Review Special Issues

Addressing Health and Well-being of U.S. Chinese Older Adults through Community-Based Participatory Research: Introduction to the PINE Study

  • The Chinese older population in the U.S. is among the largest and fastest growing segment of the aging population; however, little is known regarding their health and well-being due to various research barriers. To fill in the critical void, the Population-based Study of Chinese Elderly in Chicago (the PINE study) was carried out as an epidemiological study of health and well-being amongst 3,157 community-dwelling Chinese older adults aged 60 years and older in the Greater Chicago Area. Based on the PINE study findings, this special issue is designed to examine the health status, medical conditions, and social and psychological well-being of Chinese American older adults. This editorial described the rationale of the study, methods and design, and preliminary findings. Important study implications for researchers and policy makers were also reported. In aggregate, coordinated family and community care, improved delivery of care, practice changes, and policy reform are necessary to work in concert to prepare for the diverse minority older adults who are in urgent need of the linguistically and culturally appropriate social services.

    Citation: XinQi Dong. Addressing Health and Well-being of U.S. Chinese Older Adults through Community-Based Participatory Research: Introduction to the PINE Study[J]. AIMS Medical Science, 2015, 2(3): 261-270. doi: 10.3934/medsci.2015.3.261

    Related Papers:

    [1] Hongyan Dui, Yong Yang, Xiao Wang . Reliability analysis and recovery measure of an urban water network. Electronic Research Archive, 2023, 31(11): 6725-6745. doi: 10.3934/era.2023339
    [2] Xu Zhan, Yang Yong, Wang Xiao . Phased mission reliability analysis of unmanned ship systems. Electronic Research Archive, 2023, 31(10): 6425-6444. doi: 10.3934/era.2023325
    [3] Majed Alowaidi, Sunil Kumar Sharma, Abdullah AlEnizi, Shivam Bhardwaj . Integrating artificial intelligence in cyber security for cyber-physical systems. Electronic Research Archive, 2023, 31(4): 1876-1896. doi: 10.3934/era.2023097
    [4] Xiaoyang Xie, Shanghua Wen, Minglong Li, Yong Yang, Songru Zhang, Zhiwei Chen, Xiaoke Zhang, Hongyan Dui . Resilience evaluation and optimization for an air-ground cooperative network. Electronic Research Archive, 2024, 32(5): 3316-3333. doi: 10.3934/era.2024153
    [5] Shuang Yao, Dawei Zhang . A blockchain-based privacy-preserving transaction scheme with public verification and reliable audit. Electronic Research Archive, 2023, 31(2): 729-753. doi: 10.3934/era.2023036
    [6] Shanpu Gao, Yubo Li, Anping Wu, Hao Jiang, Feng Liu, Xinlong Feng . An intelligent optimization method for accelerating physical quantity reconstruction in computational fluid dynamics. Electronic Research Archive, 2025, 33(5): 2881-2924. doi: 10.3934/era.2025127
    [7] Wanxun Jia, Ling Li, Haoyan Zhang, Gengxiang Wang, Yang Liu . A novel nonlinear viscous contact model with a Newtonian fluid-filled dashpot applied for impact behavior in particle systems. Electronic Research Archive, 2025, 33(5): 3135-3157. doi: 10.3934/era.2025137
    [8] Sida Lin, Jinlong Yuan, Zichao Liu, Tao Zhou, An Li, Chuanye Gu, Kuikui Gao, Jun Xie . Distributionally robust parameter estimation for nonlinear fed-batch switched time-delay system with moment constraints of uncertain measured output data. Electronic Research Archive, 2024, 32(10): 5889-5913. doi: 10.3934/era.2024272
    [9] Yunying Huang, Wenlin Gui, Yixin Jiang, Fengyi Zhu . Types of systemic risk and macroeconomic forecast: Evidence from China. Electronic Research Archive, 2022, 30(12): 4469-4492. doi: 10.3934/era.2022227
    [10] Yazhou Chen, Dehua Wang, Rongfang Zhang . On mathematical analysis of complex fluids in active hydrodynamics. Electronic Research Archive, 2021, 29(6): 3817-3832. doi: 10.3934/era.2021063
  • The Chinese older population in the U.S. is among the largest and fastest growing segment of the aging population; however, little is known regarding their health and well-being due to various research barriers. To fill in the critical void, the Population-based Study of Chinese Elderly in Chicago (the PINE study) was carried out as an epidemiological study of health and well-being amongst 3,157 community-dwelling Chinese older adults aged 60 years and older in the Greater Chicago Area. Based on the PINE study findings, this special issue is designed to examine the health status, medical conditions, and social and psychological well-being of Chinese American older adults. This editorial described the rationale of the study, methods and design, and preliminary findings. Important study implications for researchers and policy makers were also reported. In aggregate, coordinated family and community care, improved delivery of care, practice changes, and policy reform are necessary to work in concert to prepare for the diverse minority older adults who are in urgent need of the linguistically and culturally appropriate social services.


    Let $ q $ be a power of odd prime. Several researchers have looked into a variety of properties about the primitive roots modulo $ q $. Let $ g_1, g_2 $ represent two primitive roots modulo $ q $, $ a $, $ b $ and $ c $ represent arbitrary non-zero elements in $ \mathbb{F}_q $. Is there some $ q_0 $ such that for all $ q > q_0 $, there is always one representation

    $ a=bg1+cg2 ?
    $
    (1.1)

    For $ b = 1 $ and $ c = -1 $, Vegh [1] considered a specific form of Eq (1.1), which is known as Vegh's Conjecture, (see [2,§ F9] for further details). Cohen [3] demonstrated Vegh's Conjecture for all $ q > 7 $.

    For $ b = 1 $ and $ c = 1 $, Golomb [4] proposed another specific form of Eq (1.1). This was proved by Sun [5] for $ q > 2^{60}\approx 1.15\times 10^{18} $.

    Moreover, Cohen et al. [6] studied linear sums of primitive roots and their inverses in finite fields $ \mathbb{F}_q $ and showed that if $ q > 13 $, then for arbitrary non-zero $ a, b \in \mathbb{F}_q $, there is a pair of primitive elements ($ g_1 $, $ g_2 $) of $ \mathbb{F}_q $ such that both $ ag_1+bg_2 $ and $ ag^{-1}_1+bg^{-1}_2 $ are primitive.

    Let $ p $ be an odd prime. Carlitz [7] relied on some results of Davenport and obtained for any $ k-1 $ fixed integers $ c_1, c_2, \ldots, c_{k-1} $ with $ c_i \geq 1 (i = 1, 2, \ldots, k-1) $. Let $ g, g_1, \ldots, g_{k-1} $ be primitive roots modulo $ p $ and $ N_k $ denote the number of $ g\bmod p $ such that $ g_1-g = c_1, \ldots, g_{k-1}-g = c_{k-1} $. Then

    $ Nkϕk(p1)pk1 (p).
    $

    More results of the primitive roots distribution can be found in [8,9,10,11].

    Lehmer [2,§ F12] proposed the definition of $ Lehmer~~ number $, according to which $ a $ is a $ Lehmer ~~number $ if and only if $ a $ and $ \bar{a} $ have opposite parity, i.e., $ (2, a+\bar{a}) = 1 $, where $ \bar{a} $ is the multiplicative inverse of $ a $ modulo $ p $. It is simple to demonstrate that there are no Lehmer numbers modulo $ p $ when $ p = 3 $ or $ 7 $. Zhang [12] established that if $ M_p $ denotes the number of Lehmer numbers modulo $ p $, then

    $ Mp=p12+O(p12ln2p).
    $

    A Lehmer number that is also a primitive root modulo $ p $ will be called a $ Lehmer~~ primitive~~ root $ or an $ LPR $. The inverse of an $ LPR $ is also an $ LPR $. We assume that $ p > 3 $ because there is no Lehmer number modulo $ 3 $. Wang and Wang [13] investigated the distribution of $ LPRs $ involving Golomb's conjecture. Let $ G_p $ denote the number of Golomb pairs $ (a, b) $ (i.e., $ a+b\equiv 1(\bmod\; p) $) are $ LPRs $. They showed

    $ Gp=14ϕ2(p1)p1+O(ϕ2(p1)p544ω(p1)ln2p).
    $

    Let $ N_p $ denote the number of $ LPRs $ modulo $ p $. For odd integers $ m\geq 3 $, define the positive number $ T_m $ by

    $ Tm=2mlnm(m1)/2j=1tan(πjm).
    $

    Cohen and Trudgian [14] improved the result of Wang and Wang [13] and showed

    $ |Npϕ(p1)2|<T2pϕ(p1)p12ω(p1)p12ln2p
    $

    and

    $ |Gpϕ2(p1)4(p1)2(p2)|<ϕ2(p1)4(p1)2T2p[22ω(p1)(9ln2p+1)1]p12,
    $

    where $ \frac{2}{\pi}\left(1+\frac{0.548}{\ln p}\right) < T_p < \frac{2}{\pi}\left(1+\frac{1.549}{\ln p}\right) $.

    Specifically, they obtained that for an odd prime $ p(\neq 3, 7) $, there exists an $ LPR $ modulo $ p $.

    Inspired by the results of Cohen and Trudgian [14] and Wang and Wang [13], we mainly studied the distribution of $ LPRs $ modulo $ p $ related to the Golomb's conjecture in two aspects. On the one hand, we extend Eq (1.1) to the case involving $ k > 1 $ variables. Let $ \mathcal{R} $ be set of $ LPRs $ modulo $ p $ that is a subset of $ {\mathbb{F}}_p $. $ a_1, a_2, \ldots, a_k, c $ are non-zero elements in $ {\mathbb{F}}_p $ and $ N(\mathcal{R}, p) $ denotes the number of solutions of the equation

    $ a1g1+a2g2++akgk=c, g1,g2,,gkR.
    $

    We consider the distribution properties of $ N(\mathcal{R}, p) $, and obtain the following:

    Theorem 1. Let $ p > 3 $ be an odd prime. Then we have

    $ N(R,p)=ϕk(p1)2kp+O(ϕk(p1)p322kω(p1)ln2kp),
    $

    where the symbol $ \mathrm{O} $ is dependent on $ k $.

    When $ k = 2 $, we can obtain the number of the Golomb pairs that are $ LPRs $.

    On the other hand, we consider the distribution of $ k $ consecutive $ LPRs $ and generalize it to a more general form.

    Let $ f(x)\in \mathbb{F}_p[x] $. Define

    $ M(f(x),R,p)=#{x:1xp1,f(x+c1),f(x+c2),,f(x+ck)R}.
    $

    Then we have:

    Theorem 2. Let $ f(x)\in \mathbb{F}_p[x] $ with degree $ l\geq 1 $. $ c_1, c_2, \ldots, c_k $ are distinct elements in $ \mathbb{F}_p $. Suppose that one of the following conditions holds:

    $ \rm (i) $ $ f(x) $ is irreducible,

    $ \rm (ii) $ $ f(x) $ has no multiple zero in $ \bar{\mathbb{F}}_p $ and $ k = 2 $,

    $ \rm (iii) $ $ f(x) $ has no multiple zero in $ \bar{\mathbb{F}}_p $ and $ (4k)^{l} < p $.

    Then we have

    $ M(f(x),R,p)=12kϕk(p1)(p1)k1+O(ϕk(p1)pk122kω(p1)ln2kp),
    $

    where the symbol $ \mathrm{O} $ is dependent on $ k $ and $ l $.

    Take $ f(x) = x $, $ c_k = 0 $ in Theorem 2. Then we can get the number of $ k $ consecutive primitive roots $ x, x+c_1, \ldots, x+c_{k-1} $ are Lehmer numbers, which is:

    Corollary 1. Let $ p $ be an odd prime. Then for any $ 1\leq\ x\leq(p-1) $ that is an LPR modulo $ p $, we have

    $ M(x,R,p)=12kϕk(p1)(p1)k1+O(ϕk(p1)pk122kω(p1)ln2kp),
    $

    where the symbol $ \mathrm{O} $ is dependent on $ k $.

    When $ k = 1, 2 $, we can easily deduce the Theorem 1 and Theorem 6 in Cohen and Trudgian [14], respectively.

    Notation: Throughout this paper, $ \mathbb{F}_q $ denotes a finite field of characteristic $ p $, $ \bar{\mathbb{F}}_q $ denotes the algebraic closure of $ \mathbb{F}_q $, $ \phi(n) $ is reserved for the Euler function, $ \mu(n) $ is the M$ \ddot{o} $bius function. We use $ \omega(n) $ to denote the number of all distinct prime divisors of $ n $. Write $ \sum_{\chi_d} $ to denote a sum over all $ \phi(d) $ multiplicative characters $ \chi_d $ of order $ d $ over $ {\mathbb{F}}_p $, and denote by $ \mathop{\sum_{n = 1}^{p}}^{'} $ the summation of $ 1\leq n\leq p $ with $ (n, p) = 1 $. $ \tau(\chi) $ is the classical Gauss sums associated with character $ \chi $ mudulo $ p $. $ f\ll g $ means $ |f|\leq cg $ with some positive constant $ c $, $ f = \mathrm{O}(g) $ means $ f\ll g $.

    To complete the proof of the theorems, we need following several lemmas. The proofs of these lemmas require some basic knowledge of analytic number theory, which can be found in [15].

    Lemma 1. Let $ p $ be an odd prime. Then for any integer $ a $ coprime to $ p $ (i.e., $ (a, p) = 1 $), we have the identity

    $ \frac{\phi(p-1)}{p-1}\sum\limits_{d\mid p-1}\frac{\mu(d)}{\phi(d)}\sum\limits_{\chi_d}\chi_d(a) = \left\{ 1, if  a  is  a  primitive  root  mod  p;0, if  a  is  not  a  primitive  root  mod  p.
    \right. $

    Proof. See Proposition 2.2 of Narkiewicz [16].

    Lemma 2. Let $ p $ be an odd prime, $ \chi $ be a nonprincipal multiplicative character modulo $ p $ of order $ d $. Suppose $ g(x)\in \mathbb{F}_p[x] $ has precisely $ m $ distinct ones among its zeros, and suppose that $ g(x) $ is not the constant multiple of a $ d $-th power over $ \mathbb{F}_q $. Then

    $ \left|\sum\limits_{x\in \mathbb{F}_p}\chi\left(g(x)\right)\right|\leq \left(m-1\right)\cdot p^{\frac{1}{2}}. $

    Proof. See Theorem 2C in Chapter 2 of Schmidt [17].

    Lemma 3. Let $ \mathbb{F}_q $ be a finite field of characteristic $ p $, $ \psi $ be a nontrivial additive character and $ \chi $ be a nonprincipal multiplicative character on $ \mathbb{F}_q $ of order $ d $. For two rational functions $ f(x), g(x)\in\mathbb{F}_q[x] $, define $ K(\psi, f;\chi, g) = \sum_{x\in\mathbb{F}_q\backslash S}\chi(g(x))\psi(f(x)) $, where $ S $ denotes the set of poles of $ f(x) $ and $ g(x) $. Suppose the following conditions hold:

    $ \rm (i) $ $ g(x) $ is not the constant multiple of a $ d $-th power over $ \mathbb{F}_q $.

    $ \rm (ii) $ $ f(x) $ is not of the form $ (h(x))^p-h(x) $ with a rational function $ h(x) $ over $ \mathbb{F}_q $.

    Then we have

    $ |K(\psi, f;\chi, g)|\leq(\deg(f)+m-1)\sqrt{q}, $

    where $ m $ is the number of distinct roots and (noninfinite) poles of $ g(x) $ in $ \mathbb{F}_q $.

    Proof. See Theorem 2G in Chapter 2 of Schmidt [17].

    Lemma 4. Let $ p $ be an odd prime. Let $ c_1, \cdots, c_k $ be distinct elements in $ \mathbb{F}_p $. Assume that $ f(x)\in\mathbb{F}_{p}[x] $ with $ \deg(f) = l $. Define the polynomial

    $ h(x) = f(x+c_1)\cdots f(x+c_k). $

    Suppose one of the following conditions holds:

    $ \rm (i) $ $ f(x) $ is irreducible,

    $ \rm (ii) $ $ f(x) $ has no multiple zero in $ \bar{\mathbb{F}}_p $ and $ k = 2 $,

    $ \rm (iii) $ $ f(x) $ has no multiple zero in $ \bar{\mathbb{F}}_p $ and $ (4k)^{l} < p $.

    Then $ h(x) $ has at least one simple root in $ \bar{\mathbb{F}}_p $.

    Proof. Suppose that $ f(x) $ is irreducible. Then $ f(x+c_1), \cdots, f(x+c_k) $ are distinct irreducible polynomials, and $ h(x) $ has at least $ k $ simple roots in $ \bar{\mathbb{F}}_p $. The cases of $ \rm (ii) $ and $ \rm (iii) $ can be proved by Theorem 2 and Lemma 2 of [18], for $ k = 2 $ or $ (4k)^{l} < p $, $ (l, k, p) $ is "admissible triple, " then $ f(x+c_1)\cdots f(x+c_k) $ has at least one simple root.

    Lemma 5. Let $ p $ be an odd prime, $ m_1, \ldots, m_k, n_1, \ldots, n_k $ be integers with $ (m_1\cdots m_kn_1\cdots n_k, p) = 1 $, and polynomials $ g(x), f_1(x), \ldots, f_k(x)\in\mathbb{F}_p[x] $. Let $ \chi $ be a Dirichlet character modulo $ p $ of order $ d $. Define

    $ K(χ,g,f1,,fk;p)=px=1(f1(x)fk(x),p)=1χ(g(x))e(m1f1(x)++mkfk(x)+n1¯f1(x)++nk¯fk(x)p).
    $

    Suppose the following conditions hold:

    $ \rm (i) $ $ g(x) $ can not be the constant multiple of a $ d $-th power over $ \mathbb{F}_p $.

    $ \rm (ii) $ $ F(x) = f_1(x)\cdots f_k(x) $ has at least one simple root in $ \bar{\mathbb{F}}_p $.

    Then we have

    $ |K(χ,g,f1,,fk;p)|(max(deg(f1),,deg(fk))+l)p,
    $

    where $ e(x) = e^{2\pi ix} $ and $ l $ is the number of distinct roots of $ g(x) $ in $ \bar{\mathbb{F}}_p $.

    Proof. It is clear that

    $ m1f1(x)++mkfk(x)+n1¯f1(x)++nk¯fk(x)=F(x)(m1f1(x)++mkfk(x))+n1F(x)f1(x)++nkF(x)fk(x)F(x):=G(x)F(x).
    $

    Condition $ \rm (i) $ is the same as Lemma 3. So our goal is to prove the rational function $ G(x)/F(x) $ satisfies condition $ \rm (ii) $ in Lemma 3 if $ F(x) $ has a simple root in $ \bar{\mathbb{F}}_p $. Assume that there are polynomials $ K(x), L(x)\in\mathbb{F}_p[x] $ with $ (K(x), L(x)) = 1 $ such that

    $ \frac{G(x)}{F(x)} = \left(\frac{K(x)}{L(x)}\right)^p-\left(\frac{K(x)}{L(x)}\right). $

    Then we have

    $ G(x)L(x)p=(K(x)pK(x)L(x)p1)F(x).
    $
    (2.1)

    Since $ F(x) = f_1(x)\cdots f_k(x) $ has at least one simple root in $ \bar{\mathbb{F}}_p $, then there exists an irreducible polynomial $ w(x)\in\mathbb{F}_p[x] $ such that $ w(x)\mid F(x) $ and $ w(x)^2\nmid F(x) $. Assume that $ w(x)\mid f_1(x) $, then we have

    $ w(x)\nmid\frac{F(x)}{f_1(x)}, \ w(x)\mid\frac{F(x)}{f_i(x)}(i = 2, \cdots, k). $

    Hence, from Eq (2.1)

    $ w(x)\nmid G(x)\Longrightarrow w(x)\mid L(x)^p\Longrightarrow w(x)\mid L(x) $
    $ w(x)^2\mid L(x)^{p-1}\Longrightarrow w(x)^2\mid K(x)^pF(x)\Longrightarrow w(x)\mid K(x), $

    which contradicts to $ (K(x), L(x)) = 1 $. Therefore, from Lemma 3 we get

    $ |K(χ,g,f1,,fk;p)|(max(deg(f1),,deg(fk))+l)p,
    $

    where $ l $ is the number of distinct roots of $ g(x) $ in $ \bar{\mathbb{F}}_p $.

    Lemma 6. Let $ \chi $ be a primitive character modulo $ p $, $ \chi_{d_i} $ be character modulo $ p $ of order $ d_i $. There exist some $ 1\leq s_i\leq d_i $ with $ (s_i, d_i) = 1 $, $ i = 1, 2, \ldots, k $. Then we have

    $ χd1χdkχd1(f(x+c1))χdk(f(x+ck))=d1s1=1 dksk=1 χ((f(x+c1))s1(p1)d1(f(x+ck))sk(p1)dk).
    $

    Proof. From the definition of the Dirichlet character modulo $ p $, we can get

    $ χd1χdkχd1(f(x+c1))χdk(f(x+ck))=d1s1=1 dksk=1 e(s1ind(f(x+c1))d1)e(skind(f(x+ck))dk)=d1s1=1 dksk=1 e(s1(p1)d1ind(f(x+c1))++sk(p1)dkind(f(x+ck))p1)=d1s1=1 dksk=1 e(ind(f(x+c1))s1(p1)d1++ind(f(x+ck))sk(p1)dkp1)=d1s1=1 dksk=1 e(ind((f(x+c1))s1(p1)d1(f(x+ck))sk(p1)dk)p1)=d1s1=1 dksk=1 χ(f(x+c1))s1(p1)d1(f(x+ck))sk(p1)dk),
    $

    where $ \text{ind}(a) $ denotes an index of $ a $ with base $ g $ of modulo $ p $, and $ g $ is a positive primitive root of modulo $ p $.

    Firstly, we prove the Theorem 1. Let $ p $ be an odd prime, $ k $ be any fixed positive integer. Then for any $ k $ different integers $ a_1, \ a_2, \ldots, a_k \in {\mathbb{F}}_p $, from Lemma 1 and the definition of Lehmer number we have

    $ N(R,p)=1pp1b=0p1g1=1p1g2=1p1gk=1g1,g2,,gkRe(b(a1g1++akgkc)p)=1pϕk(p1)2k(p1)kki=1(dip1μ(di)ϕ(di)χdip1gi=1χdi(gi)(1(1)gi+¯gi))p1b=0e(b(a1g1++akgkc)p)=1pϕk(p1)2k(p1)kki=1(dip1μ(di)ϕ(di)χdip1gi=1χdi(gi))p1b=0e(b(a1g1++akgkc)p)+1pϕk(p1)2k(p1)kki=1(dip1μ(di)ϕ(di)χdip1gi=1χdi(gi))kt=1(1)tki1=1ki2=1kit=1i1<i2<<itli1li2litp1b=0e(b(a1g1++akgkc)p)=A1+A2,
    $
    (3.1)

    where $ l_i = (-1)^{g_i+\overline{g_i}}, i = 1, 2, \cdots, k $.

    $ A1=1pϕk(p1)2k(p1)kki=1(dip1μ(di)ϕ(di)χdip1gi=1χdi(gi))p1b=0e(b(a1g1++akgkc)p)=1pϕk(p1)2k(p1)k[p1g1=1p1gk=1p1b=0e(b(a1g1++akgkc)p)+d1p1dkp1d1dk>1μ(d1)ϕ(d1)μ(dk)ϕ(dk)χd1χdkp1g1=1p1gk=1χd1(g1)χdk(gk)p1b=0e(b(a1g1++akgkc)p)]=1pϕk(p1)2k(p1)k[(p1)k+(1)k+1+d1p1dkp1d1dk>1μ(d1)ϕ(d1)μ(dk)ϕ(dk)χd1χdkp1g1=1p1gk=1χd1(g1)χdk(gk)p1b=0e(b(a1g1++akgkc)p)].
    $
    (3.2)

    From Eq (3.2), let

    $ A11=d1p1dkp1d1dk>1μ(d1)ϕ(d1)μ(dk)ϕ(dk)χd1χdkp1g1=1p1gk=1χd1(g1)χdk(gk)p1b=0e(b(a1g1+a2g2++akgkc)p)=d1p1dkp1d1dk>1μ(d1)ϕ(d1)μ(dk)ϕ(dk)χd1χdkp1g1=1p1gk=1χd1(g1)χdk(gk)+d1p1dkp1d1dk>1μ(d1)ϕ(d1)μ(dk)ϕ(dk)χd1χdkp1b=1p1g1=1χd1(g1)e(ba1g1p)p1gk=1χdk(gk)e(bakgkp)e(bcp)=d1p1dkp1d1dk>1μ(d1)ϕ(d1)μ(dk)ϕ(dk)χd1χdkp1b=1p1g1=1χd1(g1)e(ba1g1p)p1gk=1χdk(gk)e(bakgkp)e(bcp).
    $

    Using the properties of Gauss sums we can get

    $ |A11|=|d1p1dkp1d1dk>1μ(d1)ϕ(d1)μ(dk)ϕ(dk)χd1χdkp1b=1p1g1=1χd1(g1)e(ba1g1p)p1gk=1χdk(gk)e(bakgkp)e(bcp)|=|d1p1d1>1dkp1dk>1μ(d1)ϕ(d1)μ(dk)ϕ(dk)χd1χdkp1b=1p1g1=1χd1(g1)e(ba1g1p)p1gk=1χdk(gk)e(bakgkp)e(bcp)+d1p1d1>1dk1p1dk1>1μ(d1)ϕ(d1)μ(dk1)ϕ(dk1)χd1χdk1p1b=1p1g1=1χd1(g1)e(ba1g1p)p1gk1=1χdk1(gk1)e(bak1gk1p)p1gk=1e(bakgkp)e(bcp)++d1p1d1>1μ(d1)ϕ(d1)χd1p1b=1p1g1=1χd1(g1)e(ba1g1p)p1g2=1e(ba2g2p)p1gk=1e(bakgkp)e(bcp)|2kω(p1)pk+12,
    $

    where we have used the fact that $ \sum_{d|n}|\mu(d)| = 2^{\omega(n)} $.

    Hence, Eq (3.2) and the above formulae yield that

    $ A1=ϕk(p1)2kp+O(ϕk(p1)pk+122kω(p1)).
    $
    (3.3)

    Then we compute $ A_2 $ in Eq (3.1). For simplicity, let

    $ U_m(u) = \sum\limits_{u = 1}^{p-1}(-1)^ue\left(\frac{-mu}{p}\right), $

    noting that

    $ \sum\limits_{u = 1}^{p-1}(-1)^ue\left(\frac{-mu}{p}\right) = \frac{1-e(\frac{m}{p})}{1+e(\frac{m}{p})} = \frac{i\sin (\pi m/p)}{\cos(\pi m/p)}, $
    $ \sum\limits_{m = 1}^{p-1}\left|\frac{\sin (\pi m/p)}{\cos(\pi m/p)}\right| = T_pp\ln p. $

    Hence,

    $ |p1m=1Um(u)|p1m=1|p1u=1(1)ue(mup)|=Tpplnp.
    $
    (3.4)

    Noting that, if $ m = 0 $, then $ \sum_{u = 1}^{p-1}(-1)^ue\left(\frac{-mu}{p}\right) = \sum_{u = 1}^{p-1}(-1)^u = 0 $, since $ p $ is odd. Hence,

    $ li=(1)gi+¯gi=1pp1mi=0p1ui=1(1)uie(mi(giui)p)1pp1ni=0p1vi=1(1)vie(ni(¯givi)p)=1p2p1mi,ni=0e(migi+ni¯gip)p1ui=1(1)uie(miuip)p1vi=1(1)vie(nivip)=1p2p1mi,ni=1e(migi+ni¯gip)Umi(ui)Uni(vi).
    $
    (3.5)

    From the above discussion and Eq (3.1), we can obtain

    $ |A2|=|1pϕk(p1)2k(p1)kki=1(dip1μ(di)ϕ(di)χdip1gi=1χdi(gi))kt=1(1)tki1=1kit=1i1<<itli1litp1b=0e(b(a1g1+a2g2++akgkc)p)|1pϕk(p1)2k(p1)kkt=1(kt)T2tpln2tpd1p1dkp1|μ(d1)|ϕ(d1)|μ(dk)|ϕ(dk)χd1χdk|p1b=0p1g1=1p1gk=1χd1(g1)χdk(gk)e(m1g1+n1¯g1++mtgt+nt¯gtp)e(b(a1g1++akgkc)p)|=1pϕk(p1)2k(p1)kkt=1(kt)T2tpln2tp[d1p1d1>1dkp1dk>1|μ(d1)|ϕ(d1)|μ(dk)|ϕ(dk)χd1χdk|p1b=0p1g1=1p1gk=1χd1(g1)χdk(gk)e(m1g1+n1¯g1++mtgt+nt¯gtp)e(b(a1g1++akgkc)p)|+d1p1d1>1dk1p1dk1>1|μ(d1)|ϕ(d1)|μ(dk1)|ϕ(dk1)χd1χdk1|p1b=0p1g1=1p1gk=1χd1(g1)χdk1(gk1)e(m1g1+n1¯g1++mtgt+nt¯gtp)e(b(a1g1++akgkc)p)|++d1p1d1>1|μ(d1)|ϕ(d1)χd1|p1b=0p1g1=1p1gk=1χd1(g1)e(m1g1+n1¯g1++mtgt+nt¯gtp)e(b(a1g1++akgkc)p)|+|p1b=0p1g1=1p1gk=1e(m1g1+n1¯g1++mtgt+nt¯gtp)e(b(a1g1++akgkc)p)|].
    $
    (3.6)

    Summing the above formula for $ t $ from 1 to $ k $, then the last term of Eq (3.6) is

    $ 1pϕk(p1)2k(p1)kkt=1(kt)T2tpln2tp|p1b=0p1g1=1p1gk=1e(m1g1+n1¯g1++mtgt+nt¯gtp)e(b(a1g1++akgkc)p)|=1pϕk(p1)2k(p1)k[kT2pln2p|p1b=0p1g1=1p1gk=1e(m1g1+n1¯g1p)e(b(a1g1++akgkc)p)|++(kk1)T2(k1)pln2(k1)p|p1b=0p1g1=1p1gk=1e(m1g1+n1¯g1++mk1gk1+nk1¯gk1p)e(b(a1g1++akgkc)p)|+T2kpln2kp|p1b=0p1g1=1p1gk=1e(m1g1+n1¯g1++mkgk+nk¯gkp)e(b(a1g1++akgkc)p)|]ϕk(p1)pk+1ln2kp(pk12++pk+12)ϕk(p1)pk+1ln2kppk12=ϕk(p1)p32ln2kp,
    $

    here we have utilized $ T^2_p < \frac{4}{\pi^2}\left(1+\frac{1.549}{\ln p}\right)^2 < 2.4 $ and the results in Wang and Wang (see Lemma 2.2 of [13]) that

    $ |p1a=1χd(a)e(ma+n¯ap)|p12.
    $

    Similarly, note that $ \sum_{d|n}|\mu(d)| = 2^{\omega(n)} $ and we can get the estimate of the other terms of Eq (3.6). Then we have

    $ A2ϕk(p1)p322kω(p1)ln2kp.
    $
    (3.7)

    Inserting Eqs (3.3) and (3.7) into (3.1), we can deduce that

    $ N(R,p)=ϕk(p1)2kp+O(ϕk(p1)pk+122kω(p1))+O(ϕk(p1)p322kω(p1)ln2kp)=ϕk(p1)2kp+O(ϕk(p1)p322kω(p1)ln2kp).
    $

    This proves the Theorem 1.

    Now we prove the Theorem 2. Let $ \mathcal{A} $ denote the set of integers $ 1\leq x\leq p $ such that

    $ ki=1f(x+ci)0(modp).
    $

    By the definition of primitive roots and Lehmer number, it follows that

    $ M(f(x),R,p)=12kϕk(p1)(p1)kki=1(dip1μ(di)ϕ(di)χdipx=1xAχdi(f(x+ci))(1(1)f(x+ci)+¯f(x+ci)))=12kϕk(p1)(p1)kki=1(dip1μ(di)ϕ(di)χdipx=1xAχdi(f(x+ci)))+12kϕk(p1)(p1)kki=1(dip1μ(di)ϕ(di)χdipx=1xAχdi(f(x+ci)))kt=1(1)tki1=1kit=1i1<<itgi1git=12kϕk(p1)(p1)k(B1+B2),
    $
    (3.8)

    where $ g_i = (-1)^{f(x+c_i)+\overline{f(x+c_i)}}, i = 1, 2, \ldots, k $.

    $ B1=ki=1(dip1μ(di)ϕ(di)χdipx=1xAχdi(f(x+ci)))=px=1xA1+ki=1(dip1ki=1di>1μ(di)ϕ(di)χdipx=1xAχdi(f(x+ci))).
    $

    Obviously,

    $ |px=1xA1p|kl.
    $

    From Lemma 6 we have

    $ χd1χd2χdkpx=1xAχd1(f(x+c1))χd2(f(x+c2))χdk(f(x+ck))=d1s1=1 dksk=1 px=1xAχ((f(x+c1))s1(p1)d1(f(x+ck))sk(p1)dk).
    $

    Due to $ d_1d_2\cdots d_k > 1 $, and

    $ \frac{s_i(p-1)}{d_i} < p-1\ \text{for}\ d_i > 1 (i = 1, 2, \ldots, k), $

    from Lemma 4 we can get that the polynomial

    $ (f(x+c1))s1(p1)d1(f(x+ck))sk(p1)dk
    $

    has a root in $ \bar{\mathbb{F}}_p $ with multiples less than $ p-1 $, thus it can not be multiple of a $ (p-1) $-th power of polynomial over $ \mathbb{F}_p $. Take $ g(x) = (f(x+c_1))^{\frac{s_1(p-1)}{d_1}}\cdots(f(x+c_k))^{\frac{s_k(p-1)}{d_k}} $, in Lemma 2 we have

    $ |px=1xAχ(f(x+c1)s1(p1)d1f(x+ck)sk(p1)dk)|<(kl1)p12.
    $

    Hence, we have

    $ |B1(pkl)|<(2kω(p1)1)(kl1)p122kω(p1)(kl1)p12.
    $
    (3.9)

    Using the methods in the proof of Theorem 1 we have

    $ gi=1p2p1mi,ni=1e(mi(f(x+ci))+ni¯f(x+ci)p)Umi(ui)Uni(vi).
    $

    From the above discussion and Lemma 5, we can obtain

    $ |B2|<|ki=1(dip1μ(di)ϕ(di)χdipx=1xAχdi(f(x+ci)))kt=1(1)tki1=1ki2=1kit=1i1<i2<<itgi1gi2git|<ki=1(dip1|μ(di)|ϕ(di)χdi)kt=1(kt)T2tpln2tp|px=1xAχdi(f(x+ci))e(m1(f(x+c1))+n1¯(f(x+c1))++mt(f(x+ct))+nt¯(f(x+ct))p)|<2kω(p1)kt=1(kt)T2tpln2tp(kl+l)p12.
    $
    (3.10)

    Combing Eqs (3.8), (3.9) and (3.10) we have

    $ |M(f(x),R,p)12kϕk(p1)(p1)k(pkl)|<12kϕk(p1)(p1)k[2kω(p1)(kl1)p12+2kω(p1)kt=1(kt)T2tpln2tp(kl+l)p12]=12kϕk(p1)(p1)k2kω(p1)p12[(kl1)+((k+1)l)kt=1(kt)T2tpln2tp].
    $
    (3.11)

    Then we have

    $ M(f(x),R,p)=12kϕk(p1)(p1)k1+O(ϕk(p1)pk122kω(p1)ln2kp).
    $

    This complete the proof of Theorem 2.

    From two perspectives, this paper consider the distribution of $ LPRs $ that are related to the generalized Golomb's conjecture. Theorem 1 extends the binary linear equation $ ag_1+bg_2 = c $ to the multivariate linear equation $ a_1g_1+a_2g_2+\cdots+a_kg_k = c $, and uses the properties of Gauss sums to derive an asymptotic formula for the number of its solutions $ g_1, g_2, \ldots, g_k $ that are $ LPRs $. Theorem 2 considers $ k $ consecutive $ LPRs $ and employs the upper bound estimation of the generalized Kloosterman sums to provide a more general result that for $ f(x)\in {\mathbb{F}}_p[x] $, $ k $ polynomials $ f(x+c_1), f(x+c_2), \ldots, f(x+c_k) $ are Lehmer primitive roots modulo $ p $.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The author gratefully appreciates the referees and academic editor for their helpful and detailed comments.

    This work is supported by the N. S. F. (12126357) of P. R. China and the Natural Science Basic Research Plan in Shaanxi Province of China (2023-JC-QN-0050).

    The author declare there are no conflicts of interest.

    [1] Dong X, Wong E, Simon MA (2014) Study design and implementation of the PINE Study. J Aging and Health, 26(7):1085-1099
    [2] Dong X (2014) The population study of Chinese elderly in Chicago. J Aging and Health 26(7): 1079-1084.
    [3] Simon MA, Chang E, Rajan B, et al. (2014) Demographic characteristics of U.S. Chinese older adults in the greater Chicago area: Assessing the representativeness of the PINE study. J Aging and Health 26(7): 1100-1115.
    [4] Hoeffel EM, Rastogi S, Kim MO, et al. (2012) The Asian Population: 2010, U.S. Census Bureau
    [5] Dong X, Chang E, Wong E, et al. (2010) Assessing the health needs of Chinese older adults: Findings from a community-based participatory research study in Chicago's Chinatown. J Aging Res. http://dx.doi.org/10.4061/2010/124246
    [6] Chao SZ, Lai NB, Tse MM, et al. (2011) Recruitment of Chinese American elders into dementia research: The UCSF ADRC experience. The Gerontologist 51: pp. S125-S133.
    [7] American Community Survey, 2011. American Community Survey 2011, American Community Survey 2011.
    [8] Dong X, Chang E, Wong E, et al. (2012) The perceptions, social determinants, and negative health outcomes associated with depressive symptoms among U.S. Chinese older adults. The Gerontologist 52(5): 650-663.
    [9] Kim BSK, Atkinson DR, Umemoto D (2001) Asian cultural values and the counseling process: Current knowledge and directions for future research. The Counseling Psychologist 29: 570-603. doi: 10.1177/0011000001294006
    [10] Kim G, Chiriboga DA, Jang Y, et al. (2010) Health status of older Asian Americans in California. J Am Geriatrics Soc 58 (2003): 2008.
    [11] Zhang AY, Yu LC, Yuan J, et al. (1997) Family and cultural correlates of depression among Chinese elderly. Int J Soc Psychiat 43(3): 199-212.
    [12] Centers for Disease Control and Prevention, 2013. Web-based Injury Statistics Query and Reporting System (WISQARS) (Online), National Center for Injury Prevention and Control, Centers for Disease Control and Prevention.
    [13] Aroian KJ, Wu B, Tran TV. (2005) Health care and social service use among Chinese immigrant elders. Health care soc serviecs use among Chinese immigrant elders 28(2): 95-105.
    [14] Minkler M, Wallerstein N, Wilson N (2011) Improving health through community organization and community building. Health behavior and health eduction: theory, research, and practice, edited by Glanz K., Rimer B.K., and Viswanath K. Jossey-Bass, San Francisco, pp. 287-313.
    [15] Dong X , Zhang M (2015) The prevalence of neurological symptoms among chinese older adults in the greater chicago area. AIMS Med Sci 2(1): 35-50.
    [16] Dong X, Chang E, Bergren S (2014) The prevalence of musculoskeletal symptoms among Chinese older adults in the greater Chicago area. AIMS Med Sci 1(2): 87-102.
    [17] Dong X, Zhang M, Simon MA (2014) Self - mastery among Chinese older adults in the greater Chicago area. AIMS Med Sci 1(1): 57-72.
    [18] Zhang M, Simon MA, Dong X (2014) The prevalence of perceived stress among U.S. Chinese older adults. AIMS Med Sci 1(1): 40-56.
    [19] Chen R, Simon M, Dong X (2014) Gender differences in depressive symptoms in U.S. Chinese older adults. AIMS Med Sci 1(1): 13-27.
    [20] Dong X, Chang E, Bergren S (2014) The burden of grandparenting among Chinese older adults in the greater Chicago area. AIMS Med Sci 1(2): 125-140.
    [21] Dong X, Chen R, Roepke-Buehler S (2014) Characters associated with psychological, physical, sexual abuse, caregiver neglect and financial exploitation in U.S Chinese older adults: Findings from the population-based cohort study in the greater Chicago area. AIMS Med Sci 2014, 1(2): 103-124.
    [22] Dong X (2012) Advancing the field of elder abuse: Future directions and policy implications. J Am Geriatr Soc 60(11): 2151-2156.
    [23] Dong X, Chen R, Chang E, et al. (2013) Elder abuse and psychological well-being: A systematic review and implications for research and policy- A mini review. Gerontol 59(2): 132-142.
    [24] Dong XQ, Chang ES, Wong E, et al. (2013) Perceived effectiveness of elder abuse interventions in psychological distress and the design of culturally adapted interventions: A qualitative study in the Chinese community in Chicago. J Aging Res http://dx.doi.org/10.1155/2013/845425
    [25] Dong XQ, Chang ES, Wong E, et al. (2014) Perceived barriers and facilitators to implement elder abuse intervention for victims and perpetrators: Views from U.S. Chinese older adults. J Adult Protection. In Press
    [26] Dong X, Chang E, Simon MA (2014) Sense of community among Chinese older adults in the Greater Chicago area- Findings from the PINE study. AIMS Med Sci 1(1): 28-39.
    [27] Chang E, Dong X (2014) Personality traits among community-dwelling Chinese older adults in the greater Chicago area. AIMS Med Sci 1(2): 73-86.
    [28] Chen RJ, Dong X (2015) Gambling participation and problems among community-dwelling U.S. Chinese older adults. AIMS Med Sci 2(2): 90-103
    [29] Joahnson JL, Green LW, Frankish CJ (1996) A dissemination research agenda to strengthen health promotion and disease prevention. Can J Public Health 87(2): S5-S10.
    [30] Dong X, Li Y, Chen R, et al. (2013) Evaluation of community health education workshops among Chinese older adults in Chicago: A community-based participatory research approach. J Educ Training Studies 1(1): 170-181.
    [31] Chang ES, Simon MA, Dong XQ (2014) Using community-based participatory research to address Chinese older women's health needs: Towards sustainability. J Women Aging. In Press
    [32] Dong X, Chang E, Wong E, et al. (2011) Sustaining community-university partnerships: Lessons learned from a participatory research project with elderly Chinese. Gateways Inter J Commu Res Engagement 4
    [33] Dong X, Chang ES, Wong E, et al. (2011) Working with culture: lessons learned from a community-engaged project in a Chinese aging population. Aging Health 7(4): 529-537.
    [34] Dong X, Chen R, Wong E, et al. (2014) Suicidal ideation in an older U.S. Chinese population. J Health and Aging. 26(7):1189-1208
    [35] Dong X, Chang ES, Zeng P, et al. (2014) Suicide in the global Chinese aging population: A review of risk and protective factors, consequences, and interventions. Aging and Disease 10;6(2):121-130
    [36] Foo L (2003) Asian American Women: Issues, concerns, and responsive human and civil rights advocacy, IUniverse, Lincoln, NE
    [37] Chang E, Simon M, Dong X (2012) Integrating cultural humility into health care professional education and training. Advances Health Sci Educ Theor Pract 17(2): 269-278.
    [38] Dong X, Chang E, Wong E, et al. (2012) A qualitative study of filial piety among community dwelling, Chinese, older adults: Changing meaning and impact on health and well-being. J Intergenerational Relationships 10(2): 131-146.
    [39] Dong XQ, Chang ES (2014) Lost in translation: to our Chinese patient, Alzheimer's meant 'cracy and catatonic. Health Affairs 33(4): 712-715.
    [40] Chan CLF, Chui EWT (2011) Association between cultural factors and the caregiving burden for Chinese spousal caregivers of frail elderly in Hong Kong. Aging and Mental Health 15(4): 500-509.
    [41] Dong X, Simon MA (2011) Enhancing national policy and programs to address elder abuse. Endocrin metab clin 305(23): 2460-2461.
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5406) PDF downloads(1086) Cited by(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog