilde{t} \right) \geq 0 $. Let us consider $ t = \tilde{t} $, we get

    $ \begin{equation} \Phi _{t}\left( x_{1}, \tilde{t}\right) -Y\left( x_{1}, \tilde{t}\right) \Psi \left( 0, \tilde{t}\right) \geq L\Phi \left( x_{1}, \tilde{t}\right) -Y\left( x_{1}, \tilde{t}\right) \Psi \left( 0, \tilde{t}\right) > 0. \end{equation} $ (2.1)

    Follow a similar argument, if we assume that $ \Psi \left(x, t\right) \leq 0 $ somewhere in $ B_{1}\left(0\right) \times \left(0, T\right) $, then there exist some $ \hat{t}\in \left(0, T\right) $ and $ x_{2}\in B_{1}\left(0\right) $ such that $ \Psi \left(x_{2}, \hat{t}\right) = 0 $, $ \Psi _{t}\left(x_{2}, \hat{t}\right) \leq 0 $, and $ \Psi $ attains its local minimum at $ \left(x_{2}, \hat{t}\right) $. Then, at $ t = \hat{t} $

    $ \begin{equation} \Psi _{t}\left( x_{2}, \hat{t}\right) -Z\left( x_{2}, \hat{t}\right) \Phi \left( 0, \hat{t}\right) \geq L\Psi \left( x_{2}, \hat{t}\right) -Z\left( x_{2}, \hat{t}\right) \Phi \left( 0, \hat{t}\right) > 0. \end{equation} $ (2.2)

    Let us assume that $ \hat{t} < \tilde{t} $. As $ \Phi $ attains its local minimum at $ \left(x_{1}, \tilde{t}\right) $, we have $ \Phi \left(0, \hat{t}\right) > 0 $. From the expression (2.2) and $ Z $ is nonnegative and bounded, we have the inequality below:

    $ 0\geq \Psi _{t}\left( x_{2}, \hat{t}\right) \geq \Psi _{t}\left( x_{2}, \hat{t} \right) -Z\left( x_{2}, \hat{t}\right) \Phi \left( 0, \hat{t}\right) > 0. $

    This is a contradiction. Hence, $ \Psi \left(x, t\right) > 0 $ in $ B_{1}\left(0\right) \times \left(0, T\right) $. Then by (2.1), we show that $ \Phi \left(x, t\right) > 0 $ in $ B_{1}\left(0\right) \times \left(0, T\right) $. Through a similar calculation, we obtain the same result when $ \hat{t}\geq \tilde{t} $. Let $ \varepsilon \rightarrow 0 $, we have $ u\left(x, t\right) \geq 0 $ and $ v\left(x, t\right) \geq 0 $ in $ B_{1}\left(0\right) \times \left(0, T\right) $. Following the homogeneous initial-boundary conditions, we conclude that $ u $ and $ v $ are non-negative on $ \overline{B_{1}\left(0\right) }\times \left[0, T\right) $. The proof is complete.

    By Lemma 2.1, $ \left(0, 0\right) $ is a lower solution of the problem (1.3)-(1.4). On the other side, $ u < c $ and $ v < c $ on $ \overline{B_{1}\left(0\right) }\times \left[0, T\right) $. Since $ u $ and $ v $ stop to exist for $ u\geq c $ and $ v\geq c $, it follows from Theorem 2.1 of [2] that the problem (1.3)-(1.4) has the unique classical solution $ \left(u, v\right) \in C\left(\overline{B_{1}\left(0\right) }\times \left[0, T\right) \right) \cap C^{2+\alpha, 1+\alpha /2}\left(B_{1}\left(0\right) \times \left[0, T\right) \right) $ for some $ \alpha \in \left(0, 1\right) $ such that $ 0\leq u < c $ and $ 0\leq v < c $ on $ \overline{B_{1}\left(0\right) }\times \left[0, T\right) $. As $ f $ and $ g $ are differentiable, it follows from Theorem 8.9.2 of Pao [13] that the solution $ \left(u, v\right) $ exists either in a finite time or globally.

    Based on the result of Lemma 2.1, we prove $ u_{t} $ and $ v_{t} $ being positive over the domain.

    Lemma 2.2. The solution $ \left(u, v\right) $ has the properties: (i) $ u_{t}\geq 0 $ and $ v_{t}\geq 0 $ on $ \overline{B_{1}\left(0\right) }\times \left[0, T\right) $, and (ii) $ u_{t} > 0 $ and $ v_{t} > 0 $ in $ B_{1}\left(0\right) \times \left(0, T\right) $.

    Proof. (i) For $ \theta _{1} > 0 $, let us consider the first equation of the problem (1.3) at $ t+\theta _{1} $. We have $ Lu\left(x, t+\theta _{1}\right) = af\left(v\left(0, t+\theta _{1}\right) \right) $ in $ B_{1}\left(0\right) \times \left(0, T-\theta _{1}\right) $. Subtract the first equation of the problem (1.3) from this equation, and based on the mean value theorem, there exists some $ \zeta _{1} $ where $ \zeta _{1} $ is between $ v\left(0, t+\theta _{1}\right) $ and $ v\left(0, t\right) $ such that

    $ Lu\left( x, t+\theta _{1}\right) -Lu\left( x, t\right) = af^{\prime }\left( \zeta _{1}\right) \left[ v\left( 0, t+\theta _{1}\right) -v\left( 0, t\right) \right] \text{ in }B_{1}\left( 0\right) \times \left( 0, T-\theta _{1}\right) . $

    Since $ u\geq 0 $ on $ \overline{B_{1}\left(0\right) }\times \left[0, T\right) $, we have $ u\left(x, \theta _{1}\right) -u\left(x, 0\right) \geq 0 $ for $ x\in \overline{B_{1}\left(0\right) } $. From the boundary condition, $ u\left(x, t+\theta _{1}\right) -u\left(x, t\right) = 0 $ for $ x\in \partial B_{1}\left(0\right) $ and $ t > 0 $. By Lemma 2.1, $ \left(u(x, t+\theta _{1})-u(x, t)\right) /\theta _{1}\geq 0 $ on $ \overline{B_{1}\left(0\right) } \times \left[0, T-\theta _{1}\right) $. As $ \theta _{1}\rightarrow 0^{+} $, $ u_{t}\geq 0 $ on $ \overline{B_{1}\left(0\right) }\times \left[0, T\right) $. Similarly, we obtain $ v_{t}\geq 0 $ on $ \overline{B_{1}\left(0\right) } \times \left[0, T\right) $.

    (ii) To show that $ u_{t} $ is positive, we differentiate the first equation of the problem (1.3) with respect to $ t $ to get

    $ Lu_{t} = af^{\prime }\left( v\left( 0, t\right) \right) v_{t}\left( 0, t\right) \text{ in }B_{1}\left( 0\right) \times \left( 0, T\right) . $

    From (i), we know $ v_{t}\geq 0 $ on $ \overline{B_{1}\left(0\right) }\times \left[0, T\right) $. By (H$ _{1} $) (see section 1) and the strong maximum principle, we have $ u_{t} > 0 $ in $ B_{1}\left(0\right) \times \left(0, T\right) $. We follow the similar procedure to conclude $ v_{t} > 0 $ in $ B_{1}\left(0\right) \times \left(0, T\right) $.

    By the symmetry of $ B_{1}\left(0\right) $, we represent the problem (1.3)-(1.4) in the polar coordinate system

    $ \begin{equation} \left\{ \begin{array}{c} u_{t}\left( r, t\right) -u_{rr}\left( r, t\right) -\dfrac{n-1}{r}u_{r}\left( r, t\right) = af\left( v\left( 0, t\right) \right) \text{ in }\left( 0, 1\right) \times \left( 0, T\right) , \\ v_{t}\left( r, t\right) -v_{rr}\left( r, t\right) -\dfrac{n-1}{r}v_{r}\left( r, t\right) = bg\left( u\left( 0, t\right) \right) \text{ in }\left( 0, 1\right) \times \left( 0, T\right) , \\ u\left( r, 0\right) = 0\text{ for }~~r\in \left[ 0, 1\right] \text{, }\ u_{r}\left( 0, t\right) = 0\text{ and }~~u\left( 1, t\right) = 0\text{ for }~~t\in \left( 0, T\right) , \\ v\left( r, 0\right) = 0\text{ for }~~r\in \left[ 0, 1\right] \text{, }\ v_{r}\left( 0, t\right) = 0\text{ and }~~v\left( 1, t\right) = 0\text{ for }~~t\in \left( 0, T\right) . \end{array} \right. \end{equation} $ (2.3)

    Lemma 2.3. The solution $ \left(u, v\right) $ to the problem (2.4) attains its maximum at $ r = 0 $ for $ t\in \left(0, T\right) $.

    Proof. It is noticed that the solution to the problem (2.4) is radial symmetric with respect to $ r = 0 $. To show $ u $ and $ v $ attaining their maximum at $ r = 0 $, we are going to prove $ u_{r} < 0 $ and $ v_{r} < 0 $ for $ r\in \left(0, 1\right] $. We let $ H\left(r, t\right) = u_{r}\left(r, t\right) $. Differentiating the first equation of the problem (2.4) with respect to $ r $, we have

    $ H_{t}-H_{rr}-\frac{n-1}{r}H_{r}+\frac{n-1}{r^{2}}H = 0\text{ in }\left( 0, 1\right) \times \left( 0, T\right) . $

    At $ t = 0 $, $ H\left(r, 0\right) = 0 $ for $ r\in \lbrack 0, 1] $. By Lemma 2.2(ii), $ u_{t} > 0 $ in $ B_{1}\left(0\right) \times \left(0, T\right) $. By Hopf's Lemma, $ H\left(1, t\right) < 0 $ for $ t\in \left(0, T\right) $. Also, $ H\left(0, t\right) = u_{r}\left(0, t\right) = 0 $ for $ t\in \left[0, T\right) $. By the maximum principle [13], $ H < 0 $ for $ \left(r, t\right) \in \left(0, 1\right] \times \left(0, T\right) $. Therefore, $ u\left(0, t\right) \geq u\left(r, t\right) $ for $ \left(r, t\right) \in \left[0, 1\right] \times \left(0, T\right) $. Similarly, we prove that $ v_{r} < 0 $ for $ \left(r, t\right) \in \left(0, 1\right] \times \left(0, T\right) $. Hence, $ u $ and $ v $ achieve their maximum at $ r = 0 $ for $ t\in \left(0, T\right). $

    Let $ \phi _{1} $ be the eigenfunction corresponding to the first eigenvalue $ \lambda _{1}\left(>0\right) $ of the eigenvalue problem below:

    $ \Delta \phi +\lambda \phi = 0\text{ in }B_{1}\left( 0\right) \text{, }\phi = 0 \text{ on }\partial B_{1}\left( 0\right) . $

    This eigenfunction has the properties: $ 0 < \phi _{1}\leq 1 $ in $ B_{1}\left(0\right) $ and $ \int_{B_{1}\left(0\right) }\phi _{1}dx = 1 $ [15]. Let $ k_{1} = abf^{\prime \prime }\left(0\right) g^{\prime \prime }\left(0\right) / \left[2\left(af^{\prime \prime }\left(0\right) +bg^{\prime \prime }\left(0\right) \right) \right] $ and $ k_{2} = af\left(0\right) +bg\left(0\right) $. By (H$ _{1} $), $ k_{1} $ and $ k_{2} $ are positive. We show that either $ u $ or $ v $ quenches in a finite time.

    Lemma 2.4. If $ 2\sqrt{k_{1}k_{2}} > \lambda _{1} $, then either $ u $ or $ v $ quenches on $ \overline{ B_{1}\left(0\right) } $ in a finite time $ \tilde{T} $.

    Proof. By Lemma 2.3, $ u\left(0, t\right) \geq u\left(x, t\right) $ and $ v\left(0, t\right) \geq v\left(x, t\right) $ on $ \overline{ B_{1}\left(0\right) }\times \left(0, T\right) $. Let $ \hat{u}\left(x, t\right) $ and $ \hat{v}\left(x, t\right) $ be the solutions to the following auxiliary parabolic system:

    $ \begin{equation} \left\{ \begin{array}{c} L\hat{u} = af\left( \hat{v}\left( x, t\right) \right) \text{ in }B_{1}\left( 0\right) \times \left( 0, T\right) , \\ L\hat{v} = bg(\hat{u}(x, t))\text{ in }B_{1}\left( 0\right) \times \left( 0, T\right) , \end{array} \right. \end{equation} $ (2.4)
    $ \begin{equation} \left\{ \begin{array}{c} \hat{u}\left( x, 0\right) = 0\text{ and }~~\hat{v}\left( x, 0\right) = 0\text{ on } \overline{B_{1}\left( 0\right) }, \\ \hat{u}\left( x, t\right) = 0\text{ and }~~\hat{v}\left( x, t\right) = 0\text{ on } \partial B_{1}\left( 0\right) \times \left( 0, T\right) . \end{array} \right. \end{equation} $ (2.5)

    By the comparison theorem [13], $ \hat{u}\left(x, t\right) \geq 0 $ and $ \hat{v}\left(x, t\right) \geq 0 $ on $ \overline{B_{1}\left(0\right) }\times \left(0, T\right) $. Further, $ u-\hat{u} $ and $ v-\hat{v} $ satisfy the expression below:

    $ \begin{eqnarray*} L\left( u-\hat{u}\right) & = &af\left( v\left( 0, t\right) \right) -af\left( \hat{v}\left( x, t\right) \right) \geq af\left( v\left( x, t\right) \right) -af\left( \hat{v}\left( x, t\right) \right) , \\ L\left( v-\hat{v}\right) & = &bg(u(0, t))-bg(\hat{u}(x, t))\geq bg(u(x, t))-bg( \hat{u}(x, t)). \end{eqnarray*} $

    By $ u-\hat{u} = 0 $ and $ v-\hat{v} = 0 $ on $ \overline{B_{1}\left(0\right) } $ and $ \partial B_{1}\left(0\right) \times \left(0, T\right) $, and the comparison theorem, we have $ u\geq \hat{u} $ and $ v\geq \hat{v} $ on $ \overline{B_{1}\left(0\right) }\times \left(0, T\right) $. It suffices to prove either $ \hat{u} $ or $ \hat{v} $ to quench over $ \overline{B_{1}\left(0\right) } $ in a finite time. Multiplying $ \phi _{1} $ on both sides of (2.5) and integrating expressions over the domain $ B_{1}\left(0\right) $, we obtain

    $ \int_{B_{1}\left( 0\right) }\hat{u}_{t}\phi _{1}dx-\int_{B_{1}\left( 0\right) }\Delta \hat{u}\phi _{1}dx = a\int_{B_{1}\left( 0\right) }\phi _{1}f\left( \hat{v}\left( x, t\right) \right) dx, $
    $ \int_{B_{1}\left( 0\right) }\hat{v}_{t}\phi _{1}dx-\int_{B_{1}\left( 0\right) }\Delta \hat{v}\phi _{1}dx = b\int_{B_{1}\left( 0\right) }\phi _{1}g\left( \hat{u}\left( x, t\right) \right) dx. $

    Using the Green's second identity and (2.6), it gives

    $ \left( \int_{B_{1}\left( 0\right) }\hat{u}\phi _{1}dx\right) _{t} = -\lambda _{1}\int_{B_{1}\left( 0\right) }\hat{u}\phi _{1}dx+a\int_{B_{1}\left( 0\right) }\phi _{1}f\left( \hat{v}\right) dx, $
    $ \left( \int_{B_{1}\left( 0\right) }\hat{v}\phi _{1}dx\right) _{t} = -\lambda _{1}\int_{B_{1}\left( 0\right) }\hat{v}\phi _{1}dx+b\int_{B_{1}\left( 0\right) }\phi _{1}g\left( \hat{u}\right) dx. $

    Applying the Maclaurin's series on the functions $ f $ and $ g $, we have

    $ \left( \int_{B_{1}\left( 0\right) }\hat{u}\phi _{1}dx\right) _{t}\geq -\lambda _{1}\int_{B_{1}\left( 0\right) }\hat{u}\phi _{1}dx+a\int_{B_{1}\left( 0\right) }\frac{f^{\prime \prime }\left( 0\right) }{2}\left( \hat{v}\right) ^{2}\phi _{1}dx+a\int_{B_{1}\left( 0\right) }f\left( 0\right) \phi _{1}dx, $
    $ \left( \int_{B_{1}\left( 0\right) }\hat{v}\phi _{1}dx\right) _{t}\geq -\lambda _{1}\int_{B_{1}\left( 0\right) }\hat{v}\phi _{1}dx+b\int_{B_{1}\left( 0\right) }\frac{g^{\prime \prime }\left( 0\right) }{2}\left( \hat{u}\right) ^{2}\phi _{1}dx+b\int_{B_{1}\left( 0\right) }g\left( 0\right) \phi _{1}dx. $

    By $ 0 < \phi _{1}\leq 1 $ in $ B_{1}\left(0\right) $ and the Jensen's inequality [15], we have

    $ \begin{eqnarray*} \int_{B_{1}\left( 0\right) }\left( \hat{v}\right) ^{2}\phi _{1}dx &\geq &\int_{B_{1}\left( 0\right) }\left( \hat{v}\right) ^{2}\left( \phi _{1}\right) ^{2}dx\geq \left( \int_{B_{1}\left( 0\right) }\hat{v}\phi _{1}dx\right) ^{2}, \\ \int_{B_{1}\left( 0\right) }\left( \hat{u}\right) ^{2}\phi _{1}dx &\geq &\int_{B_{1}\left( 0\right) }\left( \hat{u}\right) ^{2}\left( \phi _{1}\right) ^{2}dx\geq \left( \int_{B_{1}\left( 0\right) }\hat{u}\phi _{1}dx\right) ^{2}. \end{eqnarray*} $

    Let $ R\left(t\right) = \int_{B_{1}\left(0\right) }\hat{u}\phi _{1}dx $ and $ P\left(t\right) = \int_{B_{1}\left(0\right) }\hat{v}\phi _{1}dx $. From these two inequalities above, we have the following inequality:

    $ \begin{equation} \frac{d}{dt}\left( P+R\right) \geq -\lambda _{1}\left( P+R\right) +\frac{ af^{\prime \prime }\left( 0\right) }{2}P^{2}+\frac{bg^{\prime \prime }\left( 0\right) }{2}R^{2}+af\left( 0\right) +bg\left( 0\right) . \end{equation} $ (2.6)

    Then, by the inequality below:

    $ \begin{eqnarray*} &&\frac{\left( \frac{af^{\prime \prime }\left( 0\right) }{2}-k_{1}\right) P^{2}+\left( \frac{bg^{\prime \prime }\left( 0\right) }{2}-k_{1}\right) R^{2} }{2} \\ &\geq &\sqrt{\left( \frac{af^{\prime \prime }\left( 0\right) }{2}+\frac{ bg^{\prime \prime }\left( 0\right) }{2}\right) \left[ \frac{abf^{\prime \prime }\left( 0\right) g^{\prime \prime }\left( 0\right) }{2\left( af^{\prime \prime }\left( 0\right) +bg^{\prime \prime }\left( 0\right) \right) }-k_{1}\right] +k_{1}^{2}}PR \\ & = &k_{1}PR, \end{eqnarray*} $

    we obtain this expression

    $ \frac{af^{\prime \prime }\left( 0\right) }{2}P^{2}+\frac{bg^{\prime \prime }\left( 0\right) }{2}R^{2}\geq k_{1}\left( P+R\right) ^{2}. $

    Then, the differential inequality (2.7) becomes

    $ \frac{d}{dt}\left( P+R\right) \geq -\lambda _{1}\left( P+R\right) +k_{1}(P+R)^{2}+k_{2}. $

    Let $ E\left(t\right) = P\left(t\right) +R\left(t\right) $. Then, $ E\left(t\right) \geq 0 $ in $ \left[0, T\right) $ and

    $ \frac{d}{dt}E\geq -\lambda _{1}E+k_{1}E^{2}+k_{2}. $

    Using separation of variables and integrating both sides over $ \left(0, t\right) $, we obtain

    $ t\leq \frac{2}{\sqrt{4k_{1}k_{2}-\lambda _{1}^{2}}}\left[ \tan ^{-1}\left( \frac{2k_{1}E\left( t\right) -\lambda _{1}}{\sqrt{4k_{1}k_{2}-\lambda _{1}^{2}}}\right) +\tan ^{-1}\left( \frac{\lambda _{1}}{\sqrt{ 4k_{1}k_{2}-\lambda _{1}^{2}}}\right) \right] . $

    Suppose that $ E\left(t\right) $ exists for all $ t > 0 $. By the assumption $ 2 \sqrt{k_{1}k_{2}} > \lambda _{1} $, we have

    $ \tan ^{-1}\left( \frac{2k_{1}E\left( t\right) -\lambda _{1}}{\sqrt{ 4k_{1}k_{2}-\lambda _{1}^{2}}}\right) \rightarrow \infty \text{ if } t\rightarrow \infty . $

    But, $ \tan ^{-1}\left[\left(2k_{1}E\left(t\right) -\lambda _{1}\right) / \sqrt{4k_{1}k_{2}-\lambda _{1}^{2}}\right] $ is bounded above by $ \pi /2 $. This is a contradiction. It implies that $ E(t) $ ceases to exist in a finite time $ \hat{T} $. This shows that either $ P\left(t\right) $ or $ R\left(t\right) $ does not exist when $ t $ tends to $ \hat{T} $. Thus, either $ \hat{u} $ or $ \hat{v} $ quenches on $ \overline{B_{1}\left(0\right) } $ at $ \hat{T} $. Since $ u\geq \hat{u} $ and $ v\geq \hat{v} $, we then have either $ u $ or $ v $ quenches on $ \overline{B_{1}\left(0\right) } $ in a finite time $ \tilde{T} $ where $ \tilde{T}\leq \hat{T} $.

    Let $ M_{1} $ and $ M_{2} $ be positive constants such that $ M_{1}/\left(2n\right) < c $ and $ M_{2}/\left(2n\right) < c $. We are going to prove the global existence of solutions when $ a $ and $ b $ are sufficiently small. Our method is to construct a global-existed upper solution of the problem (1.1)-(1.2).

    Lemma 2.5. If $ a $ and $ b $ are sufficiently small, then the solution $ \left(u, v\right) $ exists globally.

    Proof. It suffices to construct an upper solution which exists all time. Let $ \bar{u}\left(x\right) = M_{1}\left(1-\left\Vert x\right\Vert ^{2}\right) /\left(2n\right) $ and $ \bar{v}\left(x\right) = M_{2}\left(1-\left\Vert x\right\Vert ^{2}\right) /\left(2n\right) $. Clearly, $ 0\leq \bar{u} $, $ \bar{v} < c $ for all $ x\in \overline{B_{1}\left(0\right) } $. Let us consider the following problem:

    $ \begin{array}{c} L\bar{u}-af\left( \bar{v}\left( 0\right) \right) = M_{1}-af\left( M_{2}/\left( 2n\right) \right) , \\ L\bar{v}-bg\left( \bar{u}\left( 0\right) \right) = M_{2}-bg\left( M_{1}/\left( 2n\right) \right) . \end{array} $

    If $ a $ and $ b $ are sufficiently small, then

    $ \begin{array}{c} L\bar{u}-af\left( \bar{v}\left( 0\right) \right) = M_{1}-af\left( M_{2}/\left( 2n\right) \right) \geq 0\text{ in }B_{1}\left( 0\right) \times \left( 0, \infty \right) , \\ L\bar{v}-bg\left( \bar{u}\left( 0\right) \right) = M_{2}-bg\left( M_{1}/\left( 2n\right) \right) \geq 0\text{ in }B_{1}\left( 0\right) \times \left( 0, \infty \right) . \end{array} $

    Then, we subtract Eq (1.3) from above inequalities and by the mean value theorem to obtain

    $ \begin{array}{c} L\left( \bar{u}-u\right) \geq a\left[ f\left( \bar{v}\left( 0\right) \right) -f\left( v\left( 0, t\right) \right) \right] = af^{\prime }\left( \chi _{1}\right) \left[ \bar{v}\left( 0\right) -v\left( 0, t\right) \right] \text{ in }B_{1}\left( 0\right) \times \left( 0, \infty \right) , \\ L\left( \bar{v}-v\right) \geq b\left[ g\left( \bar{u}\left( 0\right) \right) -g\left( u\left( 0, t\right) \right) \right] = bg^{\prime }\left( \chi _{2}\right) \left[ \bar{u}\left( 0\right) -u\left( 0, t\right) \right] \text{ in }B_{1}\left( 0\right) \times \left( 0, \infty \right) , \end{array} $

    where $ \chi _{1} $ is between $ \bar{v}\left(0\right) $ and $ v\left(0, t\right) $ and $ \chi _{2} $ is between $ \bar{u}\left(0\right) $ and $ u\left(0, t\right) $. On $ \partial B_{1}\left(0\right) $, $ \bar{u}-u = 0 $ and $ \bar{v}-v = 0 $. By Lemma 2.1, $ u\left(x, t\right) \leq \bar{u}\left(x\right) $ and $ v\left(x, t\right) \leq \bar{v}\left(x\right) $ on $ \overline{B_{1}\left(0\right) }\times \left[0, \infty \right) $. Thus, the solution $ \left(u, v\right) $ exists globally. The proof is complete.

    From the result of Lemma 2.3, we know that $ x = 0 $ is a quenching point of $ u $ and $ v $ if they quench. Let $ T^{\ast } $ be the supremum of the time $ T $ for which the problem (1.3)-(1.4) has the unique solution $ \left(u, v\right) $.

    Theorem 2.6. If $ T^{\ast } < \infty $, then either $ u\left(0, t\right) $ or $ v\left(0, t\right) $ quenches at $ T^{\ast } $.

    Proof. Suppose that both $ u $ and $ v $ do not quench at $ x = 0 $ when $ t = T^{\ast } $. Then, there exist $ k_{3} $ and $ k_{4} $ such that $ u\left(0, t\right) \leq k_{3} < c $ and $ v\left(0, t\right) \leq k_{4} < c $ for $ t\in \left[0, T^{\ast }\right] $. This shows that $ af\left(v\left(0, t\right) \right) < k_{5} $ and $ bg\left(u\left(0, t\right) \right) < k_{6} $ for $ t\in \left[0, T^{\ast }\right] $. Then, by Theorem 4.2.1 of [9], $ u $ and $ v\in C^{2+\alpha, 1+\alpha /2}\left(\overline{ B_{1}\left(0\right) }\times \lbrack 0, T^{\ast }]\right) $. This implies that there exist $ k_{7} $ and $ k_{8} $ such that $ u\left(x, t\right) \leq k_{7} < c $ and $ v\left(x, t\right) \leq k_{8} < c $ for $ \left(x, t\right) \in \overline{B_{1}\left(0\right) }\times \left[0, T^{\ast }\right] $. In order to arrive at a contradiction, we need to show that $ u $ and $ v $ can continue to exist in a longer time interval $ \left[0, T^{\ast }+t_{1}\right) $ for some positive $ t_{1} $. This can be accomplished by extending the upper bound of $ u $ and $ v $. Let us construct upper solutions $ \psi \left(x, t\right) = k_{7}h\left(t\right) $ and $ \sigma \left(x, t\right) = k_{8}i\left(t\right) $, where $ h\left(t\right) $ and $ i\left(t\right) $ are solutions to the following system:

    $ \begin{eqnarray*} \frac{d}{dt}k_{7}h\left( t\right) & = &af\left( k_{8}i\left( t\right) \right) \text{ for }~~t > T^{\ast }, \ h\left( T^{\ast }\right) = 1, \\ \frac{d}{dt}k_{8}i\left( t\right) & = &bg\left( k_{7}h\left( t\right) \right) \text{ for }~~t > T^{\ast }, \ i\left( T^{\ast }\right) = 1. \end{eqnarray*} $

    From $ af\left(k_{8}i\left(t\right) \right) > 0 $ and $ bg\left(k_{7}h\left(t\right) \right) > 0 $, this implies that $ h\left(t\right) $ and $ i\left(t\right) $ are increasing functions of $ t $. Let $ t_{1} $ be a positive real number determined by $ k_{7}h\left(T^{\ast }+t_{1}\right) = k_{9} < c $ and $ k_{8}i\left(T^{\ast }+t_{1}\right) = k_{10} < c $ for some $ k_{9}\left(>k_{7}\right) $ and $ k_{10}\left(>k_{8}\right) $. By our construction, $ \psi \left(x, t\right) = \psi \left(0, t\right) $ and $ \sigma \left(x, t\right) = \sigma \left(0, t\right) $ satisfy

    $ \begin{eqnarray*} L\psi \left( x, t\right) & = &af\left( \sigma \left( 0, t\right) \right) \text{ in }B_{1}\left( 0\right) \times \left( T^{\ast }, T^{\ast }+t_{1}\right) , \\ L\sigma \left( x, t\right) & = &bg\left( \psi \left( 0, t\right) \right) \text{ in }B_{1}\left( 0\right) \times \left( T^{\ast }, T^{\ast }+t_{1}\right) , \\ \psi \left( x, T^{\ast }\right) & = &k_{7}h\left( T^{\ast }\right) \geq u\left( x, T^{\ast }\right) \text{ and }~~\sigma \left( x, T^{\ast }\right) = k_{8}i\left( T^{\ast }\right) \geq v\left( x, T^{\ast }\right) \text{ on } \overline{B_{1}\left( 0\right) }, \\ \psi \left( x, t\right) & = &k_{7}h\left( t\right) > 0\text{ and }~~\sigma \left( x, t\right) = k_{8}i\left( t\right) > 0\text{ on }\partial B_{1}\left( 0\right) \times \left( T^{\ast }, T^{\ast }+t_{1}\right) . \end{eqnarray*} $

    By Lemma 2.1, $ \psi \left(x, t\right) \geq u\left(x, t\right) $ and $ \sigma \left(x, t\right) \geq v\left(x, t\right) $ on $ \overline{B_{1}\left(0\right) }\times \left[T^{\ast }, T^{\ast }+t_{1}\right) $. Therefore, we find the solution $ \left(u, v\right) $ to the problem (1.3)-(1.4) on $ \overline{B_{1}\left(0\right) }\times \left[T^{\ast }, T^{\ast }+t_{1}\right) $. This contradicts the definition of $ T^{\ast } $. Hence, either $ u\left(0, t\right) $ or $ v\left(0, t\right) $ quenches at $ T^{\ast } $.

    Let $ y = u_{t} $ and $ z = v_{t} $. We differentiate the problem (2.4) with respect to $ t $ to obtain the following system

    $ \begin{equation} \left\{ \begin{array}{c} y_{t}\left( r, t\right) -y_{rr}\left( r, t\right) -\dfrac{\left( n-1\right) }{r }y_{r}\left( r, t\right) = af^{\prime }\left( v\left( 0, t\right) \right) z\left( 0, t\right) \text{ in }\left( 0, 1\right) \times \left( 0, T\right) , \\ z_{t}\left( r, t\right) -z_{rr}\left( r, t\right) -\dfrac{\left( n-1\right) }{r }z_{r}\left( r, t\right) = ag^{\prime }\left( u\left( 0, t\right) \right) y\left( 0, t\right) \text{ in }\left( 0, 1\right) \times \left( 0, T\right) , \\ y\left( r, 0\right) \geq 0\text{ for }~~r\in \left[ 0, 1\right) \text{ and }~~ y\left( 1, 0\right) = 0\text{, }y\left( 0, t\right) > 0\text{ and }~~y\left( 1, t\right) = 0\text{ for }~~t\in \left( 0, T\right) , \\ z\left( r, 0\right) \geq 0\text{ for }~~r\in \left[ 0, 1\right) \text{ and }~~ z\left( 1, 0\right) = 0\text{, }z\left( 0, t\right) > 0\text{ and }~~z\left( 1, t\right) = 0\text{ for }~~t\in \left( 0, T\right) . \end{array} \right. \end{equation} $ (2.7)

    The result below shows that $ u_{t}\left(r, t\right) $ and $ v_{t}\left(r, t\right) $ are decreasing functions in $ r $.

    Lemma 2.7. $ u_{t}\left(r_{2}, t\right) < u_{t}\left(r_{1}, t\right) $ and $ v_{t}\left(r_{2}, t\right) < v_{t}\left(r_{1}, t\right) $ for $ 0 < r_{1} < r_{2} < 1 $ and $ t\in \left(0, T\right) $.

    Proof. We differentiate the first equation of problem (2.8) with respect to $ r $ to obtain the following differential equation

    $ y_{tr}-y_{rrr}-\frac{\left( n-1\right) }{r}y_{rr}+\frac{\left( n-1\right) }{ r^{2}}y_{r} = 0. $

    For $ r\in \left[0, 1\right) $, $ u_{rt}\left(r, 0\right) $ is given by

    $ u_{rt}\left( r, 0\right) = \lim\limits_{\theta _{1}\rightarrow 0}\frac{u_{r}\left( r, \theta _{1}\right) -u_{r}\left( r, 0\right) }{\theta _{1}}. $

    Using $ u_{r}\left(r, 0\right) = 0 $ and Lemma 2.3, we have $ u_{rt}\left(r, 0\right) \leq 0 $. Thus, $ y_{r}\left(r, 0\right) \leq 0 $ for $ r\in \left[0, 1\right) $. By Lemma 2.2(i),

    $ \frac{\partial y\left( 1, 0\right) }{\partial r} = \lim\limits_{\theta _{2}\rightarrow 0}\frac{y\left( 1, 0\right) -y\left( 1-\theta _{2}, 0\right) }{\theta _{2}} \leq 0. $

    By the Hopf's lemma, $ \partial y\left(1, t\right) /\partial r < 0 $ for $ t > 0 $. By the symmetry of $ B_{1}\left(0\right) $ with respect to $ 0 $, $ \partial y\left(0, t\right) /\partial r = 0 $ for $ t\geq 0 $. Let $ U = y_{r}\left( = u_{rt}\right) $. $ U $ satisfies the following initial-boundary value problem:

    $ \begin{equation} \left\{ \begin{array}{c} U_{t}-U_{rr}-\dfrac{\left( n-1\right) }{r}U_{r}+\dfrac{\left( n-1\right) }{ r^{2}}U = 0\text{ in }\left( 0, 1\right) \times \left( 0, T\right) , \\ U\left( r, 0\right) \leq 0\text{ for }~~r\in \left[ 0, 1\right] \text{, }U\left( 0, t\right) = 0\text{ and }~~U\left( 1, t\right) < 0\text{ for }~~t\in \left( 0, T\right) . \end{array} \right. \end{equation} $ (2.8)

    By the maximum principle, $ U\left(r, t\right) < 0 $ for $ \left(0, 1\right] \times \left(0, T\right) $. We integrate $ U\left(r, t\right) < 0 $ with respect to $ r $ over $ \left(r_{1}, r_{2}\right) $ to yield $ y\left(r_{2}, t\right) < y\left(r_{1}, t\right) $. That is, $ u_{t}\left(r_{2}, t\right) < u_{t}\left(r_{1}, t\right) $ for $ 0 < r_{1} < r_{2} < 1 $ and $ t\in \left(0, T\right) $. We follow a similar procedure to obtain $ v_{t}\left(r_{2}, t\right) < v_{t}\left(r_{1}, t\right) $ for $ 0 < r_{1} < r_{2} < 1 $ and $ t\in \left(0, T\right) $.

    Here is the corollary of above lemma. It illustrates that $ u_{t} $ and $ v_{t} $ attain their maximum value at $ r = 0 $ for $ t\in \left(0, T\right) $.

    Corollary 2.8. $ u_{t}\left(r, t\right) < u_{t}\left(0, t\right) $ and $ v_{t}\left(r, t\right) < v_{t}\left(0, t\right) $ for $ \left(r, t\right) \in \left(0, 1\right) \times \left(0, T\right) $.

    Now, we are going to prove that the solution $ \left(u, v\right) $ quenches at $ x = 0 $ only.

    Theorem 2.9. The solution $ \left(u, v\right) $ quenches only at $ x = 0 $.

    Proof. To establish this result, we let $ V = v_{rt}\left( = z_{r}\right) $ and $ t_{2}\in \left(0, T\right) $. $ V $ satisfies the problem (2.9) with $ U $ substituting by $ V $. By Lemma 2.7, $ U\left(r_{2}, t\right) < 0 $ and $ V\left(r_{2}, t\right) < 0 $ for $ r_{2}\in \left(0, 1\right) $ and $ t\in \left[t_{2}, s\right) $ where $ s\leq T $. Also, $ U\left(r, t_{2}\right) < 0 $ and $ V\left(r, t_{2}\right) < 0 $ for $ r\in \left(0, r_{2}\right] $. Let $ J $ be the parabolic operator such that $ JW = W_{t}-W_{rr}-\left(n-1\right) W_{r}/r+\left(n-1\right) W/r^{2} $. Let us consider the following auxiliary problem below:

    $ \left\{ \begin{array}{c} JW = 0\text{ for }~~\left( r, t\right) \in \left( 0, 1\right) \times \left( t_{2}, T\right) , \\ W\left( r, t_{2}\right) \left( = U\left( r, t_{2}\right) \right) < 0\text{ for }~~ r\in \left( 0, 1\right) \text{, }W\left( 0, t\right) = 0\text{ and }~~W\left( 1, t\right) = 0\text{ for }~~t\in \left[ t_{2}, T\right) . \end{array} \right. $

    By the maximum principle, $ W\left(r, t\right) < 0 $ for $ \left(0, 1\right) \times \left(t_{2}, T\right) $. For $ \left(r, t\right) \in \left[0, 1\right] \times \left[t_{2}, T\right) $, the integral representation form of $ W $ is given by

    $ W\left( r, t\right) = \int_{0}^{1}K\left( r, \xi , t-t_{2}\right) W\left( \xi , t_{2}\right) d\xi , $

    where $ K $ is the Green's function of the parabolic operator $ J $. $ K $ is able to determine using the method of separation of variables and it would be represented in the form of infinite series, see [14]. Since $ W $ is negative in $ \left(0, 1\right) \times \left(t_{2}, T\right) $ and $ K $ is positive in the set $ \{\left(r, \xi, t\right) :r $ and $ \xi $ are in $ \left(0, 1\right) $, and $ t > t_{2}\} $, there exists a positive constant $ \rho $ such that $ W\left(r, t\right) < -\rho $ for $ \left(r, t\right) \in \left(0, 1\right) \times \left(t_{2}, T\right) $. By $ U\left(1, t\right) < 0 $ for $ t\in \left(0, T\right) $ and the comparison theorem, $ U\left(r, t\right) \leq W\left(r, t\right) $ for $ \left(r, t\right) \in \left[0, 1\right] \times \left[t_{2}, T\right) $. Thus, $ U\left(r, t\right) \leq W\left(r, t\right) < -\rho $ for $ \left(r, t\right) \in \left(0, 1\right) \times \left(t_{2}, T\right) $. Now, we integrate $ U\left(r, t\right) \left( = u_{rt}\left(r, t\right) \right) < -\rho $ with respect to $ r $ over $ \left(r_{3}, r_{4}\right) $ and then with respect to $ t $ over $ \left(t, t_{3}\right) $ where $ r_{3}, r_{4}\in \left(0, r_{2}\right] $ to obtain

    $ u\left( r_{4}, t_{3}\right) -u\left( r_{4}, t\right) < u\left( r_{3}, t_{3}\right) -u\left( r_{3}, t\right) -\rho \left( r_{4}-r_{3}\right) \left( t_{3}-t\right) . $

    Since $ u_{r} < 0 $ in $ \left(0, 1\right] \times \left(0, T\right) $, $ u $ has no maximum except $ r = 0 $. Suppose that $ u $ quenches for $ r\in \left(0, 1-r_{2}\right) $. Let us assume that $ u\left(r_{3}, t\right) $ and $ u\left(r_{4}, t\right) $ both quench at $ T $. Therefore, $ u\left(r_{3}, t_{3}\right) \rightarrow c^{-} $ and $ u\left(r_{4}, t_{3}\right) \rightarrow c^{-} $ as $ t_{3}\rightarrow T^{-} $. From the above inequality, we have

    $ \begin{eqnarray*} \lim\limits_{t_{3}\rightarrow T^{-}}u\left( r_{4}, t_{3}\right) -u\left( r_{4}, t\right) &\leq &\lim\limits_{t_{3}\rightarrow T^{-}}u\left( r_{3}, t_{3}\right) -u\left( r_{3}, t\right) -\rho \left( r_{4}-r_{3}\right) \left( T-t\right) \\ -u\left( r_{4}, t\right) &\leq &-u\left( r_{3}, t\right) -\rho \left( r_{4}-r_{3}\right) \left( T-t\right) . \end{eqnarray*} $

    Equivalently,

    $ u\left( r_{4}, t\right) > u\left( r_{3}, t\right) . $

    This contradicts $ u_{r}\left(r, t\right) < 0 $ for $ \left(r, t\right) \in \left(0, 1\right] \times \left(0, T\right) $. Hence, $ u $ quenches only at $ x = 0 $. Similarly, $ v $ quenches only at $ x = 0 $ also.

    In this section, we prove the solution $ \left(u, v\right) $ to quench either (i) simultaneously or (ii) non-simultaneously under some conditions. Let $ \varphi _{0}\left(x\right) \in C\left(\overline{B_{1}\left(0\right) } \right) \cap C^{2}\left(B_{1}\left(0\right) \right) $ such that $ \Delta \varphi _{0}\left(x\right) < 0 $, $ \varphi _{0}\left(x\right) > 0 $ in $ B_{1}\left(0\right) $, and $ \varphi _{0}\left(x\right) = 0 $ on $ \partial B_{1}\left(0\right) $ and $ \max_{x\in \overline{B_{1}\left(0\right) } }\varphi _{0}\left(x\right) \leq 1 $. Let $ \varphi \left(x, t\right) $ be the solution to the following first initial-boundary value problem:

    $ \begin{eqnarray*} Lw & = &0\text{ in }B_{1}\left( 0\right) \times \left( 0, \infty \right) , \\ w\left( x, 0\right) & = &\varphi _{0}\left( x\right) \text{ on }\overline{ B_{1}\left( 0\right) }, \ w\left( x, t\right) = 0\text{ on }\partial B_{1}\left( 0\right) \times \left( 0, \infty \right) . \end{eqnarray*} $

    By the maximum principle, $ \varphi \left(x, t\right) > 0 $ in $ B_{1}\left(0\right) \times \left[0, \infty \right) $ and is bounded above by $ \varphi _{0}\left(x\right) $, and $ \varphi \left(x, t\right) $ satisfies

    $ \max\limits_{\left( x, t\right) \in \overline{B_{1}\left( 0\right) }\times \left[ 0, \infty \right) }\varphi \left( x, t\right) \leq 1. $

    Let $ t_{4}\in \left(0, T\right) $ such that $ v\left(0, t_{4}\right) \leq k_{11} < c $. Then,

    $ \begin{equation} a\varphi \left( x, t_{4}\right) f\left( k_{11}\right) \geq a\varphi \left( x, t_{4}\right) f\left( v\left( 0, t_{4}\right) \right) . \end{equation} $ (3.1)

    By Lemma 2.2(ii), $ u_{t}\left(x, t\right) > 0 $ in $ B_{1}\left(0\right) \times \left(0, T\right) $. Since $ u_{t}\left(x, t_{4}\right) > 0 $\ and $ \varphi \left(x, t_{4}\right) > 0 $ in $ B_{1}\left(0\right) $, and $ u_{t}\left(x, t_{4}\right) = \varphi \left(x, t_{4}\right) = 0 $ on $ \partial B_{1}\left(0\right) $, we choose a positive real number $ \eta _{1}\left(<1\right) $ such that

    $ \begin{equation} u_{t}\left( x, t_{4}\right) \geq a\eta _{1}\varphi \left( x, t_{4}\right) f\left( k_{11}\right) \text{ on }\overline{B_{1}\left( 0\right) }. \end{equation} $ (3.2)

    Clearly, $ u_{t}\left(x, t\right) = a\eta _{1}\varphi \left(x, t\right) f\left(v\left(0, t\right) \right) $ for $ \left(x, t\right) \in \partial B_{1}\left(0\right) \times \left[0, T\right) $. Let $ I\left(x, t\right) = u_{t}\left(x, t\right) -a\eta _{1}\varphi \left(x, t\right) f\left(v\left(0, t\right) \right) $. By inequalities (3.1) and (3.2), $ I\left(x, t_{4}\right) \geq 0 $ on $ \overline{B_{1}\left(0\right) } $. Let $ Q\left(x, t\right) = v_{t}\left(x, t\right) -b\eta _{2}\varphi \left(x, t\right) g\left(u\left(0, t\right) \right) $ for some positive $ \eta _{2} $ less than $ 1 $. We follow a similar computation to get $ Q\left(x, t_{4}\right) \geq 0 $ on $ \overline{B_{1}\left(0\right) } $. We modify the proof of Lemma 3.4 of [4] to obtain the result below.

    Lemma 3.1. $ I\left(x, t\right) \geq 0 $ and $ Q\left(x, t\right) \geq 0 $ on $ \overline{B_{1}\left(0\right) } \times \left[t_{4}, T\right) $.

    Proof. By a direct computation,

    $ I_{t} = u_{tt}-a\eta _{1}\varphi f^{\prime }\left( v\left( 0, t\right) \right) v_{t}\left( 0, t\right) -a\eta _{1}f\left( v\left( 0, t\right) \right) \varphi _{t}, $
    $ \Delta I = \Delta u_{t}-a\eta _{1}f\left( v\left( 0, t\right) \right) \Delta \varphi . $

    Then, we have

    $ LI = af^{\prime }\left( v\left( 0, t\right) \right) v_{t}\left( 0, t\right) \left( 1-\eta _{1}\varphi \right) \text{ in }B_{1}\left( 0\right) \times \left( 0, T\right) . $

    By $ \varphi \leq 1 $ on $ \overline{B_{1}\left(0\right) }\times \left[0, \infty \right) $, $ \eta _{1} < 1 $, and $ v_{t}\left(0, t\right) > 0 $ for $ t\in \left(0, T\right) $, it gives $ LI\geq 0 $ in $ B_{1}\left(0\right) \times \left(0, T\right) $. In addition, $ I\left(x, t_{4}\right) \geq 0 $ on $ \overline{B_{1}\left(0\right) } $, and $ I\left(x, t\right) = 0 $ on $ \partial B_{1}\left(0\right) \times \left(t_{4}, T\right) $. By the maximum principle, $ I\left(x, t\right) \geq 0 $ on $ \overline{B_{1}\left(0\right) } \times \left[t_{4}, T\right) $. Similarly, we have $ Q\left(x, t\right) \geq 0 $ on $ \overline{B_{1}\left(0\right) }\times \left[t_{4}, T\right) $.

    Now, we provide the result of simultaneous quenching of the solution $ \left(u, v\right) $ when $ \int_{0}^{c}f\left(\omega \right) d\omega = \infty $ and $ \int_{0}^{c}g\left(\omega \right) d\omega = \infty $. With these two integrals and (H$ _{2} $) (see section 1), we know that $ \int_{m}^{c}f\left(\omega \right) d\omega = \infty $ and $ \int_{m}^{c}g\left(\omega \right) d\omega = \infty $, and $ \int_{0}^{m}f\left(\omega \right) d\omega < \infty $ and $ \int_{0}^{m}g\left(\omega \right) d\omega < \infty $ for $ m\in \left[0, c\right) $.

    Theorem 3.2. If $ \int_{0}^{c}f\left(\omega \right) d\omega = \infty $ and $ \int_{0}^{c}g\left(\omega \right) d\omega = \infty $, and either $ u $ or $ v $ quenches at $ x = 0 $ in $ T $, then $ u $ and $ v $ both quench at $ x = 0 $ in the same time $ T $.

    Proof. Suppose not, let us assume that $ v\left(0, t\right) $ quenches at $ T $ but $ u\left(0, t\right) $ remains bounded on $ \left[0, T\right] $. Then, $ 0\leq u\left(0, t\right) \leq k_{12} < c $ for $ t\in \left[0, T\right] $. From Lemma 3.1, we have

    $ u_{t}\left( x, t\right) \geq a\eta _{1}\varphi \left( x, t\right) f\left( v\left( 0, t\right) \right) \text{ on }\overline{B_{1}\left( 0\right) }\times \left[ t_{4}, T\right) , $
    $ v_{t}\left( x, t\right) \geq b\eta _{2}\varphi \left( x, t\right) g\left( u\left( 0, t\right) \right) \text{ on }\overline{ B_{1}\left( 0\right) }\times \left[ t_{4}, T\right) . $

    By Lemma 2.3, $ u $ and $ v $ both attain the maximum at $ x = 0 $ for $ t\in \left(0, T\right) $. Then, $ \Delta u\left(0, t\right) < 0 $ and $ \Delta v\left(0, t\right) < 0 $ over $ \left(0, T\right) $. From the equation (1.3), we obtain the following inequalities:

    $ \begin{equation} \left\{ \begin{array}{c} a\eta _{1}\varphi \left( 0, t\right) f\left( v\left( 0, t\right) \right) \leq u_{t}\left( 0, t\right) < af\left( v\left( 0, t\right) \right) , \\ b\eta _{2}\varphi \left( 0, t\right) g\left( u\left( 0, t\right) \right) \leq v_{t}\left( 0, t\right) < bg\left( u\left( 0, t\right) \right) . \end{array} \right. \end{equation} $ (3.3)

    By $ g > 0 $ and $ \varphi \left(0, t\right) > 0 $ for $ t\in \left[0, \infty \right) $, we divide the first inequality by the second one to achieve

    $ \begin{equation} \frac{a\eta _{1}\varphi \left( 0, t\right) f\left( v\left( 0, t\right) \right) }{bg\left( u\left( 0, t\right) \right) }\leq \frac{du\left( 0, t\right) }{ dv\left( 0, t\right) }\leq \frac{af\left( v\left( 0, t\right) \right) }{b\eta _{2}\varphi \left( 0, t\right) g\left( u\left( 0, t\right) \right) }. \end{equation} $ (3.4)

    From the first-half inequality, it yields the expression below:

    $ a\eta _{1}\varphi \left( 0, t\right) f\left( v\left( 0, t\right) \right) dv\left( 0, t\right) \leq bg\left( u\left( 0, t\right) \right) du\left( 0, t\right) . $

    Let $ \delta $ be a positive real number such that $ \delta = \min_{\left[0, T \right] }\varphi \left(0, t\right) $. Then, we integrate both sides over $ \left[t_{4}, s\right) $ for $ s\in \left(t_{4}, T\right] $ to attain

    $ a\eta _{1}\delta \int_{v\left( 0, t_{4}\right) }^{v\left( 0, s\right) }f\left( v\left( 0, t\right) \right) dv\left( 0, t\right) \leq b\int_{u\left( 0, t_{4}\right) }^{u\left( 0, s\right) }g\left( u\left( 0, t\right) \right) du\left( 0, t\right) . $

    When $ s\rightarrow T^{-} $, $ v\left(0, s\right) \rightarrow c^{-} $. By assumption $ \int_{0}^{c}f\left(\omega \right) d\omega = \infty $, $ \lim_{s\rightarrow T^{-}}\int_{v\left(0, t_{4}\right) }^{v\left(0, s\right) }f\left(v\left(0, t\right) \right) dv\left(0, t\right) = \infty $. If $ u\left(0, s\right) \leq k_{12} < c $ as $ s\rightarrow T^{-} $, then there exists $ k_{13} $ such that

    $ \lim\limits_{s\rightarrow T^{-}}\int_{u\left( 0, t_{4}\right) }^{u\left( 0, s\right) }g\left( u\left( 0, t\right) \right) du\left( 0, t\right) \leq \int_{u\left( 0, t_{4}\right) }^{k_{12}}g\left( u\left( 0, t\right) \right) du\left( 0, t\right) \leq k_{13}. $

    Therefore,

    $ a\eta _{1}\delta \lim\limits_{s\rightarrow T^{-}}\int_{v\left( 0, t_{4}\right) }^{v\left( 0, s\right) }f\left( v\left( 0, t\right) \right) dv\left( 0, t\right) \leq bk_{13}. $

    It leads to a contradiction. Hence, $ u\left(0, t\right) $ quenches at $ T $. From the second-half of inequality (3.4) and $ \int_{0}^{c}g\left(\omega \right) d\omega = \infty $, we prove that $ v\left(0, t\right) $ quenches at $ t = T $ if $ u\left(0, t\right) $ quenches. This completes the proof.

    Theorem 3.3. Suppose that $ \int_{0}^{c}f\left(\omega \right) d\omega < \infty $ and $ \int_{0}^{c}g\left(\omega \right) d\omega < \infty $, and depending on $ a $ and $ b $ , then the following three cases could happen: (i) $ u $ and $ v $ both quench in $ T $ at $ x = 0 $, (ii) either $ u $ or $ v $ quenches in $ T $ at $ x = 0 $, or (iii) both $ u $ and $ v $ do not quench.

    Proof. From (3.3), we have the inequality below:

    $ \begin{equation} b\eta _{2}\varphi \left( 0, t\right) g\left( u\left( 0, t\right) \right) u_{t}\left( 0, t\right) \leq u_{t}\left( 0, t\right) v_{t}\left( 0, t\right) < av_{t}\left( 0, t\right) f\left( v\left( 0, t\right) \right) . \end{equation} $ (3.5)

    Thus,

    $ b\eta _{2}\varphi \left( 0, t\right) g\left( u\left( 0, t\right) \right) u_{t}\left( 0, t\right) < av_{t}\left( 0, t\right) f\left( v\left( 0, t\right) \right) . $

    We integrate both sides with respect to $ t $ over $ \left[t_{4}, s\right) $ for $ s\in \left(t_{4}, T\right] $ to obtain

    $ \begin{equation} b\eta _{2}\delta \int_{u\left( 0, t_{4}\right) }^{u\left( 0, s\right) }g\left( u\left( 0, t\right) \right) du\left( 0, t\right) < a\int_{v\left( 0, t_{4}\right) }^{v\left( 0, s\right) }f\left( v\left( 0, t\right) \right) dv\left( 0, t\right) < \infty . \end{equation} $ (3.6)

    (i) In this case, we prove simultaneous quenching of $ u $ and $ v $ in $ T $ at $ x = 0 $.

    Let us assume that $ v\left(0, t\right) $ quenches at $ t = T $ but $ u\left(0, t\right) $ remains bounded on $ \left[0, T\right] $. We integrate the inequality (3.5) with respect to $ t $ over $ \left[t_{4}, s\right) $ to obtain

    $ b\eta _{2}\int_{t_{4}}^{s}\varphi \left( 0, t\right) g\left( u\left( 0, t\right) \right) u_{t}\left( 0, t\right) dt\leq \int_{t_{4}}^{s}u_{t}\left( 0, t\right) v_{t}\left( 0, t\right) dt < a\int_{t_{4}}^{s}v_{t}\left( 0, t\right) f\left( v\left( 0, t\right) \right) dt. $

    By the mean value theorem for definite integrals, there exists $ t_{5}\in \left(t_{4}, s\right) $ such that $ \int_{t_{4}}^{s}u_{t}\left(0, t\right) v_{t}\left(0, t\right) dt = v_{t}\left(0, t_{5}\right) \int_{t_{4}}^{s}u_{t}\left(0, t\right) dt $. This gives

    $ b\eta _{2}\int_{t_{4}}^{s}\varphi \left( 0, t\right) g\left( u\left( 0, t\right) \right) u_{t}\left( 0, t\right) dt\leq v_{t}\left( 0, t_{5}\right) \int_{t_{4}}^{s}u_{t}\left( 0, t\right) dt < a\int_{v\left( 0, t_{4}\right) }^{v\left( 0, s\right) }f\left( v\left( 0, t\right) \right) dv\left( 0, t\right) . $

    We evaluate the integral of middle expression to yield

    $ b\eta _{2}\delta \int_{u\left( 0, t_{4}\right) }^{u\left( 0, s\right) }g\left( u\left( 0, t\right) \right) du\left( 0, t\right) \leq v_{t}\left( 0, t_{5}\right) \left[ u\left( 0, s\right) -u\left( 0, t_{4}\right) \right] . $

    As $ v_{t}\left(0, t_{5}\right) > 0 $, it is equivalent to

    $ \frac{b\eta _{2}\delta \int_{u\left( 0, t_{4}\right) }^{u\left( 0, s\right) }g\left( u\left( 0, t\right) \right) du\left( 0, t\right) }{v_{t}\left( 0, t_{5}\right) }\leq u\left( 0, s\right) -u\left( 0, t_{4}\right) . $

    By $ v_{t}\left(0, t\right) \leq bg\left(u\left(0, t\right) \right) $ and $ u\left(0, t\right) $ remains bounded on $ \left[0, T\right] $, then there exists $ k_{14} $\ such that $ v_{t}\left(0, t_{5}\right) \leq k_{14} $ for $ t_{5}\in \left[t_{4}, s\right] $ for $ s\in \left(t_{4}, T\right] $. This implies

    $ \frac{b\eta _{2}\delta \lim\limits_{s\rightarrow T^{-}}\int_{u\left( 0, t_{4}\right) }^{u\left( 0, s\right) }g\left( u\left( 0, t\right) \right) du\left( 0, t\right) }{k_{14}}\leq \lim\limits_{s\rightarrow T^{-}}u\left( 0, s\right) -u\left( 0, t_{4}\right) . $

    If we choose $ b $ being sufficiently large such that $ b\eta _{2}\delta \lim_{s\rightarrow T^{-}}\int_{u\left(0, t_{4}\right) }^{u\left(0, s\right) }g\left(u\left(0, t\right) \right) du\left(0, t\right) /k_{14}\geq $ $ c $, then we have

    $ c\leq u\left( 0, T\right) -u\left( 0, t_{4}\right) . $

    This leads to a contradiction. Therefore, $ u $ quenches in $ T $ at $ x = 0 $ also when $ b $ is sufficient large. Hence, $ u $ and $ v $ quench simultaneously in $ T $ at $ x = 0 $.

    (ii) We prove non-simultaneous quenching.

    Let us assume that both $ v\left(0, t\right) $ and $ u\left(0, t\right) $ do not quench in any finite time. From the inequality (3.6),

    $ b\eta _{2}\delta \int_{u\left( 0, t_{4}\right) }^{u\left( 0, s\right) }g\left( u\left( 0, t\right) \right) du\left( 0, t\right) < a\int_{v\left( 0, t_{4}\right) }^{v\left( 0, s\right) }f\left( v\left( 0, t\right) \right) dv\left( 0, t\right) < \infty . $

    Then, there exists $ k_{15} $ such that

    $ b\eta _{2}\delta \lim\limits_{s\rightarrow T^{-}}\int_{u\left( 0, t_{4}\right) }^{u\left( 0, s\right) }g\left( u\left( 0, t\right) \right) du\left( 0, t\right) \leq ak_{15}. $

    Since $ \lim_{s\rightarrow T^{-}}\int_{u\left(0, t_{4}\right) }^{u\left(0, s\right) }g\left(u\left(0, t\right) \right) du\left(0, t\right) < \infty $, we choose a sufficiently large $ b $ such that

    $ ak_{15} < b\eta _{2}\delta \lim\limits_{s\rightarrow T^{-}}\int_{u\left( 0, t_{4}\right) }^{u\left( 0, s\right) }g\left( u\left( 0, t\right) \right) du\left( 0, t\right) . $

    This leads to a contradiction. Therefore, either $ u $ or $ v $ quenches in $ T $ at $ x = 0 $, or $ u $ and $ v $ quench simultaneously at $ x = 0 $.

    Now, let us assume that the solution $ \left(u, v\right) $ quenches simultaneously at $ x = 0 $. By Lemma 2.2(ii), $ v_{t}\left(0, t\right) > 0 $ for $ t > 0 $. Then, there exists $ k_{16} $ such that $ v_{t}\left(0, t\right) > k_{16} $ for $ t\in \left[t_{4}, s\right) $ where $ s\in \left(t_{4}, T\right] $. From the inequality (3.5), we have

    $ u_{t}\left( 0, t\right) v_{t}\left( 0, t\right) < av_{t}\left( 0, t\right) f\left( v\left( 0, t\right) \right) . $

    We integrate this expression with respect to $ t $ over $ \left(t_{4}, s\right) $ to achieve

    $ \int_{t_{4}}^{s}u_{t}\left( 0, t\right) v_{t}\left( 0, t\right) dt < \int_{t_{4}}^{s}av_{t}\left( 0, t\right) f\left( v\left( 0, t\right) \right) dt. $

    We take the limit $ s $ to $ T $ on both sides and by $ v_{t}\left(0, t\right) > k_{16} $ to get

    $ k_{16}\lim\limits_{s\rightarrow T^{-}}\int_{u\left( 0, t_{4}\right) }^{u\left( 0, s\right) }du\left( 0, t\right) \leq a\int_{0}^{c}f\left( \omega \right) d\omega . $

    Evaluating the integration on the left side of the above expression, we have

    $ \lim\limits_{s\rightarrow T^{-}}u\left( 0, s\right) \leq u\left( 0, t_{4}\right) + \frac{a}{k_{16}}\int_{0}^{c}f\left( \omega \right) d\omega . $

    Let us assume that $ u\left(0, t_{4}\right) = k_{17}\left(<c\right) $ and $ u\left(0, T\right) = c $. We choose $ a $ being small enough so that $ \left(a\int_{0}^{c}f\left(\omega \right) d\omega \right) /k_{16} < c-k_{17} $. Then,

    $ c = u\left( 0, T\right) \leq u\left( 0, t_{4}\right) +\frac{a}{k_{16}} \int_{0}^{c}f\left( \omega \right) d\omega < c. $

    It leads to a contradiction. Hence, $ u $ and $ v $ quench non-simultaneously at $ x = 0 $.

    (iii) By Lemma 2.5, the solution $ \left(u, v\right) $ exists globally if $ a $ and $ b $ are sufficiently small. Thus, both $ u $ and $ v $ do not quench.

    Theorem 3.4. Suppose that $ \int_{0}^{c}f\left(\omega \right) d\omega < \infty $ and $ \int_{0}^{c}g\left(\omega \right) d\omega = \infty $, then any quenching in the problem (1.3)-(1.4) is non-simultaneous with $ \lim_{s\rightarrow T^{-}}u\left(0, s\right) \leq k_{18} < c $. That is, $ u $ does not quench in $ T $ at $ x = 0 $.

    Proof. From the expression (3.4)

    $ \frac{a\eta _{1}\varphi \left( 0, t\right) f\left( v\left( 0, t\right) \right) }{bg\left( u\left( 0, t\right) \right) }\leq \frac{du\left( 0, t\right) }{ dv\left( 0, t\right) }\leq \frac{af\left( v\left( 0, t\right) \right) }{b\eta _{2}\varphi \left( 0, t\right) g\left( u\left( 0, t\right) \right) }, $

    we have

    $ a\eta _{1}\varphi \left( 0, t\right) f\left( v\left( 0, t\right) \right) dv\left( 0, t\right) \leq bg\left( u\left( 0, t\right) \right) du\left( 0, t\right) \leq \frac{af\left( v\left( 0, t\right) \right) }{\eta _{2}\varphi \left( 0, t\right) }dv\left( 0, t\right) . $

    Then, we integrate the expression over the time interval $ \left[0, s\right) $ for $ s\in \left(0, T\right] $ and by the mean value theorem for definite integrals to give

    $ a\eta _{1}\delta \int_{0}^{v\left( 0, s\right) }f\left( \omega \right) d\omega \leq b\int_{0}^{u\left( 0, s\right) }g\left( \omega \right) d\omega \leq \frac{a}{\eta _{2}\varphi \left( 0, t_{6}\right) }\int_{0}^{v\left( 0, s\right) }f\left( \omega \right) d\omega $

    for some $ t_{6}\in \left(0, s\right) $ with $ \varphi \left(0, t_{6}\right) > 0 $. Suppose that $ v\left(0, s\right) \rightarrow c^{-} $ as $ s\rightarrow T^{-} $. By assumption $ \int_{0}^{c}f\left(\omega \right) d\omega < \infty $, it implies that $ \lim_{s\rightarrow T^{-}}\int_{0}^{u\left(0, s\right) }g\left(u\left(0, t\right) \right) du\left(0, t\right) < \infty $. Thus, $ \lim_{s\rightarrow T^{-}}u\left(0, s\right) \leq k_{18} < c $. Hence, $ u $ does not quench in $ T $ at $ x = 0 $.

    Based on a similar proof of Theorem 3.4, we also prove that any quenching in the problem (1.3)-(1.4) is non-simultaneous with $ \lim_{s\rightarrow T^{-}}v\left(0, s\right) \leq k_{19} < c $ when $ \int_{0}^{c}g\left(\omega \right) d\omega < \infty $ and $ \int_{0}^{c}f\left(\omega \right) d\omega = \infty $.

    In this article, we prove that the solution $ \left(u, v\right) $ to the problem (1.3)-(1.4) attains its maximum value at the center $ x = 0 $ over the domain $ B_{1}\left(0\right) $. Further, we obtain the main result that $ x = 0 $ is the only quenching point. Then, we show that the solution $ \left(u, v\right) $ quenches simultaneously at $ x = 0 $ when $ \int_{0}^{c}f\left(\omega \right) d\omega = \infty $ and $ \int_{0}^{c}g\left(\omega \right) d\omega = \infty $. When the integrals $ \int_{0}^{c}f\left(\omega \right) d\omega $ and $ \int_{0}^{c}g\left(\omega \right) d\omega $ are both finite, the solution $ \left(u, v\right) $ could quench simultaneously or non-simultaneously, or $ \left(u, v\right) $ exists globally. When one of the integrals is finite and the other is unbounded, we show that $ \left(u, v\right) $ quenches non-simultaneously.

    The author thanks the anonymous referee for careful reading. This research did not receive any specific grant funding agencies in the public, commercial, or not-for-profit sectors.

    The author declares that there are no conflicts of interest in this paper.

    [1] Gallo JM (2010) Pharmacokinetic/pharmacodynamic-driven drug development. Mt Sinai J Med N Y 77: 381–388. doi: 10.1002/msj.20193
    [2] Chien JY, Friedrich S, Heathman MA, et al. (2005) Pharmacokinetics/pharmacodynamics and the stages of drug development: Role of modeling and simulation. AAPS J 7: E544–E559. doi: 10.1208/aapsj070355
    [3] Garralda E, Dienstmann R, Tabernero J (2017) Pharmacokinetic/pharmacodynamic modeling for drug development in oncology. Am Soc Clin Oncol Educ 37: 210–215.
    [4] Dingemanse J, Krause A (2017) Impact of pharmacokinetic-pharmacodynamic modelling in early clinical drug development. Eur J Pharm Sci 109S: S53–S58.
    [5] Glassman PM, Balthasar JP (2014) Mechanistic considerations for the use of monoclonal antibodies for cancer therapy. Cancer Biol Med 11: 20–33.
    [6] Rajasekaran N, Chester C, Yonezawa A, et al. (2015) Enhancement of antibody-dependent cell mediated cytotoxicity: A new era in cancer treatment. ImmunoTargets Ther 4: 91–100.
    [7] Krishna M, Nadler SG (2016) Immunogenicity to biotherapeutics-the role of anti-drug immune complexes. Front Immunol 7: 21.
    [8] Kamath AV (2016) Translational pharmacokinetics and pharmacodynamics of monoclonal antibodies. Drug Discov Today Technol S21–22: 75–83.
    [9] Gomez-Mantilla JD, Troconiz IF, Parra-Guillen Z, et al. (2014) Review on modeling anti-antibody responses to monoclonal antibodies. J Pharmacokinet Pharmacodyn 41: 523–536. doi: 10.1007/s10928-014-9367-z
    [10] Adams GP, Weiner LM (2005) Monoclonal antibody therapy of cancer. Nat Biotechnol 23: 1147–1157. doi: 10.1038/nbt1137
    [11] Cornett DS, Reyzer ML, Chaurand P, et al. (2007) Maldi imaging mass spectrometry: Molecular snapshots of biochemical systems. Nat Methods 4: 828–833. doi: 10.1038/nmeth1094
    [12] Rompp A, Spengler B (2013) Mass spectrometry imaging with high resolution in mass and space. Histochem Cell Biol 139: 759–783. doi: 10.1007/s00418-013-1097-6
    [13] Calligaris D, Caragacianu D, Liu X, et al. (2014) Application of desorption electrospray ionization mass spectrometry imaging in breast cancer margin analysis. Proc Natl Acad Sci U. S. A 111: 15184–15189. doi: 10.1073/pnas.1408129111
    [14] Yasunaga M, Manabe S, Tsuji A, et al. (2017) Development of antibody-drug conjugates using dds and molecular imaging. Bioengineering 4: 78. doi: 10.3390/bioengineering4030078
    [15] Wu C, Dill AL, Eberlin LS, et al. (2013) Mass spectrometry imaging under ambient conditions. Mass Spectrom Rev 32: 218–243. doi: 10.1002/mas.21360
    [16] Murray KK, Seneviratne CA, Ghorai S (2016) High resolution laser mass spectrometry bioimaging. Methods 104: 118–126. doi: 10.1016/j.ymeth.2016.03.002
    [17] Stoeckli M, Chaurand P, Hallahan DE, et al. (2001) Imaging mass spectrometry: A new technology for the analysis of protein expression in mammalian tissues. Nat Med 7: 493–496. doi: 10.1038/86573
    [18] McDonnell LA, Heeren RM (2007) Imaging mass spectrometry. Mass Spectrom Rev 26: 606–643. doi: 10.1002/mas.20124
    [19] Caprioli RM, Farmer TB, Gile J (1997) Molecular imaging of biological samples: Localization of peptides and proteins using maldi-tof ms. Anal Chem 69: 4751–4760. doi: 10.1021/ac970888i
    [20] Wulfkuhle JD, Liotta LA, Petricoin EF (2003) Proteomic applications for the early detection of cancer. Nat Rev Cancer 3: 267–275. doi: 10.1038/nrc1043
    [21] Fujiwara Y, Furuta M, Manabe S, et al. (2016) Imaging mass spectrometry for the precise design of antibody-drug conjugates. Sci Rep 6: 24954. doi: 10.1038/srep24954
    [22] Yasunaga M, Furuta M, Ogata K, et al. (2013) The significance of microscopic mass spectrometry with high resolution in the visualisation of drug distribution. Sci Rep 3: 3050.
    [23] Peletier LA, Gabrielsson J (2012) Dynamics of target-mediated drug disposition: Characteristic profiles and parameter identification. J Pharmacokinet Pharmacodyn 39: 429–451. doi: 10.1007/s10928-012-9260-6
    [24] Pineda C, Jacobs IA, Alvarez DF, et al. (2016) Assessing the immunogenicity of biopharmaceuticals. Biodrugs 30: 195–206.
    [25] Hampe CS (2012) Protective role of anti-idiotypic antibodies in autoimmunity-lessons for type 1 diabetes. Autoimmunity 45: 320–331. doi: 10.3109/08916934.2012.659299
    [26] Thomas A, Teicher BA, Hassan R (2016) Antibody-drug conjugates for cancer therapy. Lancet Oncol 17: e254–e262. doi: 10.1016/S1470-2045(16)30030-4
    [27] Diamantis N, Banerji U (2016) Antibody-drug conjugates-an emerging class of cancer treatment. Br J Cancer 114: 362–367. doi: 10.1038/bjc.2015.435
    [28] Damelin M, Zhong W, Myers J, et al. (2015) Evolving strategies for target selection for antibody-drug conjugates. Pharm Res 32: 3494–3507. doi: 10.1007/s11095-015-1624-3
    [29] Senter PD, Sievers EL (2012) The discovery and development of brentuximab vedotin for use in relapsed hodgkin lymphoma and systemic anaplastic large cell lymphoma. Nat Biotechnol 30: 631–637. doi: 10.1038/nbt.2289
    [30] Ogitani Y, Aida T, Hagihara K, et al. (2016) Ds-8201a, a novel her2-targeting adc with a novel DNA topoisomerase i inhibitor, demonstrates a promising antitumor efficacy with differentiation from t-dm1. Clin Cancer Res 22: 5097–5108. doi: 10.1158/1078-0432.CCR-15-2822
    [31] Sau S, Alsaab HO, Kashaw SK, et al. (2017) Advances in antibody-drug conjugates: A new era of targeted cancer therapy. Drug Discovery Today 22: 1547–1556. doi: 10.1016/j.drudis.2017.05.011
    [32] Mitsunaga M, Ogawa M, Kosaka N, et al. (2011) Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat Med 17: 1685–1691. doi: 10.1038/nm.2554
    [33] Larson SM, Carrasquillo JA, Cheung NK, et al. (2015) Radioimmunotherapy of human tumours. Nat Rev Cancer 15: 347–360. doi: 10.1038/nrc3925
    [34] Sau S, Alsaab HO, Kashaw SK, et al. (2017) Advances in antibody-drug conjugates: A new era of targeted cancer therapy. Drug Discovery Today.
    [35] Gerber HP, Sapra P, Loganzo F, et al. (2016) Combining antibody-drug conjugates and immune-mediated cancer therapy: What to expect? Biochem Pharmacol 102: 1–6. doi: 10.1016/j.bcp.2015.12.008
    [36] Alsaab HO, Sau S, Alzhrani R, et al. (2017) Pd-1 and pd-l1 checkpoint signaling inhibition for cancer immunotherapy: Mechanism, combinations, and clinical outcome. Front Pharmacol 8: 561. doi: 10.3389/fphar.2017.00561
    [37] Matsumura Y (2014) The drug discovery by nanomedicine and its clinical experience. Jpn J Clin Oncol 44: 515–525. doi: 10.1093/jjco/hyu046
    [38] Nishiyama N, Matsumura Y, Kataoka K (2016) Development of polymeric micelles for targeting intractable cancers. Cancer Sci 107: 867–874. doi: 10.1111/cas.12960
    [39] Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46: 6387–6392.
    [40] Cabral H, Matsumoto Y, Mizuno K, et al. (2011) Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol 6: 815–823. doi: 10.1038/nnano.2011.166
    [41] Oku N (2017) Innovations in liposomal dds technology and its application for the treatment of various diseases. Biol Pharm Bull 40: 119–127. doi: 10.1248/bpb.b16-00857
    [42] Kinoshita R, Ishima Y, Chuang VTG, et al. (2017) Improved anticancer effects of albumin-bound paclitaxel nanoparticle via augmentation of epr effect and albumin-protein interactions using s-nitrosated human serum albumin dimer. Biomaterials 140: 162–169. doi: 10.1016/j.biomaterials.2017.06.021
    [43] Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6: 688–701. doi: 10.1038/nrc1958
    [44] Yokoyama M (2014) Polymeric micelles as drug carriers: Their lights and shadows. J Drug Targeting 22: 576–583. doi: 10.3109/1061186X.2014.934688
    [45] Jain RK, Stylianopoulos T (2010) Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 7: 653–664. doi: 10.1038/nrclinonc.2010.139
    [46] Allen TM, Cullis PR (2013) Liposomal drug delivery systems: From concept to clinical applications. Adv Drug Delivery Rev 65: 36–48. doi: 10.1016/j.addr.2012.09.037
    [47] Bae Y, Nishiyama N, Fukushima S, et al. (2005) Preparation and biological characterization of polymeric micelle drug carriers with intracellular ph-triggered drug release property: Tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjugate Chem 16: 122–130. doi: 10.1021/bc0498166
    [48] Kraft JC, Freeling JP, Wang Z, et al. (2014) Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J Pharm Sci 103: 29–52. doi: 10.1002/jps.23773
    [49] Rao W, Pan N, Yang Z (2016) Applications of the single-probe: Mass spectrometry imaging and single cell analysis under ambient conditions. J Visualized Exp JoVE 2016: 53911.
    [50] Calligaris D, Feldman DR, Norton I, et al. (2015) Molecular typing of meningiomas by desorption electrospray ionization mass spectrometry imaging for surgical decision-making. Int J Mass Spectrom 377: 690–698. doi: 10.1016/j.ijms.2014.06.024
    [51] Fenn JB, Mann M, Meng CK, et al. (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246: 64–71. doi: 10.1126/science.2675315
    [52] Takats Z, Wiseman JM, Gologan B, et al. (2004) Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306: 471–473. doi: 10.1126/science.1104404
    [53] Parrot D, Papazian S, Foil D, et al. (2018) Imaging the unimaginable: Desorption electrospray ionization-imaging mass spectrometry (desi-ims) in natural product research. Planta Med.
    [54] Cooks RG, Ouyang Z, Takats Z, et al. (2006) Detection technologies. Ambient mass spectrometry. Science 311: 1566–1570.
    [55] Zimmerman TA, Monroe EB, Tucker KR, et al. (2008) Chapter 13: Imaging of cells and tissues with mass spectrometry: Adding chemical information to imaging. Methods Cell Biol 89: 361–390. doi: 10.1016/S0091-679X(08)00613-4
    [56] Signor L, Boeri EE (2013) Matrix-assisted laser desorption/ionization time of flight (maldi-tof) mass spectrometric analysis of intact proteins larger than 100 kda. J Visualized Exp JoVE 108: e50635.
    [57] Sudhir PR, Wu HF, Zhou ZC (2005) Identification of peptides using gold nanoparticle-assisted single-drop microextraction coupled with ap-maldi mass spectrometry. Anal Chem 77: 7380–7385. doi: 10.1021/ac051162m
    [58] Abdelhamid HN, Wu HF (2012) A method to detect metal-drug complexes and their interactions with pathogenic bacteria via graphene nanosheet assist laser desorption/ionization mass spectrometry and biosensors. Anal Chim Acta 751: 94–104. doi: 10.1016/j.aca.2012.09.012
    [59] Abdelhamid HN, Wu HF (2013) Furoic and mefenamic acids as new matrices for matrix assisted laser desorption/ionization-(maldi)-mass spectrometry. Talanta 115: 442–450. doi: 10.1016/j.talanta.2013.05.050
    [60] Nasser AH, Wu BS, Wu HF (2014) Graphene coated silica applied for high ionization matrix assisted laser desorption/ionization mass spectrometry: A novel approach for environmental and biomolecule analysis. Talanta 126: 27–37. doi: 10.1016/j.talanta.2014.03.016
    [61] Abdelhamid HN, Wu HF (2015) Synthesis of a highly dispersive sinapinic acid@graphene oxide (sa@go) and its applications as a novel surface assisted laser desorption/ionization mass spectrometry for proteomics and pathogenic bacteria biosensing. Analyst 140: 1555–1565. doi: 10.1039/C4AN02158D
    [62] Abdelhamid HN, Wu HF (2016) Gold nanoparticles assisted laser desorption/ionization mass spectrometry and applications: From simple molecules to intact cells. Anal Bioanal Chem 408: 4485–4502. doi: 10.1007/s00216-016-9374-6
    [63] Harada T, Yuba-Kubo A, Sugiura Y, et al. (2009) Visualization of volatile substances in different organelles with an atmospheric-pressure mass microscope. Anal Chem 81: 9153–9157. doi: 10.1021/ac901872n
    [64] Saito Y, Waki M, Hameed S, et al. (2012) Development of imaging mass spectrometry. Biol Pharm Bull 35: 1417–1424. doi: 10.1248/bpb.b212007
    [65] Sugiura Y, Honda K, Suematsu M (2015) Development of an imaging mass spectrometry technique for visualizing localized cellular signaling mediators in tissues. Mass Spectrom 4: A0040. doi: 10.5702/massspectrometry.A0040
    [66] Setou M, Kurabe N (2011) Mass microscopy: High-resolution imaging mass spectrometry. J Electron Microsc 60: 47–56. doi: 10.1093/jmicro/dfq079
    [67] Maeda H (2001) Smancs and polymer-conjugated macromolecular drugs: Advantages in cancer chemotherapy. Adv Drug Delivery Rev 46: 169–185. doi: 10.1016/S0169-409X(00)00134-4
    [68] Barenholz Y (2012) Doxil(r)-the first fda-approved nano-drug: Lessons learned. J Controlled Release 160: 117–134. doi: 10.1016/j.jconrel.2012.03.020
    [69] Giordano G, Pancione M, Olivieri N, et al. (2017) Nano albumin bound-paclitaxel in pancreatic cancer: Current evidences and future directions. World J Gastroenterol 23: 5875–5886. doi: 10.3748/wjg.v23.i32.5875
    [70] Kogure K, Akita H, Yamada Y, et al. (2008) Multifunctional envelope-type nano device (mend) as a non-viral gene delivery system. Adv Drug Delivery Rev 60: 559–571. doi: 10.1016/j.addr.2007.10.007
    [71] Sugaya A, Hyodo I, Koga Y, et al. (2016) Utility of epirubicin-incorporating micelles tagged with anti-tissue factor antibody clone with no anticoagulant effect. Cancer Sci 107: 335–340. doi: 10.1111/cas.12863
    [72] Hiyama E, Ali A, Amer S, et al. (2015) Direct lipido-metabolomics of single floating cells for analysis of circulating tumor cells by live single-cell mass spectrometry. Anal Sci 31: 1215–1217. doi: 10.2116/analsci.31.1215
    [73] Hamaguchi T, Matsumura Y, Suzuki M, et al. (2005) Nk105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel. Br J Cancer 92: 1240–1246. doi: 10.1038/sj.bjc.6602479
    [74] Verma S, Miles D, Gianni L, et al. (2012) Trastuzumab emtansine for her2-positive advanced breast cancer. N Engl J Med 367: 1783–1791. doi: 10.1056/NEJMoa1209124
    [75] Younes A, Gopal AK, Smith SE, et al. (2012) Results of a pivotal phase ii study of brentuximab vedotin for patients with relapsed or refractory hodgkin's lymphoma. J Clin Oncol 30: 2183–2189. doi: 10.1200/JCO.2011.38.0410
    [76] Pro B, Advani R, Brice P, et al. (2012) Brentuximab vedotin (sgn-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: Results of a phase ii study. J Clin Oncol 30: 2190–2196. doi: 10.1200/JCO.2011.38.0402
    [77] Doronina SO, Toki BE, Torgov MY, et al. (2003) Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol 21: 778–784. doi: 10.1038/nbt832
    [78] Lyon RP, Bovee TD, Doronina SO, et al. (2015) Reducing hydrophobicity of homogeneous antibody-drug conjugates improves pharmacokinetics and therapeutic index. Nat Biotechnol 33: 733–735. doi: 10.1038/nbt.3212
    [79] Hisada Y, Yasunaga M, Hanaoka S, et al. (2013) Discovery of an uncovered region in fibrin clots and its clinical significance. Sci Rep 3: 2604. doi: 10.1038/srep02604
    [80] Takashima H, Tsuji AB, Saga T, et al. (2017) Molecular imaging using an anti-human tissue factor monoclonal antibody in an orthotopic glioma xenograft model. Sci Rep 7: 12341. doi: 10.1038/s41598-017-12563-5
    [81] Koga Y, Manabe S, Aihara Y, et al. (2015) Antitumor effect of antitissue factor antibody-mmae conjugate in human pancreatic tumor xenografts. Int J Cancer 137: 1457–1466. doi: 10.1002/ijc.29492
    [82] Rao W, Celiz AD, Scurr DJ, et al. (2013) Ambient desi and lesa-ms analysis of proteins adsorbed to a biomaterial surface using in-situ surface tryptic digestion. J Am Soc Mass Spectrom 24: 1927–1936. doi: 10.1007/s13361-013-0737-3
    [83] Takahashi T, Serada S, Ako M, et al. (2013) New findings of kinase switching in gastrointestinal stromal tumor under imatinib using phosphoproteomic analysis. Int J Cancer 133: 2737–2743.
    [84] Emara S, Amer S, Ali A, et al. (2017) Single-cell metabolomics. Adv Exp Med Biol 965: 323–343. doi: 10.1007/978-3-319-47656-8_13
    [85] Matsumura Y (2012) Cancer stromal targeting (cast) therapy. Adv Drug Delivery Rev 64: 710–719. doi: 10.1016/j.addr.2011.12.010
    [86] Yasunaga M, Manabe S, Tarin D, et al. (2011) Cancer-stroma targeting therapy by cytotoxic immunoconjugate bound to the collagen 4 network in the tumor tissue. Bioconjugate Chem 22: 1776–1783. doi: 10.1021/bc200158j
    [87] Yasunaga M, Manabe S, Tarin D, et al. (2013) Tailored immunoconjugate therapy depending on a quantity of tumor stroma. Cancer Sci 104: 231–237. doi: 10.1111/cas.12062
    [88] Yasunaga M, Manabe S, Matsumura Y (2017) Immunoregulation by il-7r-targeting antibody-drug conjugates: Overcoming steroid-resistance in cancer and autoimmune disease. Sci Rep 7: 10735. doi: 10.1038/s41598-017-11255-4
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6913) PDF downloads(1320) Cited by(2)

Figures and Tables

Figures(13)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog