
The aim of this paper is to introduce a discrete mixture model from the point of view of reliability and ordered statistics theoretically and practically for modeling extreme and outliers' observations. The base distribution can be expressed as a mixture of gamma and Lindley models. A wide range of the reported model structural properties are investigated. This includes the shape of the probability mass function, hazard rate function, reversed hazard rate function, min-max models, mean residual life, mean past life, moments, order statistics and L-moment statistics. These properties can be formulated as closed forms. It is found that the proposed model can be used effectively to evaluate over- and under-dispersed phenomena. Moreover, it can be applied to analyze asymmetric data under extreme and outliers' notes. To get the competent estimators for modeling observations, the maximum likelihood approach is utilized under conditions of the Newton-Raphson numerical technique. A simulation study is carried out to examine the bias and mean squared error of the estimators. Finally, the flexibility of the discrete mixture model is explained by discussing three COVID-19 data sets.
Citation: Mohamed S. Eliwa, Buthaynah T. Alhumaidan, Raghad N. Alqefari. A discrete mixed distribution: Statistical and reliability properties with applications to model COVID-19 data in various countries[J]. Mathematical Biosciences and Engineering, 2023, 20(5): 7859-7881. doi: 10.3934/mbe.2023340
[1] | Rashad A. R. Bantan, Zubair Ahmad, Faridoon Khan, Mohammed Elgarhy, Zahra Almaspoor, G. G. Hamedani, Mahmoud El-Morshedy, Ahmed M. Gemeay . Predictive modeling of the COVID-19 data using a new version of the flexible Weibull model and machine learning techniques. Mathematical Biosciences and Engineering, 2023, 20(2): 2847-2873. doi: 10.3934/mbe.2023134 |
[2] | Mattia Zanella, Chiara Bardelli, Mara Azzi, Silvia Deandrea, Pietro Perotti, Santino Silva, Ennio Cadum, Silvia Figini, Giuseppe Toscani . Social contacts, epidemic spreading and health system. Mathematical modeling and applications to COVID-19 infection. Mathematical Biosciences and Engineering, 2021, 18(4): 3384-3403. doi: 10.3934/mbe.2021169 |
[3] | Ibrahim Alkhairy . Classical and Bayesian inference for the discrete Poisson Ramos-Louzada distribution with application to COVID-19 data. Mathematical Biosciences and Engineering, 2023, 20(8): 14061-14080. doi: 10.3934/mbe.2023628 |
[4] | Yinghui Zhou, Zubair Ahmad, Zahra Almaspoor, Faridoon Khan, Elsayed tag-Eldin, Zahoor Iqbal, Mahmoud El-Morshedy . On the implementation of a new version of the Weibull distribution and machine learning approach to model the COVID-19 data. Mathematical Biosciences and Engineering, 2023, 20(1): 337-364. doi: 10.3934/mbe.2023016 |
[5] | A. Q. Khan, M. Tasneem, M. B. Almatrafi . Discrete-time COVID-19 epidemic model with bifurcation and control. Mathematical Biosciences and Engineering, 2022, 19(2): 1944-1969. doi: 10.3934/mbe.2022092 |
[6] | Hamdy M. Youssef, Najat A. Alghamdi, Magdy A. Ezzat, Alaa A. El-Bary, Ahmed M. Shawky . A new dynamical modeling SEIR with global analysis applied to the real data of spreading COVID-19 in Saudi Arabia. Mathematical Biosciences and Engineering, 2020, 17(6): 7018-7044. doi: 10.3934/mbe.2020362 |
[7] | Qinghua Liu, Siyu Yuan, Xinsheng Wang . A SEIARQ model combine with Logistic to predict COVID-19 within small-world networks. Mathematical Biosciences and Engineering, 2023, 20(2): 4006-4017. doi: 10.3934/mbe.2023187 |
[8] | Ziqiang Cheng, Jin Wang . Modeling epidemic flow with fluid dynamics. Mathematical Biosciences and Engineering, 2022, 19(8): 8334-8360. doi: 10.3934/mbe.2022388 |
[9] | Salma M. Al-Tuwairqi, Sara K. Al-Harbi . Modeling the effect of random diagnoses on the spread of COVID-19 in Saudi Arabia. Mathematical Biosciences and Engineering, 2022, 19(10): 9792-9824. doi: 10.3934/mbe.2022456 |
[10] | Enahoro A. Iboi, Oluwaseun Sharomi, Calistus N. Ngonghala, Abba B. Gumel . Mathematical modeling and analysis of COVID-19 pandemic in Nigeria. Mathematical Biosciences and Engineering, 2020, 17(6): 7192-7220. doi: 10.3934/mbe.2020369 |
The aim of this paper is to introduce a discrete mixture model from the point of view of reliability and ordered statistics theoretically and practically for modeling extreme and outliers' observations. The base distribution can be expressed as a mixture of gamma and Lindley models. A wide range of the reported model structural properties are investigated. This includes the shape of the probability mass function, hazard rate function, reversed hazard rate function, min-max models, mean residual life, mean past life, moments, order statistics and L-moment statistics. These properties can be formulated as closed forms. It is found that the proposed model can be used effectively to evaluate over- and under-dispersed phenomena. Moreover, it can be applied to analyze asymmetric data under extreme and outliers' notes. To get the competent estimators for modeling observations, the maximum likelihood approach is utilized under conditions of the Newton-Raphson numerical technique. A simulation study is carried out to examine the bias and mean squared error of the estimators. Finally, the flexibility of the discrete mixture model is explained by discussing three COVID-19 data sets.
The data generated by the daily work environment are more complex in nature at present, and therefore many lifetime models have been listed in the literature to analyze and evaluate these data. Determining which probability distribution should be adopted to make inferences from the data under study is a very important problem in statistics. For these reasons, great efforts have been spent over the years in developing large categories of distributions along with relevant statistical methodologies. See, for instance, El-Gohary et al. [1], Saboor et al. [2], Jia et al. [3], Fernandez [4], Alizadeh et al. [5], Kumar et al. [6], and references cited therein. Nedjar and Zeghdoudi [7] proposed a mixture of gamma(2,τ) and Lindley(ε) (MGL) distributions. The probability density function (PDF) of the MGL distribution can be expressed as
g(x;ε,τ)=τ2ε(1+τ)([τε+ε−τ]x+1)e−τx; x>0,ε>0,τ>0. | (1.1) |
Unfortunately, Eq (1.1) is not a proper PDF. Messaadia and Zeghdoudi [8] corrected the parameter space to be ε≥τ1+τ and τ>0, and consequently the modified PDF of the MGL model can be written as
f(x;ε,τ)=τ2ε(1+τ)([τε+ε−τ]x+1)e−τx; x>0,ε≥τ1+τ,τ>0. | (1.2) |
The survival function (SF) corresponding to Eq (1.2) can be formulated as
S(x;ε,τ)=(τx+1)(τε+ε−τ)+τε(1+τ)e−τx; x>0,ε≥τ1+τ,τ>0. | (1.3) |
The quantile function (QF) is
QX(u)={−ε(1+τ)τ[ε(1+τ)−τ]−1τW−1(ε(1+τ)(u−1)ε(1+τ)−τe−ε(1+τ)ε(1+τ)−τ); ε>τ1+τ−ln(1−u)τ ; ε=τ1+τ, | (1.4) |
where W−1 denotes the negative branch of the Lambert W function, and −ln(1−u)τ is the QF of the exponential model. Sometimes, survival trials produce data that are discrete in nature either because of the limitations of the measuring instruments or their inherent characteristics. The study and analysis of counting data plays an important role in many fields of applied sciences, such as economics, engineering, marketing, medicine, and insurance. Counting datasets are often modeled utilizing the Poisson model. However, the Poisson model cannot handle hyper-scattered datasets. Therefore, it is reasonable to model such cases via an appropriate discrete distribution. Discretization of a continuous distribution can be created by using several methods. The most widely utilized technique is the survival discretization approach. For a given continuous random variable X with SF S(x;ξ)=Pr(X>x), we can obtain the discretized version as
Pr(X=x)=S(x;ξ)−S(x+1;ξ); x=0,1,2,3,.... | (1.5) |
For more details, Roy [9]. This technique has received a lot of attention in recent years. See, for instance, Gómez-Déniz and Calderín-Ojeda [10], Bebbington et al. [11], Nekoukhou et al. [12], Alamatsaz et al. [13], El-Morshedy et al. [14], Gillariose et al. [15], Singh et al. [16,17], Eliwa and El-Morshedy [18], Altun et al. [19] and references cited therein. In this paper, a discrete distribution MGL (DsMGL) will be discussed from the point of view of reliability and ordered statistics theoretically and practically to analyze extreme and outliers' notes. This is because in El-Morshedy et al. [20], simple statistical characteristics and a regression model were presented only in a small whole sample (outliers were not included). Further, the previous paper ignored the reliability, order statistics, and L-moments measures which can be applied in the fields of biomedicine and engineering. Given the importance of reliability and structured statistical measures, the authors sought to discuss neglected characteristics as well as model extreme and outliers' observations. Thus, the motives for this study can be summarized as follows: to formulate statistical characteristics as closed forms; to model dispersed-positively-skewed real data under extreme and outliers' observations; to provide a consistently better fit than other discrete models known in the current statistical literature, especially over-dispersed models; and to prove that the proposed model can be applied to discuss zero-inflated observations.
The article is organized as follows. In Section 2, the DsMGL distribution is proposed. Various properties are derived in Sections 3 and 4. In Section 5, the DsMGL parameters are estimated by utilizing the maximum likelihood approach. Simulation study is discussed in Section 6. In Section 7, three real data sets are analyzed. Finally, some conclusions and future work are listed in Section 8.
Recall Eq (1.3), and the SF of the DsMGL distribution can be expressed as
S(x;ε,δ)=(1−lnδx+1)(ε−εlnδ+lnδ)−lnδε(1−lnδ)δx+1; x∈N0, | (2.1) |
where ε≥−lnδ1−lnδ, 0<e−τ=δ<1, and N0={0,1,2,3,...}. The corresponding PMF to Eq (2.1) can be introduced as
Px(x;ε,δ)=δx1−lnδ{1−δ−lnδ[1+x−δ(x+2)]+(1−1ε)(lnδ)2[x−δ(x+1)]}; x∈N0. | (2.2) |
The CDF can be reported as
F(x;ε,δ)=1−(1−lnδx+1)(ε−εlnδ+lnδ)−lnδε(1−lnδ)δx+1; x∈N0. | (2.3) |
Figure 1 shows the PMF of the DsMGL model based on various values of the parameters ε and δ.
As can be noted, the PMF can take unimodal or decreasing form. Moreover, it can be used as a statistical approach to model zero-inflated observations under positive skew.
In reliability theory, the forward iteration "remaining" time and the past time are two very important measurements in the theory of renewal processes. Consider, for example, the lifetime of a wireless link when a new packet arrives in wireless networks. Reliability studies model the remaining life of a component. If something has survived that far, how long can it be expected to survive? This is the question answered by mean residual life (MRL). In the discrete setting, the MRL, say Θi, is defined as
Θi=E(T−i|T≥i)=11−F(i−1;ε,δ)q∑j=i+1[1−F(j−1;ε,δ)]; i∈N0, | (3.1) |
where N0={0,1,2,3,...,q} for 0<q<∞. Thus, for the DsMGL model, the MRL is given as
Θi=−δ2(ε−1)(δi−i−1)lnδ−ε(δ(i+1)−i−2)lnδ+ε(δ−1)(δ−1)2{(1−ilnδ)(ε−εlnδ+lnδ)−lnδ}; i∈N0. | (3.2) |
Furthermore, in the discrete setting, the mean past life (MPL), say Θ∗i, is defined as
Θ∗i=E(i−T|T<i)=1F(i−1;ε,δ)i∑m=1F(m−1;ε,δ); i∈N0−{0}. | (3.3) |
So, the MPL for the DsMGL model can be represented as
Θ∗i=iεδi+2lnδ−iεδi+1lnδ+iεδ2(lnδ−1)−2iδi+2lnδ+2(i+1)δi+1lnδ−εδi+2(lnδ−1)(2iεδilnδ−2iδilnδ−εδilnδ+εδi+εlnδ−ε)(δ−1)2+εδ2(lnδ−1)−2δlnδ+(1−2δ)iεlnδ+2iεδ−εδi+1+εδ−iε(2iεδilnδ−2iδilnδ−εδilnδ+εδi+εlnδ−ε)(δ−1)2. | (3.4) |
For i∈N0, we get Θ∗i≤i. The CDF of the DsMGL model can be recovered by the MPL as
F(k;ε,δ)=F(0;ε,δ)k∏i=1[Θ∗iΘ∗i+1−1]; k∈N0−{0}, | (3.5) |
where F(0;ε,δ)=(q∏i=1[Θ∗iΘ∗i+1−1])−1and 0<q<∞. Thus, the mean of the DsMGL model can be expressed as
Mean=i−Θ∗iF(i−1;ε,δ)+Θi[1−F(i−1;ε,δ)]; i∈N0−{0}. | (3.6) |
The reversed hazard rate function (RHRF) can be expressed as a function in MPL as
r(i;ε,δ)=1−Θ∗i+1+Θ∗iΘ∗i; i∈N0−{0}. | (3.7) |
Further, the RHRF can be proposed as
r(x;ε,δ)=1−δ−lnδ[1+x−δ(x+2)]+(1−1ε)(lnδ)2[x−δ(x+1)]ε(1−lnδ)−[(1−lnδx+1)(ε−εlnδ+lnδ)−lnδ]δx+1εδx; x∈N0. | (3.8) |
Figure 2 shows the RHRF plots for different values of the DsMGL parameters.
Suppose W and H are two independent DsMGL random variables (RVs) with parameters (ε1,δ1) and (ε2,δ2), respectively. Then, the RHRF of T=min(W,H) and L=max(W,H) can be formulated as
rT(x;Λ)=1−1−{(1−lnδx1)(ε1−ε1lnδ1+lnδ1)−lnδ1ε1(1−lnδ1)δx1}{(1−lnδx2)(ε2−ε2lnδ2+lnδ2)−lnδ2ε2(1−lnδ2)δx2}1−{(1−lnδx+11)(ε1−ε1lnδ1+lnδ1)−lnδ1ε1(1−lnδ1)δx+11}{(1−lnδx+12)(ε2−ε2lnδ2+lnδ2)−lnδ2ε2(1−lnδ2)δx+12}, | (3.9) |
and
rL(x;Λ)=1−δ1−lnδ1[1+x−δ1(x+2)]+(1−1ε1)(lnδ1)2[x−δ1(x+1)]ε1(1−lnδ1)−[(1−lnδx+11)(ε1−ε1lnδ1+lnδ1)−lnδ1]δx+11ε1δx1+1−δ2−lnδ2[1+x−δ2(x+2)]+(1−1ε2)(lnδ2)2[x−δ2(x+1)]ε2(1−lnδ2)−[(1−lnδx+12)(ε2−ε2lnδ2+lnδ2)−lnδ2]δx+12ε2δx2−1−δ1−lnδ1[1+x−δ1(x+2)]+(1−1ε1)(lnδ1)2[x−δ1(x+1)]ε1(1−lnδ1)−[(1−lnδx+11)(ε1−ε1lnδ1+lnδ1)−lnδ1]δx+11ε1δx1×1−δ2−lnδ2[1+x−δ2(x+2)]+(1−1ε2)(lnδ2)2[x−δ2(x+1)]ε2(1−lnδ2)−[(1−lnδx+12)(ε2−ε2lnδ2+lnδ2)−lnδ2]δx+12ε2δx2. | (3.10) |
Since the RHRFs of the two RVs W and H are decreasing, then the RHRFs of T=min(W,H) and L=max(W,H) are also decreasing. Another important measure in survival analysis theory is called the hazard rate function (HRF). If X is a DsMGL random variable, then the HRF can be expressed as
h(x;ε,δ)=1−[(1−lnδx+1)(ε−εlnδ+lnδ)−lnδ]δ(1−lnδx)(ε−εlnδ+lnδ)−lnδ; x∈N0, | (3.11) |
where h(x;ε,δ)=Px(x;ε,δ)S(x−1;ε,δ). Figure 3 shows the HRF plots for different values of the DsMGL parameters. It should be noted that the new paradigm can be used to discuss any phenomena of an increasing unilateral form.
Suppose W and H are two independent RVs with parameters DsMGL(ε1,δ2) and DsMGL(ε2,δ2), respectively. Then, the HRF of T=min(W,H) can be formulated as
hT(x;Λ)=Pr(min(W,H)=x)Pr(min(W,H)≥x)=Pr(min(W,H)≥x)−Pr(min(W,H)≥x+1)Pr(min(W,H)≥x)=Pr(W≥x)Pr(H≥x)−Pr(W≥x+1)Pr(H≥x+1)Pr(W≥x)Pr(V≥x)=Pr(W≥x)Pr(H=x)+Pr(W=x)Pr(H≥x)−Pr(W=x)Pr(H=x)Pr(W≥x)Pr(H≥x), |
where Λ=(ε1,ε2,δ1,δ2). Then,
hT(x;Λ)={1−[(1−lnδx+11)(ε1−ε1lnδ1+lnδ1)−lnδ1]δ1(1−lnδx1)(ε1−ε1lnδ1+lnδ1)−lnδ1}+{1−[(1−lnδx+12)(ε2−ε2lnδ2+lnδ2)−lnδ2]δ2(1−lnδx2)(ε2−ε2lnδ2+lnδ2)−lnδ2}−{1−[(1−lnδx+11)(ε1−ε1lnδ1+lnδ1)−lnδ1]δ1(1−lnδx1)(ε1−ε1lnδ1+lnδ1)−lnδ1}×{1−[(1−lnδx+12)(ε2−ε2lnδ2+lnδ2)−lnδ2]δ2(1−lnδx2)(ε2−ε2lnδ2+lnδ2)−lnδ2}. | (3.12) |
Since the HRFs of the two RVs W and H are increasing, the HRF of T=min(W,H) is also increasing. Similarly, the HRF of L=max(W,H) can be expressed as
hL(x;Λ)=1−1−{1−(1−lnδx+11)(ε1−ε1lnδ1+lnδ1)−lnδ1ε1(1−lnδ1)δx+11}{1−(1−lnδx+12)(ε2−ε2lnδ2+lnδ2)−lnδ2ε2(1−lnδ2)δx+12}1−{1−(1−lnδx1)(ε1−ε1lnδ1+lnδ1)−lnδ1ε1(1−lnδ1)δx1}{1−(1−lnδx2)(ε2−ε2lnδ2+lnδ2)−lnδ2ε2(1−lnδ2)δx2}. | (3.13) |
Assume X1:l,X2:l,...,Xl:l are the corresponding order statistics (OS) of the random sample (RS) X1,X2,..., Xl from the DsMGL model. Then, the CDF of the ith OS is given as
Fi:l(x;ε,δ)=l∑b=i(lb)[Fi(x;ε,δ]b[1−Fi(x;ε,δ)]l−b=l∑b=il−b∑j=0ϑ(l,b)(m)Fi(x;ε,δ,b+j), | (4.1) |
where ϑ(l,b)(m)=(−1)j(lb)(l−bj). The corresponding PMF to Eq (4.1) can be listed as
fi:l(x;ε,δ)=Fi:l(x;ε,δ)−Fi:l(x−1;ε,δ)=l∑b=il−b∑j=0ϑ(l,b)(m)fi(x;ε,δ,b+j), | (4.2) |
where fi(x;ε,δ,b+j) represents the PMF of the exponentiated DsMGL distribution with power parameter b+j. So, the vth moments of Xi:l can be written as
E(Xvi:l)=∞∑x=0l∑b=il−b∑j=0ϑ(l,b)(m)xvfi(x;ε,δ,b+j). | (4.3) |
Hosking [21] has defined the L-moment (L-MT) to show the descriptive statistics for the probability model. The L-MT of the DsMGL can be formulated as
Υo=1oo−1∑c=0(−1)c(o−1c)E(Xo−c:o). | (4.4) |
Using Eq (4.4), L-MT of mean =Υ1, L-MT coefficient of variation =Υ2Υ1, L-MT coefficient of skewness =Υ3Υ2, and L-MT coefficient of kurtosis =Υ4Υ2.
The shape of any probability model can be described by its different moments. Based on the first four moments, the mean "E(X)", variance "Var(X)", index of dispersion "D(X)", skewness "Sk(X)", and kurtosis "Ku(X)" can be derived. Let X be a DsMGL random variable. Then, the probability generating function (PGF), say Υ(z), can be formulated as
Υ(z)=∞∑x=0zxPx(x;ε,δ)=11−lnδ∞∑x=0{1−δ−lnδ[1+x−δ(x+2)]+(1−1ε)(lnδ)2[x−δ(x+1)]}(zδ)x=−2δ(ε−1)(z−1)lnδ+ε(δ2z−2δ+1)lnδ−ε(δ−1)(δz−1)ε(lnδ−1)(δz−1)2, | (4.5) |
where the power series converges absolutely at least for all complex numbers z with |z|≤1. Equation (4.5) can be derived utilizing the Maple software program. Thus, the first four moments of the DsMGL model can be listed as
E(X)=−δ(ε−1)lnδ2+ε(δ−2)lnδ−ε(δ−1)ε(lnδ−1)(δ−1)2, | (4.6) |
E(X2)=δ(3εδ+ε−3δ−1)lnδ2+ε(δ2−3δ−2)lnδ−εδ2+εε(lnδ−1)(δ−1)3, | (4.7) |
E(X3)=−δ14(δ2+107δ+17)(ε−1)lnδ+ε(δ+2)(δ2−6δ−1)lnδ−ε(δ−1)(δ2+4δ+1)ε(lnδ−1)(δ−1)4, | (4.8) |
and
E(X4)=δ30(δ3+113δ2+53δ+115)(ε−1)lnδ+ε(δ4−5δ3−55δ2−35δ−2)lnδε(lnδ−1)(δ−1)5−δ4+10δ3−10δ−1(lnδ−1)(δ−1)5. | (4.9) |
According to the previous moments "E(Xr); r=1,2,3,4", the E(X), Var(X), Sk(X), and Ku(X) can be derived in closed forms. Table 1 reports some numerical results for the DsMGL model under different values of the distribution parameters.
ε | ||||||
Measure | 1.1 | 1.4 | 1.7 | 2.1 | 4.2 | 8.4 |
E(X) | 0.10548 | 0.12972 | 0.14540 | 0.15934 | 0.18897 | 0.20378 |
Var(X) | 0.11102 | 0.13466 | 0.14933 | 0.16196 | 0.18750 | 0.19962 |
D(X) | 1.05252 | 1.03809 | 1.02701 | 1.01641 | 0.99223 | 0.97955 |
Sk(X) | 3.31652 | 2.93747 | 2.73625 | 2.57885 | 2.29485 | 2.17274 |
Ku(X) | 14.9956 | 12.2687 | 10.94861 | 9.97976 | 8.37673 | 7.74605 |
The DsMGL is capable of modeling positively skewed and leptokurtic datasets. Further, it is appropriate for modeling under- (over-) dispersed phenomena where Var(X)|E(X)|<(>)1 for some parameter values.
In this segment, the maximum likelihood estimates (MLEs) of the model parameters are determined. Let X1,X2,...,Xn be a RS of size n from the DsMGL distribution. The log-likelihood function (LL) can be written as
LL(x;ε,δ)=lnδn∑i=1xi−nln(1−lnδ)+n∑i=1ln(1−δ−lnδ[1+xi−δ(xi+2)]+(1−1ε)(lnδ)2[xi−δ(xi+1)]). | (5.1) |
The MLEs of the parameters ε and δ, say ˆε and ˆδ, are derived by (ˆε,ˆδ) = argmax(ε,δ) (L) or, in an equivalent approach in our case, (ˆε,ˆδ) = argmax(ε,δ) (LL). To provide more practicalities, the normal equations can be formulated as
∂LL(x;ε,δ)∂ε=n∑i=1(lnδε)2[xi−δ(xi+1)]1−δ−lnδ[1+xi−δ(xi+2)]+(1−1ε)(lnδ)2[xi−δ(xi+1)] | (5.2) |
and
∂LL(x;ε,δ)∂δ=1δn∑i=1xi+nδ(1−lnδ)+n∑i=1(xi+2)(lnδ+1)−1+xiδ−1+lnδ(1−1ε)(2xi−2δ(xi+1)δ−(xi+1)lnδ)1−δ−lnδ[1+xi−δ(xi+2)]+(1−1ε)(lnδ)2[xi−δ(xi+1)]. | (5.3) |
The two previous equations cannot be solved analytically; therefore, a mathematical package such as the R program based on an iterative procedure such as the Newton-Raphson (numerical optimization approach) can be used to obtain the estimators.
In this segment, Monte Carlo simulation was performed to prove the efficiency of the DsMGL model utilizing the maximum likelihood approach. The performance of the MLE with respect to sample size n is tested. The evaluation is based on a simulation study:
1) Generate 10000 samples of size n= 10,11,12,...,60 from the DsMGL model based on four cases as follows: case I: (δ=0.1 and ε=0.9), case II: (δ=0.3 and ε=0.9), case III: (δ=0.5 and ε=0.9), and case IV: (δ=0.7 and ε=0.9).
2) Generate 10000 samples of size n= 30,70,140,200,300,400,600 from the DsMGL model based on four cases as follows: case V: (δ=0.5 and ε=0.4), case VI: (δ=0.5 and ε=0.5), case VII: (δ=0.5 and ε=1.5), and case VIII: (δ=0.5 and ε=2.0).
3) Compute the MLEs for the 10000 samples, say ˆεj and ˆδj for j=1,2,3,...,1000.
4) Compute the biases, mean-squared errors (MSE), and mean relative errors (MRE).
5) The empirical results are shown in Figures 4–7 and Tables 2 and 3.
Scheme V | Scheme VI | ||||||
Parameter | n | Bias | MSE | MRE | Bias | MSE | MRE |
δ | 30 | 0.10056591 | 0.09006876 | 0.06336994 | 0.11632194 | 0.08963175 | 0.08223158 |
70 | 0.09865782 | 0.08830367 | 0.04163261 | 0.10223666 | 0.06202190 | 0.08063179 | |
140 | 0.04369310 | 0.08200239 | 0.04001453 | 0.09220169 | 0.06101429 | 0.07312016 | |
200 | 0.02299658 | 0.07703927 | 0.03192237 | 0.08139327 | 0.04002236 | 0.06350036 | |
300 | 0.02126971 | 0.06005479 | 0.02101206 | 0.08023636 | 0.03237014 | 0.05519738 | |
400 | 0.01733369 | 0.04079031 | 0.00700269 | 0.05193079 | 0.01112539 | 0.04980373 | |
600 | 0.00234104 | 0.00201034 | 0.00023694 | 0.00292733 | 0.00026456 | 0.00015654 | |
ε | 30 | 0.09369110 | 0.07793171 | 0.06131304 | 0.05969637 | 0.04320158 | 0.05336947 |
70 | 0.08567341 | 0.07122367 | 0.05510375 | 0.05223691 | 0.03201392 | 0.05102125 | |
140 | 0.07011036 | 0.06379035 | 0.05022693 | 0.04112566 | 0.03036549 | 0.04020024 | |
200 | 0.04105604 | 0.05380086 | 0.04500102 | 0.03233697 | 0.02002137 | 0.03102236 | |
300 | 0.03367101 | 0.04522564 | 0.04103979 | 0.03102973 | 0.01122024 | 0.01909439 | |
400 | 0.02098200 | 0.03474369 | 0.03139064 | 0.01018674 | 0.00889001 | 0.00306970 | |
600 | 0.00523689 | 0.00236844 | 0.00053671 | 0.00235659 | 0.00059458 | 0.00002518 |
Scheme VII | Scheme VIII | ||||||
Parameter | n | Bias | MSE | MRE | Bias | MSE | MRE |
δ | 30 | 0.025687193 | 0.01466875 | 0.01399737 | 0.06696575 | 0.08763274 | 0.06353187 |
70 | 0.022658763 | 0.01136219 | 0.10145190 | 0.06132640 | 0.06923671 | 0.06123671 | |
140 | 0.019365811 | 0.00855157 | 0.00500215 | 0.05426598 | 0.05110123 | 0.05922014 | |
200 | 0.015330240 | 0.00431502 | 0.00362307 | 0.05120134 | 0.04320139 | 0.04623665 | |
300 | 0.013695875 | 0.00400236 | 0.00306981 | 0.05026971 | 0.03915618 | 0.04010656 | |
400 | 0.008532179 | 0.00100153 | 0.00168892 | 0.04902790 | 0.03101569 | 0.03410973 | |
600 | 0.001036942 | 0.00010265 | 0.00023296 | 0.00265235 | 0.00021691 | 0.00139237 | |
ε | 30 | 0.108067988 | 0.01123177 | 0.08307104 | 0.07437669 | 0.07782736 | 0.09069587 |
70 | 0.103365789 | 0.00998796 | 0.08223676 | 0.06722364 | 0.05220104 | 0.08133658 | |
140 | 0.089445810 | 0.00912348 | 0.07911671 | 0.04749836 | 0.03002336 | 0.06310263 | |
200 | 0.071002158 | 0.00722369 | 0.06600163 | 0.03229659 | 0.01024787 | 0.05154031 | |
300 | 0.053210199 | 0.00426971 | 0.03697274 | 0.03193261 | 0.01010915 | 0.03974904 | |
400 | 0.009571377 | 0.00379104 | 0.00409265 | 0.02410124 | 0.00580048 | 0.02122360 | |
600 | 0.000531041 | 0.00022165 | 0.00023291 | 0.00124304 | 0.00083190 | 0.00212642 |
According to Figures 4–7 and Tables 2 and 3, the magnitude of bias, MSE, and MRE always decrease to zero as n grows (consistency property). Thus, the MLE approach can be utilized effectively for the parameter's estimation.
In this section, we demonstrate the resilience of the DsMGL distribution in modeling COVID-19 data. Fitted models are compared using some criteria, namely, the −LL, Akaike-information-criterion (AIC), modified-AIC (MAIC), Hannan-Quinn-information-criterion (HQIC), Bayesian-information-criterion (BIC), and Kolmogorov-Smirnov (K-S) test with its corresponding P-value. We will compare the flexibility of the DsMGL model with some of the competitive models such as discrete Lindley (DsL), discrete Burr-Hatke (DsBH), new discrete distribution with one parameter (NDsIP) (see, Eliwa and El-Morshedy, 2022), discrete Rayleigh (DsR), discrete Pareto (DsPa), discrete Burr type XII (DsB-XII), and modified negative binomial (NeBi) models.
The data is listed in (https://www.worldometers.info/coronavirus/country/china-hong-kong-sar/) and represents the daily new cases in Hong Kong for COVID-19 from Feb. 15, 2020, to Oct. 25, 2020. The initial shape/form of this data is reported in Figure 8 using non-parametric (N-P) methods like strip, box, violin and QQ plots. It is noted that there are extreme and outliers' observations.
The MLEs with their corresponding standard error (SE), confidence interval (C. I) for the parameter(s) and goodness-of-fit test (G-O-F-T) for COVID-19 data in Hong Kong, are listed in Tables 4 and 5.
ε | δ | |||||
Model | MLE | SE | C. I | MLE | SE | C. I |
DsMGL | 0.8887 | 0.0242 | [0.8390,0.9361] | 0.1062 | 0.0373 | [0.0355,0.1786] |
DsL | 0.8052 | 0.0200 | [0.7660,0.8451] | − | − | − |
NDsIP | 0.9110 | 0.0151 | [0.8820,0.9390] | − | − | − |
DsR | 0.9951 | 0.1361 | [0.7280,1.000] | − | − | − |
DsB-XII | 0.8173 | 0.0740 | [0.6722,0.9622] | 3.2981 | 1.4272 | [0.5013,6.0962] |
DsPa | 0.5592 | 0.0531 | [0.4515,0.6603] | − | − | − |
DsBH | 0.9954 | 0.0132 | [0.9695,1.000] | − | − | − |
NeBi | 0.9203 | 0.0221 | [0.8772,0.9634] | 0.6859 | 0.1023 | [0.4854,0.8864] |
Model | ||||||||
Statistic | DsMGL | DsL | NDsIP | DsR | DsB-XII | DsPa | DsBH | NeBi |
−LL | 118.951 | 127.120 | 121.353 | 161.193 | 118.992 | 124.333 | 130.953 | 119.237 |
AIC | 241.892 | 256.234 | 244.717 | 324.384 | 241.980 | 250.662 | 263.902 | 242.473 |
MAIC | 242.233 | 256.343 | 244.824 | 324.493 | 242.325 | 250.777 | 264.014 | 242.816 |
BIC | 245.178 | 257.877 | 246.352 | 326.024 | 245.263 | 252.302 | 265.543 | 245.748 |
HQIC | 243.065 | 256.825 | 245.295 | 324.963 | 243.157 | 251.254 | 264.484 | 243.638 |
K-S | 0.157 | 0.246 | 0.186 | 0.761 | 0.277 | 0.367 | 0.565 | 0.167 |
P-value | 0.305 | 0.020 | 0.146 | ≤0.001 | 0.006 | ≤0.001 | ≤0.001 | 0.285 |
The DsMGL model is the best among all the discussed models, because it has the lowest value among −LL, AIC, MAIC, BIC, HQIC and K-S. Moreover, the DsMGL model has the highest P-value among all tested distributions. Figures 9 and 10 show the estimated CDF and P-P plots for all reported models from which the distribution adequacy of the DsMGL model can be noted clearly. Thus, the COVID-19 data in Hong Kong plausibly came from the DsMGL model.
Table 6 lists some descriptive statistics (DEST) for COVID-19 data in Hong Kong utilizing the DsMGL model.
E(X) | Var(X) | D(X) | Sk(X) | Ku(X) |
0.1843 | 0.2096 | 1.1374 | 2.7779 | 12.1489 |
The data reported here suffer from excessive dispersion "D(X) > 1". Moreover, it is moderately right skewed "Sk(X)>0" and leptokurtic "Ku(X)>3".
The data is reported in (https://www.worldometers.info/coronavirus/country/iraq/) and represents the daily new cases in Iraq for COVID-19 from Feb. 15, 2020, to 25 Oct. 25, 2020. In Figure 11, the N-P plots are sketched. It is noted that there is an extreme observation.
The MLEs with their corresponding SE, C. I for the parameter(s) and G-O-F-T for COVID-19 data in Iraq, are listed in Tables 7 and 8.
ε | δ | |||||
Model | MLE | SE | C. I | MLE | SE | C. I |
DsMGL | 0.863 | 0.078 | [0.709,1.015] | 0.129 | 0.144 | [0,0.411] |
DsL | 0.768 | 0.024 | [0.721,0.815] | − | − | − |
NDsIP | 0.895 | 0.015 | [0.865,0.926] | − | − | − |
DsR | 0.989 | 0.0142 | [0.710,1] | − | − | − |
DsB-XII | 0.531 | 0.087 | [0.361,0.701] | 1.009 | 0.253 | [0.513,1.506] |
DsPa | 0.528 | 0.056 | [0.419,0.637] | − | − | − |
DsBH | 0.989 | 0.019 | [0.953,1] | − | − | − |
NeBi | 0.928 | 0.053 | [0.824,1.032] | 0.486 | 0.141 | [0.209,0.762] |
Model | ||||||||
Statistic | DsMGL | DsL | NDsIP | DsR | DsB-XII | DsPa | DsBH | NeBi |
−LL | 107.731 | 114.313 | 109.230 | 138.243 | 112.394 | 112.393 | 116.527 | 109.426 |
AIC | 219.464 | 230.635 | 220.452 | 278.495 | 228.771 | 226.775 | 235.054 | 222.852 |
MAIC | 219.812 | 230.747 | 220.573 | 278.603 | 229.123 | 226.893 | 235.163 | 223.205 |
BIC | 222.683 | 232.244 | 222.707 | 280.092 | 231.993 | 228.387 | 236.664 | 226.074 |
HQIC | 220.595 | 231.195 | 221.025 | 279.051 | 229.914 | 227.343 | 235.623 | 223.988 |
K-S | 0.214 | 0.279 | 0.2423 | 0.736 | 0.355 | 0.357 | 0.505 | 0.251 |
P-value | 0.068 | 0.006 | 0.026 | ≤0.0001 | 0.0002 | 0.0002 | ≤0.0001 | 0.029 |
The DsMGL model is the best among all the studied models. Figures 12 and 13 show the estimated CDFs and P-P plots for COVID-19 data in Iraq.
From Figures 13 and 14, the data set plausibly came from the DsMGL model. Table 9 lists some information for COVID-19 data in Iraq based on the DsMGL model.
E(X) | Var(X) | D(X) | Sk(X) | Ku(X) |
0.2252 | 0.2640 | 1.1724 | 2.6089 | 11.2663 |
The data listed here suffer from excessive dispersion. Furthermore, it is moderately right skewed and leptokurtic.
The data is reported in (https://en.wikipedia.org/wiki/2020_coronavirus_pandemic_in_Saudi_Arabia) and represents the daily new cases in Saudi Arabia for COVID-19 from March 1, 2020, to Sep. 13, 2021. In Figure 14, the N-P plots are reported. It is found that there are extreme observations.
The MLEs with their corresponding SE, C. I for the parameter(s) and G-O-F-T for COVID-19 data in Saudi Arabia are reported in Tables 10 and 11.
ε | δ | |||||
Model | MLE | SE | C. I | MLE | SE | C. I |
DsMGL | 0.891 | 0.0003 | 0.884,0.897] | 0.302 | 0.023 | [0.300,0.305] |
DsL | 0.896 | 0.003 | [0.889,0.902] | − | − | − |
NDsIP | 0.956 | 0.002 | [0.953,0.959] | − | − | − |
DsR | 0.998 | 0.001 | [0.995,1] | − | − | − |
DsB-XII | 0.909 | 0.028 | [0.854,0.964] | 4.067 | 1.300 | [1.519,6.616] |
DsPa | 0.688 | 0.012 | [0.665,0.711] | − | − | − |
DsBH | 0.998 | 0.002 | [0.994,1.002] | − | − | − |
NeBi | 0.521 | 0.125 | [0.276,0.766] | 0.745 | 0.045 | [0.657,0.833] |
Model | ||||||||
Statistic | DsMGL | DsL | NDsIP | DsR | DsB-XII | DsPa | DsBH | NeBi |
−LL | 1844.941 | 1849.332 | 1879.599 | 1894.439 | 2244.195 | 2301.366 | 2641.779 | 1847.236 |
AIC | 3693.882 | 3693.881 | 3761.199 | 3792.878 | 4492.393 | 4604.732 | 5285.559 | 3698.472 |
MAIC | 3693.904 | 3693.904 | 3761.207 | 3792.902 | 4492.415 | 4604.741 | 5285.567 | 3698.496 |
BIC | 3702.285 | 3702.285 | 3765.401 | 3801.283 | 4500.796 | 4608.934 | 5289.761 | 3706.877 |
HQIC | 3697.183 | 3697.180 | 3762.849 | 3796.178 | 4495.691 | 4606.382 | 5287.209 | 3701.772 |
K-S | 0.071 | 0.079 | 0.169 | 0.241 | 0.415 | 0.439 | 0.787 | 0.075 |
P-value | 0.139 | 0.129 | 0.023 | 0.004 | 0 | 0 | 0 | 0.134 |
According to Table 10, the DsMGL model is the best among all the tested models. Figures 15 and 16 show the estimated CDFs and P-P plots for COVID-19 data in Saudi Arabia. It is found that the data set plausibly came from DsMGL model.
Table 12 lists some DEST around COVID-19 data in Saudi Arabia by utilizing the DsMGL model.
E(X) | Var(X) | D(X) | Sk(X) | Ku(X) |
16.777 | 150.421 | 8.966 | 1.006 | 3.212 |
The data presented here suffer from excessive dispersion. Moreover, it is moderately right skewed and leptokurtic.
In this article, we have developed a new two parameter discrete model, named as discrete mixture gamma-Lindley (DsMGL) distribution. Various important distributional characteristics of the DsMGL distribution have been discussed. One of the important virtues of this newly developed model is that it can not only discuss over-dispersed, under-dispersed, positively skewed, and leptokurtic data sets, but it can also be applied for modeling increasing failure time data (due to its increasing HRF). The unknown parameters of the DsMGL model have been discussed under a method of maximum likelihood (ML) estimation. A detailed MCMC evaluation has been conducted to measure the behavior of the estimators. This numerical study shows that the ML estimation measures work satisfactorily. Finally, the modeling flexibility of the DsMGL distribution has been explored via three real data sets on COVID-19. For future work, the authors will utilize the DsMGL model to generate a bivariate extension distribution based on a shock models approach for modeling bivariate data. Moreover, the first-order integer-valued regression model and autoregressive process will be studied in detail.
The authors gratefully acknowledge Qassim University, represented by the Deanship of Scientific Research, on the financial support for this research under the number (COS-2022-1-1-J-25173) during the academic year 1444 AH / 2022 AD.
[1] |
A. El-Gohary, A. Alshamrani, A. N. Al-Otaibi, The generalized Gompertz distribution, Appl. Math. Model., 37 (2013), 13–24. https://doi.org/10.1016/j.apm.2011.05.017 doi: 10.1016/j.apm.2011.05.017
![]() |
[2] |
A. Saboor, H. S. Bakouch, M. N. Khan, Beta sarhan–zaindin modified Weibull distribution, Appl. Math. Model., 40 (2016), 6604–6621. https://doi.org/10.1016/j.apm.2016.01.033 doi: 10.1016/j.apm.2016.01.033
![]() |
[3] |
X. Jia, S. Nadarajah, B. Guo. Bayes estimation of P (Y < X) for the Weibull distribution with arbitrary parameters, Appl. Math. Model., 47 (2017), 249–259. https://doi.org/10.1016/j.apm.2017.03.020 doi: 10.1016/j.apm.2017.03.020
![]() |
[4] |
A. J. Fernández, Optimal lot disposition from Poisson–Lindley count data, Appl. Math. Model., 70 (2019), 595–604. https://doi.org/10.1016/j.apm.2019.01.045 doi: 10.1016/j.apm.2019.01.045
![]() |
[5] |
M. Alizadeh, A. Z. Afify, M. S. Eliwa, S. Ali, The odd log-logistic Lindley-G family of distributions: Properties, Bayesian and non-Bayesian estimation with applications, Comput. Stat., 35 (2020), 281–308. https://doi.org/10.1007/s00180-019-00932-9 doi: 10.1007/s00180-019-00932-9
![]() |
[6] |
S. Kumar, A. S. Yadav, S. Dey, M. Saha, Parametric inference of generalized process capability index Cpyk for the power Lindley distribution, Qual. Technol. Quant. Manage., 19 (2022), 153–186. https://doi.org/10.1080/16843703.2021.1944966 doi: 10.1080/16843703.2021.1944966
![]() |
[7] |
S. Nedjar, H. Zeghdoudi, On gamma Lindley distribution: Properties and simulations, J. Comput. Appl. Math., 15 (2016), 167–174. https://doi.org/10.1016/j.cam.2015.11.047 doi: 10.1016/j.cam.2015.11.047
![]() |
[8] | H. Messaadia, H. Zeghdoudi, Around gamma Lindley distribution, J. Mod. Appl. Stat. Methods., 16 (2017), 23. |
[9] |
D. Roy, The discrete normal distribution, Commun. Stat. Theory Methods, 32 (2003), 1871–1883. https://doi.org/10.1081/STA-120023256 doi: 10.1081/STA-120023256
![]() |
[10] |
E. Gómez-Déniz, E. Calderín-Ojeda, The discrete Lindley distribution: Properties and applications, J. Stat. Comput. Simul., 81 (2011), 1405–1416. https://doi.org/10.1080/00949655.2010.487825 doi: 10.1080/00949655.2010.487825
![]() |
[11] |
M. Bebbington, C. D. Lai, M. Wellington, R. Zitikis, The discrete additive Weibull distribution: A bathtub-shaped hazard for discontinuous failure data, Reliab. Eng. Syst. Saf., 106 (2012), 37–44. https://doi.org/10.1016/j.ress.2012.06.009 doi: 10.1016/j.ress.2012.06.009
![]() |
[12] |
V. Nekoukhou, M. H. Alamatsaz, H. Bidram, Discrete generalized exponential distribution of a second type, Statistics, 47 (2013), 876–887. https://doi.org/10.1080/02331888.2011.633707 doi: 10.1080/02331888.2011.633707
![]() |
[13] | M. H. Alamatsaz, S. Dey, T. Dey, S. S. Harandi, Discrete generalized Rayleigh distribution, Pak. J. Stat., 32 (2016). |
[14] |
M. El-Morshedy, M. S. Eliwa, H. Nagy, A new two-parameter exponentiated discrete Lindley distribution: Properties, estimation and applications, J. Appl. Stat., 47 (2020), 354–375. https://doi.org/10.1080/02664763.2019.1638893 doi: 10.1080/02664763.2019.1638893
![]() |
[15] |
J. Gillariose, O. S. Balogun, E. M. Almetwally, R. A. Sherwani, F. Jamal, J. Joseph, On the discrete Weibull Marshall–Olkin family of distributions: Properties, characterizations, and applications, Axioms, 10 (2021), 287. https://doi.org/10.3390/axioms10040287 doi: 10.3390/axioms10040287
![]() |
[16] |
B. Singh, R. P. Singh, A. S. Nayal, A. Tyagi, Discrete inverted Nadarajah-Haghighi distribution: Properties and classical estimation with application to complete and censored data, Stat. Optim. Inform. Comput., 10 (2022), 1293–1313. https://doi.org/10.19139/soic-2310-5070-1365 doi: 10.19139/soic-2310-5070-1365
![]() |
[17] |
B. Singh, V. Agiwal, A. S. Nayal, A. Tyagi, A discrete analogue of Teissier distribution: Properties and classical estimation with application to count data, Relia. Theory Appl., 17 (2022), 340–355. https://doi.org/10.24412/1932-2321-2022-167-340-355 doi: 10.24412/1932-2321-2022-167-340-355
![]() |
[18] |
M. S. Eliwa, M. El-Morshedy, A one-parameter discrete distribution for over-dispersed data: Statistical and reliability properties with applications, J. Appl. Stat., 49 (2022), 2467–2487. https://doi.org/10.1080/02664763.2021.1905787 doi: 10.1080/02664763.2021.1905787
![]() |
[19] |
E. Altun, M. El-Morshedy, M. S. Eliwa, A study on discrete Bilal distribution with properties and applications on integervalued autoregressive process, Stat. J., 20 (2022), 501–528. https://doi.org/10.57805/revstat.v20i4.384 doi: 10.57805/revstat.v20i4.384
![]() |
[20] | M. El-Morshedy, E. Altun, M. S. Eliwa, A new statistical approach to model the counts of novel coronavirus cases, Math. Sci., (2021), 1–4. https://doi.org/10.1007/s40096-021-00390-9 |
[21] |
J. R. Hosking, L-moments: Analysis and estimation of distributions using linear combinations of order statistics, J. Royal Stat. Soc. Series B, 52 (1990), 105–124. https://doi.org/10.1111/j.2517-6161.1990.tb01775.x doi: 10.1111/j.2517-6161.1990.tb01775.x
![]() |
ε | ||||||
Measure | 1.1 | 1.4 | 1.7 | 2.1 | 4.2 | 8.4 |
E(X) | 0.10548 | 0.12972 | 0.14540 | 0.15934 | 0.18897 | 0.20378 |
Var(X) | 0.11102 | 0.13466 | 0.14933 | 0.16196 | 0.18750 | 0.19962 |
D(X) | 1.05252 | 1.03809 | 1.02701 | 1.01641 | 0.99223 | 0.97955 |
Sk(X) | 3.31652 | 2.93747 | 2.73625 | 2.57885 | 2.29485 | 2.17274 |
Ku(X) | 14.9956 | 12.2687 | 10.94861 | 9.97976 | 8.37673 | 7.74605 |
Scheme V | Scheme VI | ||||||
Parameter | n | Bias | MSE | MRE | Bias | MSE | MRE |
δ | 30 | 0.10056591 | 0.09006876 | 0.06336994 | 0.11632194 | 0.08963175 | 0.08223158 |
70 | 0.09865782 | 0.08830367 | 0.04163261 | 0.10223666 | 0.06202190 | 0.08063179 | |
140 | 0.04369310 | 0.08200239 | 0.04001453 | 0.09220169 | 0.06101429 | 0.07312016 | |
200 | 0.02299658 | 0.07703927 | 0.03192237 | 0.08139327 | 0.04002236 | 0.06350036 | |
300 | 0.02126971 | 0.06005479 | 0.02101206 | 0.08023636 | 0.03237014 | 0.05519738 | |
400 | 0.01733369 | 0.04079031 | 0.00700269 | 0.05193079 | 0.01112539 | 0.04980373 | |
600 | 0.00234104 | 0.00201034 | 0.00023694 | 0.00292733 | 0.00026456 | 0.00015654 | |
ε | 30 | 0.09369110 | 0.07793171 | 0.06131304 | 0.05969637 | 0.04320158 | 0.05336947 |
70 | 0.08567341 | 0.07122367 | 0.05510375 | 0.05223691 | 0.03201392 | 0.05102125 | |
140 | 0.07011036 | 0.06379035 | 0.05022693 | 0.04112566 | 0.03036549 | 0.04020024 | |
200 | 0.04105604 | 0.05380086 | 0.04500102 | 0.03233697 | 0.02002137 | 0.03102236 | |
300 | 0.03367101 | 0.04522564 | 0.04103979 | 0.03102973 | 0.01122024 | 0.01909439 | |
400 | 0.02098200 | 0.03474369 | 0.03139064 | 0.01018674 | 0.00889001 | 0.00306970 | |
600 | 0.00523689 | 0.00236844 | 0.00053671 | 0.00235659 | 0.00059458 | 0.00002518 |
Scheme VII | Scheme VIII | ||||||
Parameter | n | Bias | MSE | MRE | Bias | MSE | MRE |
δ | 30 | 0.025687193 | 0.01466875 | 0.01399737 | 0.06696575 | 0.08763274 | 0.06353187 |
70 | 0.022658763 | 0.01136219 | 0.10145190 | 0.06132640 | 0.06923671 | 0.06123671 | |
140 | 0.019365811 | 0.00855157 | 0.00500215 | 0.05426598 | 0.05110123 | 0.05922014 | |
200 | 0.015330240 | 0.00431502 | 0.00362307 | 0.05120134 | 0.04320139 | 0.04623665 | |
300 | 0.013695875 | 0.00400236 | 0.00306981 | 0.05026971 | 0.03915618 | 0.04010656 | |
400 | 0.008532179 | 0.00100153 | 0.00168892 | 0.04902790 | 0.03101569 | 0.03410973 | |
600 | 0.001036942 | 0.00010265 | 0.00023296 | 0.00265235 | 0.00021691 | 0.00139237 | |
ε | 30 | 0.108067988 | 0.01123177 | 0.08307104 | 0.07437669 | 0.07782736 | 0.09069587 |
70 | 0.103365789 | 0.00998796 | 0.08223676 | 0.06722364 | 0.05220104 | 0.08133658 | |
140 | 0.089445810 | 0.00912348 | 0.07911671 | 0.04749836 | 0.03002336 | 0.06310263 | |
200 | 0.071002158 | 0.00722369 | 0.06600163 | 0.03229659 | 0.01024787 | 0.05154031 | |
300 | 0.053210199 | 0.00426971 | 0.03697274 | 0.03193261 | 0.01010915 | 0.03974904 | |
400 | 0.009571377 | 0.00379104 | 0.00409265 | 0.02410124 | 0.00580048 | 0.02122360 | |
600 | 0.000531041 | 0.00022165 | 0.00023291 | 0.00124304 | 0.00083190 | 0.00212642 |
ε | δ | |||||
Model | MLE | SE | C. I | MLE | SE | C. I |
DsMGL | 0.8887 | 0.0242 | [0.8390,0.9361] | 0.1062 | 0.0373 | [0.0355,0.1786] |
DsL | 0.8052 | 0.0200 | [0.7660,0.8451] | − | − | − |
NDsIP | 0.9110 | 0.0151 | [0.8820,0.9390] | − | − | − |
DsR | 0.9951 | 0.1361 | [0.7280,1.000] | − | − | − |
DsB-XII | 0.8173 | 0.0740 | [0.6722,0.9622] | 3.2981 | 1.4272 | [0.5013,6.0962] |
DsPa | 0.5592 | 0.0531 | [0.4515,0.6603] | − | − | − |
DsBH | 0.9954 | 0.0132 | [0.9695,1.000] | − | − | − |
NeBi | 0.9203 | 0.0221 | [0.8772,0.9634] | 0.6859 | 0.1023 | [0.4854,0.8864] |
Model | ||||||||
Statistic | DsMGL | DsL | NDsIP | DsR | DsB-XII | DsPa | DsBH | NeBi |
−LL | 118.951 | 127.120 | 121.353 | 161.193 | 118.992 | 124.333 | 130.953 | 119.237 |
AIC | 241.892 | 256.234 | 244.717 | 324.384 | 241.980 | 250.662 | 263.902 | 242.473 |
MAIC | 242.233 | 256.343 | 244.824 | 324.493 | 242.325 | 250.777 | 264.014 | 242.816 |
BIC | 245.178 | 257.877 | 246.352 | 326.024 | 245.263 | 252.302 | 265.543 | 245.748 |
HQIC | 243.065 | 256.825 | 245.295 | 324.963 | 243.157 | 251.254 | 264.484 | 243.638 |
K-S | 0.157 | 0.246 | 0.186 | 0.761 | 0.277 | 0.367 | 0.565 | 0.167 |
P-value | 0.305 | 0.020 | 0.146 | ≤0.001 | 0.006 | ≤0.001 | ≤0.001 | 0.285 |
E(X) | Var(X) | D(X) | Sk(X) | Ku(X) |
0.1843 | 0.2096 | 1.1374 | 2.7779 | 12.1489 |
ε | δ | |||||
Model | MLE | SE | C. I | MLE | SE | C. I |
DsMGL | 0.863 | 0.078 | [0.709,1.015] | 0.129 | 0.144 | [0,0.411] |
DsL | 0.768 | 0.024 | [0.721,0.815] | − | − | − |
NDsIP | 0.895 | 0.015 | [0.865,0.926] | − | − | − |
DsR | 0.989 | 0.0142 | [0.710,1] | − | − | − |
DsB-XII | 0.531 | 0.087 | [0.361,0.701] | 1.009 | 0.253 | [0.513,1.506] |
DsPa | 0.528 | 0.056 | [0.419,0.637] | − | − | − |
DsBH | 0.989 | 0.019 | [0.953,1] | − | − | − |
NeBi | 0.928 | 0.053 | [0.824,1.032] | 0.486 | 0.141 | [0.209,0.762] |
Model | ||||||||
Statistic | DsMGL | DsL | NDsIP | DsR | DsB-XII | DsPa | DsBH | NeBi |
−LL | 107.731 | 114.313 | 109.230 | 138.243 | 112.394 | 112.393 | 116.527 | 109.426 |
AIC | 219.464 | 230.635 | 220.452 | 278.495 | 228.771 | 226.775 | 235.054 | 222.852 |
MAIC | 219.812 | 230.747 | 220.573 | 278.603 | 229.123 | 226.893 | 235.163 | 223.205 |
BIC | 222.683 | 232.244 | 222.707 | 280.092 | 231.993 | 228.387 | 236.664 | 226.074 |
HQIC | 220.595 | 231.195 | 221.025 | 279.051 | 229.914 | 227.343 | 235.623 | 223.988 |
K-S | 0.214 | 0.279 | 0.2423 | 0.736 | 0.355 | 0.357 | 0.505 | 0.251 |
P-value | 0.068 | 0.006 | 0.026 | ≤0.0001 | 0.0002 | 0.0002 | ≤0.0001 | 0.029 |
E(X) | Var(X) | D(X) | Sk(X) | Ku(X) |
0.2252 | 0.2640 | 1.1724 | 2.6089 | 11.2663 |
ε | δ | |||||
Model | MLE | SE | C. I | MLE | SE | C. I |
DsMGL | 0.891 | 0.0003 | 0.884,0.897] | 0.302 | 0.023 | [0.300,0.305] |
DsL | 0.896 | 0.003 | [0.889,0.902] | − | − | − |
NDsIP | 0.956 | 0.002 | [0.953,0.959] | − | − | − |
DsR | 0.998 | 0.001 | [0.995,1] | − | − | − |
DsB-XII | 0.909 | 0.028 | [0.854,0.964] | 4.067 | 1.300 | [1.519,6.616] |
DsPa | 0.688 | 0.012 | [0.665,0.711] | − | − | − |
DsBH | 0.998 | 0.002 | [0.994,1.002] | − | − | − |
NeBi | 0.521 | 0.125 | [0.276,0.766] | 0.745 | 0.045 | [0.657,0.833] |
Model | ||||||||
Statistic | DsMGL | DsL | NDsIP | DsR | DsB-XII | DsPa | DsBH | NeBi |
−LL | 1844.941 | 1849.332 | 1879.599 | 1894.439 | 2244.195 | 2301.366 | 2641.779 | 1847.236 |
AIC | 3693.882 | 3693.881 | 3761.199 | 3792.878 | 4492.393 | 4604.732 | 5285.559 | 3698.472 |
MAIC | 3693.904 | 3693.904 | 3761.207 | 3792.902 | 4492.415 | 4604.741 | 5285.567 | 3698.496 |
BIC | 3702.285 | 3702.285 | 3765.401 | 3801.283 | 4500.796 | 4608.934 | 5289.761 | 3706.877 |
HQIC | 3697.183 | 3697.180 | 3762.849 | 3796.178 | 4495.691 | 4606.382 | 5287.209 | 3701.772 |
K-S | 0.071 | 0.079 | 0.169 | 0.241 | 0.415 | 0.439 | 0.787 | 0.075 |
P-value | 0.139 | 0.129 | 0.023 | 0.004 | 0 | 0 | 0 | 0.134 |
E(X) | Var(X) | D(X) | Sk(X) | Ku(X) |
16.777 | 150.421 | 8.966 | 1.006 | 3.212 |
ε | ||||||
Measure | 1.1 | 1.4 | 1.7 | 2.1 | 4.2 | 8.4 |
E(X) | 0.10548 | 0.12972 | 0.14540 | 0.15934 | 0.18897 | 0.20378 |
Var(X) | 0.11102 | 0.13466 | 0.14933 | 0.16196 | 0.18750 | 0.19962 |
D(X) | 1.05252 | 1.03809 | 1.02701 | 1.01641 | 0.99223 | 0.97955 |
Sk(X) | 3.31652 | 2.93747 | 2.73625 | 2.57885 | 2.29485 | 2.17274 |
Ku(X) | 14.9956 | 12.2687 | 10.94861 | 9.97976 | 8.37673 | 7.74605 |
Scheme V | Scheme VI | ||||||
Parameter | n | Bias | MSE | MRE | Bias | MSE | MRE |
δ | 30 | 0.10056591 | 0.09006876 | 0.06336994 | 0.11632194 | 0.08963175 | 0.08223158 |
70 | 0.09865782 | 0.08830367 | 0.04163261 | 0.10223666 | 0.06202190 | 0.08063179 | |
140 | 0.04369310 | 0.08200239 | 0.04001453 | 0.09220169 | 0.06101429 | 0.07312016 | |
200 | 0.02299658 | 0.07703927 | 0.03192237 | 0.08139327 | 0.04002236 | 0.06350036 | |
300 | 0.02126971 | 0.06005479 | 0.02101206 | 0.08023636 | 0.03237014 | 0.05519738 | |
400 | 0.01733369 | 0.04079031 | 0.00700269 | 0.05193079 | 0.01112539 | 0.04980373 | |
600 | 0.00234104 | 0.00201034 | 0.00023694 | 0.00292733 | 0.00026456 | 0.00015654 | |
ε | 30 | 0.09369110 | 0.07793171 | 0.06131304 | 0.05969637 | 0.04320158 | 0.05336947 |
70 | 0.08567341 | 0.07122367 | 0.05510375 | 0.05223691 | 0.03201392 | 0.05102125 | |
140 | 0.07011036 | 0.06379035 | 0.05022693 | 0.04112566 | 0.03036549 | 0.04020024 | |
200 | 0.04105604 | 0.05380086 | 0.04500102 | 0.03233697 | 0.02002137 | 0.03102236 | |
300 | 0.03367101 | 0.04522564 | 0.04103979 | 0.03102973 | 0.01122024 | 0.01909439 | |
400 | 0.02098200 | 0.03474369 | 0.03139064 | 0.01018674 | 0.00889001 | 0.00306970 | |
600 | 0.00523689 | 0.00236844 | 0.00053671 | 0.00235659 | 0.00059458 | 0.00002518 |
Scheme VII | Scheme VIII | ||||||
Parameter | n | Bias | MSE | MRE | Bias | MSE | MRE |
δ | 30 | 0.025687193 | 0.01466875 | 0.01399737 | 0.06696575 | 0.08763274 | 0.06353187 |
70 | 0.022658763 | 0.01136219 | 0.10145190 | 0.06132640 | 0.06923671 | 0.06123671 | |
140 | 0.019365811 | 0.00855157 | 0.00500215 | 0.05426598 | 0.05110123 | 0.05922014 | |
200 | 0.015330240 | 0.00431502 | 0.00362307 | 0.05120134 | 0.04320139 | 0.04623665 | |
300 | 0.013695875 | 0.00400236 | 0.00306981 | 0.05026971 | 0.03915618 | 0.04010656 | |
400 | 0.008532179 | 0.00100153 | 0.00168892 | 0.04902790 | 0.03101569 | 0.03410973 | |
600 | 0.001036942 | 0.00010265 | 0.00023296 | 0.00265235 | 0.00021691 | 0.00139237 | |
ε | 30 | 0.108067988 | 0.01123177 | 0.08307104 | 0.07437669 | 0.07782736 | 0.09069587 |
70 | 0.103365789 | 0.00998796 | 0.08223676 | 0.06722364 | 0.05220104 | 0.08133658 | |
140 | 0.089445810 | 0.00912348 | 0.07911671 | 0.04749836 | 0.03002336 | 0.06310263 | |
200 | 0.071002158 | 0.00722369 | 0.06600163 | 0.03229659 | 0.01024787 | 0.05154031 | |
300 | 0.053210199 | 0.00426971 | 0.03697274 | 0.03193261 | 0.01010915 | 0.03974904 | |
400 | 0.009571377 | 0.00379104 | 0.00409265 | 0.02410124 | 0.00580048 | 0.02122360 | |
600 | 0.000531041 | 0.00022165 | 0.00023291 | 0.00124304 | 0.00083190 | 0.00212642 |
ε | δ | |||||
Model | MLE | SE | C. I | MLE | SE | C. I |
DsMGL | 0.8887 | 0.0242 | [0.8390,0.9361] | 0.1062 | 0.0373 | [0.0355,0.1786] |
DsL | 0.8052 | 0.0200 | [0.7660,0.8451] | − | − | − |
NDsIP | 0.9110 | 0.0151 | [0.8820,0.9390] | − | − | − |
DsR | 0.9951 | 0.1361 | [0.7280,1.000] | − | − | − |
DsB-XII | 0.8173 | 0.0740 | [0.6722,0.9622] | 3.2981 | 1.4272 | [0.5013,6.0962] |
DsPa | 0.5592 | 0.0531 | [0.4515,0.6603] | − | − | − |
DsBH | 0.9954 | 0.0132 | [0.9695,1.000] | − | − | − |
NeBi | 0.9203 | 0.0221 | [0.8772,0.9634] | 0.6859 | 0.1023 | [0.4854,0.8864] |
Model | ||||||||
Statistic | DsMGL | DsL | NDsIP | DsR | DsB-XII | DsPa | DsBH | NeBi |
−LL | 118.951 | 127.120 | 121.353 | 161.193 | 118.992 | 124.333 | 130.953 | 119.237 |
AIC | 241.892 | 256.234 | 244.717 | 324.384 | 241.980 | 250.662 | 263.902 | 242.473 |
MAIC | 242.233 | 256.343 | 244.824 | 324.493 | 242.325 | 250.777 | 264.014 | 242.816 |
BIC | 245.178 | 257.877 | 246.352 | 326.024 | 245.263 | 252.302 | 265.543 | 245.748 |
HQIC | 243.065 | 256.825 | 245.295 | 324.963 | 243.157 | 251.254 | 264.484 | 243.638 |
K-S | 0.157 | 0.246 | 0.186 | 0.761 | 0.277 | 0.367 | 0.565 | 0.167 |
P-value | 0.305 | 0.020 | 0.146 | ≤0.001 | 0.006 | ≤0.001 | ≤0.001 | 0.285 |
E(X) | Var(X) | D(X) | Sk(X) | Ku(X) |
0.1843 | 0.2096 | 1.1374 | 2.7779 | 12.1489 |
ε | δ | |||||
Model | MLE | SE | C. I | MLE | SE | C. I |
DsMGL | 0.863 | 0.078 | [0.709,1.015] | 0.129 | 0.144 | [0,0.411] |
DsL | 0.768 | 0.024 | [0.721,0.815] | − | − | − |
NDsIP | 0.895 | 0.015 | [0.865,0.926] | − | − | − |
DsR | 0.989 | 0.0142 | [0.710,1] | − | − | − |
DsB-XII | 0.531 | 0.087 | [0.361,0.701] | 1.009 | 0.253 | [0.513,1.506] |
DsPa | 0.528 | 0.056 | [0.419,0.637] | − | − | − |
DsBH | 0.989 | 0.019 | [0.953,1] | − | − | − |
NeBi | 0.928 | 0.053 | [0.824,1.032] | 0.486 | 0.141 | [0.209,0.762] |
Model | ||||||||
Statistic | DsMGL | DsL | NDsIP | DsR | DsB-XII | DsPa | DsBH | NeBi |
−LL | 107.731 | 114.313 | 109.230 | 138.243 | 112.394 | 112.393 | 116.527 | 109.426 |
AIC | 219.464 | 230.635 | 220.452 | 278.495 | 228.771 | 226.775 | 235.054 | 222.852 |
MAIC | 219.812 | 230.747 | 220.573 | 278.603 | 229.123 | 226.893 | 235.163 | 223.205 |
BIC | 222.683 | 232.244 | 222.707 | 280.092 | 231.993 | 228.387 | 236.664 | 226.074 |
HQIC | 220.595 | 231.195 | 221.025 | 279.051 | 229.914 | 227.343 | 235.623 | 223.988 |
K-S | 0.214 | 0.279 | 0.2423 | 0.736 | 0.355 | 0.357 | 0.505 | 0.251 |
P-value | 0.068 | 0.006 | 0.026 | ≤0.0001 | 0.0002 | 0.0002 | ≤0.0001 | 0.029 |
E(X) | Var(X) | D(X) | Sk(X) | Ku(X) |
0.2252 | 0.2640 | 1.1724 | 2.6089 | 11.2663 |
ε | δ | |||||
Model | MLE | SE | C. I | MLE | SE | C. I |
DsMGL | 0.891 | 0.0003 | 0.884,0.897] | 0.302 | 0.023 | [0.300,0.305] |
DsL | 0.896 | 0.003 | [0.889,0.902] | − | − | − |
NDsIP | 0.956 | 0.002 | [0.953,0.959] | − | − | − |
DsR | 0.998 | 0.001 | [0.995,1] | − | − | − |
DsB-XII | 0.909 | 0.028 | [0.854,0.964] | 4.067 | 1.300 | [1.519,6.616] |
DsPa | 0.688 | 0.012 | [0.665,0.711] | − | − | − |
DsBH | 0.998 | 0.002 | [0.994,1.002] | − | − | − |
NeBi | 0.521 | 0.125 | [0.276,0.766] | 0.745 | 0.045 | [0.657,0.833] |
Model | ||||||||
Statistic | DsMGL | DsL | NDsIP | DsR | DsB-XII | DsPa | DsBH | NeBi |
−LL | 1844.941 | 1849.332 | 1879.599 | 1894.439 | 2244.195 | 2301.366 | 2641.779 | 1847.236 |
AIC | 3693.882 | 3693.881 | 3761.199 | 3792.878 | 4492.393 | 4604.732 | 5285.559 | 3698.472 |
MAIC | 3693.904 | 3693.904 | 3761.207 | 3792.902 | 4492.415 | 4604.741 | 5285.567 | 3698.496 |
BIC | 3702.285 | 3702.285 | 3765.401 | 3801.283 | 4500.796 | 4608.934 | 5289.761 | 3706.877 |
HQIC | 3697.183 | 3697.180 | 3762.849 | 3796.178 | 4495.691 | 4606.382 | 5287.209 | 3701.772 |
K-S | 0.071 | 0.079 | 0.169 | 0.241 | 0.415 | 0.439 | 0.787 | 0.075 |
P-value | 0.139 | 0.129 | 0.023 | 0.004 | 0 | 0 | 0 | 0.134 |
E(X) | Var(X) | D(X) | Sk(X) | Ku(X) |
16.777 | 150.421 | 8.966 | 1.006 | 3.212 |