Research article Special Issues

IHAOAVOA: An improved hybrid aquila optimizer and African vultures optimization algorithm for global optimization problems

  • Received: 08 June 2022 Revised: 13 July 2022 Accepted: 18 July 2022 Published: 01 August 2022
  • Aquila Optimizer (AO) and African Vultures Optimization Algorithm (AVOA) are two newly developed meta-heuristic algorithms that simulate several intelligent hunting behaviors of Aquila and African vulture in nature, respectively. AO has powerful global exploration capability, whereas its local exploitation phase is not stable enough. On the other hand, AVOA possesses promising exploitation capability but insufficient exploration mechanisms. Based on the characteristics of both algorithms, in this paper, we propose an improved hybrid AO and AVOA optimizer called IHAOAVOA to overcome the deficiencies in the single algorithm and provide higher-quality solutions for solving global optimization problems. First, the exploration phase of AO and the exploitation phase of AVOA are combined to retain the valuable search competence of each. Then, a new composite opposition-based learning (COBL) is designed to increase the population diversity and help the hybrid algorithm escape from the local optima. In addition, to more effectively guide the search process and balance the exploration and exploitation, the fitness-distance balance (FDB) selection strategy is introduced to modify the core position update formula. The performance of the proposed IHAOAVOA is comprehensively investigated and analyzed by comparing against the basic AO, AVOA, and six state-of-the-art algorithms on 23 classical benchmark functions and the IEEE CEC2019 test suite. Experimental results demonstrate that IHAOAVOA achieves superior solution accuracy, convergence speed, and local optima avoidance than other comparison methods on most test functions. Furthermore, the practicality of IHAOAVOA is highlighted by solving five engineering design problems. Our findings reveal that the proposed technique is also highly competitive and promising when addressing real-world optimization tasks. The source code of the IHAOAVOA is publicly available at

    Citation: Yaning Xiao, Yanling Guo, Hao Cui, Yangwei Wang, Jian Li, Yapeng Zhang. IHAOAVOA: An improved hybrid aquila optimizer and African vultures optimization algorithm for global optimization problems[J]. Mathematical Biosciences and Engineering, 2022, 19(11): 10963-11017. doi: 10.3934/mbe.2022512

    Related Papers:



    [1] Y. Xiao, X. Sun, Y. Guo, S. Li, Y. Zhang, Y. Wang, An improved gorilla troops optimizer based on lens opposition-based learning and adaptive β-Hill climbing for global optimization, CMES-Comput. Model. Eng. Sci., 131 (2022), 815–850. doi: 10.32604/cmes.2022.019198
    [2] Y. Xiao, X. Sun, Y. Guo, H. Cui, Y. Wang, J. Li, et al., An enhanced honey badger algorithm based on Lévy flight and refraction opposition-based learning for engineering design problems, J. Intell. Fuzzy Syst., (2022), 1–24. doi: 10.3233/JIFS-213206
    [3] Q. Liu, N. Li, H. Jia, Q. Qi, L. Abualigah, Y. Liu, A hybrid arithmetic optimization and golden sine algorithm for solving industrial engineering design problems, Mathematics, 10 (2022), 1567. doi: 10.3390/math10091567
    [4] A. S. Sadiq, A. A. Dehkordi, S. Mirjalili, Q. V. Pham, Nonlinear marine predator algorithm: a cost-effective optimizer for fair power allocation in NOMA-VLC-B5G networks, Expert Syst. Appl., 203 (2022), 117395. doi: 10.1016/j.eswa.2022.117395
    [5] G. Hu, J. Zhong, B. Du, G. Wei, An enhanced hybrid arithmetic optimization algorithm for engineering applications, Comput. Methods Appl. Mech. Eng., 394 (2022), 114901. doi: 10.1016/j.cma.2022.114901
    [6] A. A. Dehkordi, A. S. Sadiq, S. Mirjalili, K. Z. Ghafoor, Nonlinear-based Chaotic harris hawks optimizer: algorithm and internet of vehicles application, Appl. Soft Comput., 109 (2021), 107574. doi: 10.1016/j.asoc.2021.107574
    [7] W. Zhao, L. Wang, S. Mirjalili, Artificial hummingbird algorithm: a new bio-inspired optimizer with its engineering applications, Comput. Methods Appl. Mech. Eng., 388 (2022), 114194. doi: 10.1016/j.cma.2021.114194
    [8] K. Sun, H. Jia, Y. Li, Z. Jiang, Hybrid improved slime mould algorithm with adaptive β hill climbing for numerical optimization, J. Intell. Fuzzy Syst., 40 (2021), 1667–1679. doi: 10.3233/JIFS-201755
    [9] K. Zhong, G. Zhou, W. Deng, Y. Zhou, Q. Luo, MOMPA: multi-objective marine predator algorithm, Comput. Methods Appl. Mech. Eng., 385 (2021), 114029. doi: 10.1016/j.cma.2021.114029
    [10] Q. Fan, H. Huang, K. Yang, S. Zhang, L. Yao, Q. Xiong, A modified equilibrium optimizer using opposition-based learning and novel update rules, Expert Syst. Appl., 170 (2021), 114575. doi: 10.1016/j.eswa.2021.114575
    [11] L. Abualigah, A. Diabat, M. A. Elaziz, Improved slime mould algorithm by opposition-based learning and Levy flight distribution for global optimization and advances in real-world engineering problems, J. Ambient Intell. Humanized Comput., (2021), doi: 10.1007/s12652-021-03372-w
    [12] S. Wang, H. Jia, L. Abualigah, Q. Liu, R. Zheng, An improved hybrid aquila optimizer and harris hawks algorithm for solving industrial engineering optimization problems, Processes, 9 (2021), 1551. doi: 10.3390/pr9091551
    [13] L. Abualigah, A. A. Ewees, M. A. A. Al-qaness, M. A. Elaziz, D. Yousri, R. A. Ibrahim, et al., Boosting arithmetic optimization algorithm by sine cosine algorithm and levy flight distribution for solving engineering optimization problems, Neural Comput. Appl., 34 (2022), 8823–8852. doi: 10.1007/s00521-022-06906-1
    [14] Y. Zhang, Y. Wang, L. Tao, Y. Yan, J. Zhao, Z. Gao, Self-adaptive classification learning hybrid JAYA and Rao-1 algorithm for large-scale numerical and engineering problems, Eng. Appl. Artif. Intell., 114 (2022), 105069. doi: 10.1016/j.engappai.2022.105069
    [15] D. Wu, H. Jia, L. Abualigah, Z. Xing, R. Zheng, H. Wang, et al., Enhance teaching-learning-based optimization for tsallis-entropy-based feature selection classification approach, Processes, 10 (2022), 360. doi: 10.3390/pr10020360
    [16] H. Jia, W. Zhang, R. Zheng, S. Wang, X. Leng, N. Cao, Ensemble mutation slime mould algorithm with restart mechanism for feature selection, Int. J. Intell. Syst., 37 (2021), 2335–2370. doi: 10.1002/int.22776
    [17] H. Jia, K. Sun, Improved barnacles mating optimizer algorithm for feature selection and support vector machine optimization, Pattern Anal. Appl., 24 (2021), 1249–1274. doi: 10.1007/s10044-021-00985-x
    [18] C. Kumar, T. D. Raj, M. Premkumar, T. D. Raj, A new stochastic slime mould optimization algorithm for the estimation of solar photovoltaic cell parameters, Optik, 223 (2020), 165277. doi: 10.1016/j.ijleo.2020.165277
    [19] Y. Zhang, Y. Wang, S. Li, F. Yao, L. Tao, Y. Yan, et al., An enhanced adaptive comprehensive learning hybrid algorithm of Rao-1 and JAYA algorithm for parameter extraction of photovoltaic models, Math. Biosci. Eng., 19 (2022), 5610–5637. doi: 10.3934/mbe.2022263
    [20] M. Eslami, E. Akbari, S. T. Seyed Sadr, B. F. Ibrahim, A novel hybrid algorithm based on rat swarm optimization and pattern search for parameter extraction of solar photovoltaic models, Energy Sci. Eng., (2022). doi: 10.1002/ese3.1160
    [21] J. Zhao, Y. Zhang, S. Li, Y. Wang, Y. Yan, Z. Gao, A chaotic self-adaptive JAYA algorithm for parameter extraction of photovoltaic models, Math. Biosci. Eng., 19 (2022), 5638–5670. doi: 10.3934/mbe.2022264
    [22] X. Bao, H. Jia, C. Lang, A novel hybrid harris hawks optimization for color image multilevel thresholding segmentation, IEEE Access, 7 (2019), 76529–76546. doi: 10.1109/ACCESS.2019.2921545
    [23] S. Lin, H. Jia, L. Abualigah, M. Altalhi, Enhanced slime mould algorithm for multilevel thresholding image segmentation using entropy measures, Entropy, 23 (2021), 1700. doi: 10.3390/e23121700
    [24] M. Abd Elaziz, D. Mohammadi, D. Oliva, K. Salimifard, Quantum marine predators algorithm for addressing multilevel image segmentation, Appl. Soft Comput., 110 (2021), 107598. doi: 10.1016/j.asoc.2021.107598
    [25] J. Yao, Y. Sha, Y. Chen, G. Zhang, X. Hu, G. Bai, et al., IHSSAO: An improved hybrid salp swarm algorithm and aquila optimizer for UAV path planning in complex terrain, Appl. Sci., 12 (2022), 5634. doi: 10.3390/app12115634
    [26] J. H. Holland, Genetic algorithms, Sci. Am., 267 (1992), 66–72. doi: 10.1038/scientificamerican0792-66
    [27] P. J. Angeline, Genetic programming: On the programming of computers by means of natural selection, Biosystems, 33 (1994), 69–73. doi: 10.1016/0303-2647(94)90062-0
    [28] R. Storn, K. Price, Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces, J. Global Optim., 11 (1997), 341–359. doi: 10.1023/A:1008202821328
    [29] H. G. Beyer, H. P. Schwefel, Evolution strategies-A comprehensive introduction, Nat. Comput., 1 (2002), 3–52. doi: 10.1023/A:1015059928466
    [30] D. Simon, Biogeography-based optimization, IEEE Trans. Evol. Comput., 12 (2008), 702–713. doi: 10.1109/TEVC.2008.919004
    [31] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, Optimization by simulated annealing, Science, 220 (1983), 671–680. doi: 10.1126/science.220.4598.671
    [32] E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, GSA: a gravitational search algorithm, Inf. Sci., 179 (2009), 2232–2248. doi: 10.1016/j.ins.2009.03.004
    [33] S. Mirjalili, S. M. Mirjalili, A. Hatamlou, Multi-Verse Optimizer: a nature-inspired algorithm for global optimization, Neural Comput. Appl., 27 (2016), 495–513. doi: 10.1007/s00521-015-1870-7
    [34] W. Zhao, L. Wang, Z. Zhang, Atom search optimization and its application to solve a hydrogeologic parameter estimation problem, Knowl.-Based Syst., 163 (2019), 283–304. doi: 10.1016/j.knosys.2018.08.030
    [35] A. Hatamlou, Black hole: a new heuristic optimization approach for data clustering, Inf. Sci., 222 (2013), 175–184. doi: 10.1016/j.ins.2012.08.023
    [36] S. Mirjalili, SCA: a sine cosine algorithm for solving optimization problems, Knowl.-Based Syst., 96 (2016), 120–133. doi: 10.1016/j.knosys.2015.12.022
    [37] A. Kaveh, A. Dadras, A novel meta-heuristic optimization algorithm: thermal exchange optimization, Adv. Eng. Software, 110 (2017), 69–84. doi: 10.1016/j.advengsoft.2017.03.014
    [38] L. Abualigah, A. Diabat, S. Mirjalili, M. Abd Elaziz, A. H. Gandomi, The arithmetic optimization algorithm, Comput. Methods Appl. Mech. Eng., 376 (2021), 113609. doi: 10.1016/j.cma.2020.113609
    [39] J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of ICNN'95 - International Conference on Neural Networks, (1995), 1942–1948.
    [40] M. Dorigo, M. Birattari, T. Stutzle, Ant colony optimization, IEEE Comput. Intell. Mag., 1 (2006), 28–39. doi: 10.1109/MCI.2006.329691
    [41] S. Mirjalili, Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems, Neural Comput. Appl., 27 (2015), 1053–1073. doi: 10.1007/s00521-015-1920-1
    [42] S. Mirjalili, The ant lion optimizer, Adv. Eng. Software, 83 (2015), 80–98. doi: 10.1016/j.advengsoft.2015.01.010
    [43] S. Mirjalili, A. Lewis, The whale optimization algorithm, Adv. Eng. Software, 95 (2016), 51–67. doi: 10.1016/j.advengsoft.2016.01.008
    [44] S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Software, 69 (2014), 46–61. doi: 10.1016/j.advengsoft.2013.12.007
    [45] S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, S. M. Mirjalili, Salp swarm algorithm: a bio-inspired optimizer for engineering design problems, Adv. Eng. Software, 114 (2017), 163–191. doi: 10.1016/j.advengsoft.2017.07.002
    [46] F. Glover, Tabu search—Part Ⅰ, ORSA J. Comput., 1 (1989), 190–206. doi: 10.1287/ijoc.1.3.190
    [47] D. Manjarres, I. Landa-Torres, S. Gil-Lopez, J. Del Ser, M. N. Bilbao, S. Salcedo-Sanz, et al., A survey on applications of the harmony search algorithm, Eng. Appl. Artif. Intell., 26 (2013), 1818–1831. doi: 10.1016/j.engappai.2013.05.008
    [48] M. S. Gonçalves, R. H. Lopez, L. F. F. Miguel, Search group algorithm: a new metaheuristic method for the optimization of truss structures, Comput. Struct., 153 (2015), 165–184. doi: 10.1016/j.compstruc.2015.03.003
    [49] E. Atashpaz-Gargari, C. Lucas, Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition, 2007 IEEE Congr. Evol. Comput., (2007), 4661–4667. doi: 10.1109/CEC.2007.4425083
    [50] R. V. Rao, V. J. Savsani, D. P. Vakharia, Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems, Comput.Aided Des., 43 (2011), 303–315. doi: 10.1016/j.cad.2010.12.015
    [51] S. Mirjalili, Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm, Knowl.-Based Syst., 89 (2015), 228–249. doi: 10.1016/j.knosys.2015.07.006
    [52] S. Li, H. Chen, M. Wang, A. A. Heidari, S. Mirjalili, Slime mould algorithm: a new method for stochastic optimization, Future Gener. Comput. Syst., 111 (2020), 300–323. doi: 10.1016/j.future.2020.03.055
    [53] S. Kaur, L. K. Awasthi, A. L. Sangal, G. Dhiman, Tunicate swarm algorithm: a new bio-inspired based metaheuristic paradigm for global optimization, Eng. Appl. Artif. Intell., 90 (2020), 103541. doi: 10.1016/j.engappai.2020.103541
    [54] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. Chen, Harris hawks optimization: algorithm and applications, Future Gener. Comput. Syst., 97 (2019), 849–872. doi: 10.1016/j.future.2019.02.028
    [55] B. Abdollahzadeh, F. Soleimanian Gharehchopogh, S. Mirjalili, Artificial gorilla troops optimizer: a new nature‐inspired metaheuristic algorithm for global optimization problems, Int. J. Intell. Syst., 36 (2021), 5887–5958. doi: 10.1002/int.22535
    [56] H. Jia, X. Peng, C. Lang, Remora optimization algorithm, Expert Syst. Appl., 185 (2021), 115665. doi: 10.1016/j.eswa.2021.115665
    [57] Y. Yang, H. Chen, A. A. Heidari, A. H. Gandomi, Hunger games search: visions, conception, implementation, deep analysis, perspectives, and towards performance shifts, Expert Syst. Appl., 177 (2021), 114864. doi: 10.1016/j.eswa.2021.114864
    [58] L. Abualigah, M. A. Elaziz, P. Sumari, Z. W. Geem, A. H. Gandomi, Reptile search algorithm (RSA): a nature-inspired meta-heuristic optimizer, Expert Syst. Appl., 191 (2022), 116158. doi: 10.1016/j.eswa.2021.116158
    [59] Y. Xiao, X. Sun, Y. Zhang, Y. Guo, Y. Wang, J. Li, An improved slime mould algorithm based on Tent chaotic mapping and nonlinear inertia weight, Int. J. Innovative Comput. Inf. Control, 17 (2021), 2151–2176. doi: 10.24507/ijicic.17.06.2151
    [60] R. Zheng, H. Jia, L. Abualigah, Q. Liu, S. Wang, Deep ensemble of slime mold algorithm and arithmetic optimization algorithm for global optimization, Processes, 9 (2021), 1774. doi: 10.3390/pr9101774
    [61] H. Jia, K. Sun, W. Zhang, X. Leng, An enhanced chimp optimization algorithm for continuous optimization domains, Complex Intell. Syst., 8 (2022), 65–82. doi: 10.1007/s40747-021-00346-5
    [62] A. S. Sadiq, A. A. Dehkordi, S. Mirjalili, J. Too, P. Pillai, Trustworthy and efficient routing algorithm for IoT-FinTech applications using non-linear Lévy brownian generalized normal distribution optimization, IEEE Internet Things J., (2021), 1–16. doi: 10.1109/jiot.2021.3109075
    [63] D. H. Wolpert, W. G. Macready, No free lunch theorems for optimization, IEEE Trans. Evol. Comput., 1 (1997), 67–82. doi: 10.1109/4235.585893
    [64] S. Chakraborty, A. K. Saha, R. Chakraborty, M. Saha, S. Nama, HSWOA: an ensemble of hunger games search and whale optimization algorithm for global optimization, Int. J. Intell. Syst., 37 (2022), 52–104. doi: 10.1002/int.22617
    [65] P. Pirozmand, A. Javadpour, H. Nazarian, P. Pinto, S. Mirkamali, F. Ja'fari, GSAGA: A hybrid algorithm for task scheduling in cloud infrastructure, J. Supercomput., (2022). doi: 10.1007/s11227-022-04539-8
    [66] H. Abdel-Mawgoud, S. Kamel, A. A. A. El-Ela, F. Jurado, Optimal allocation of DG and capacitor in distribution networks using a novel hybrid MFO-SCA method, Electr. Power Compon. Syst., 49 (2021), 259–275. doi: 10.1080/15325008.2021.1943066
    [67] L. Abualigah, D. Yousri, M. Abd Elaziz, A. A. Ewees, M. A. A. Al-qaness, A. H. Gandomi, Aquila optimizer: a novel meta-heuristic optimization algorithm, Comput. Ind. Eng., 157 (2021), 107250. doi: 10.1016/j.cie.2021.107250
    [68] B. Abdollahzadeh, F. S. Gharehchopogh, S. Mirjalili, African vultures optimization algorithm: a new nature-inspired metaheuristic algorithm for global optimization problems, Comput. Ind. Eng., 158 (2021), 107408. doi: 10.1016/j.cie.2021.107408
    [69] Z. Guo, B. Yang, Y. Han, T. He, P. He, X. Meng, et al., Optimal PID tuning of PLL for PV inverter based on aquila optimizer, Front. Energy Res., 9 (2022), 812467. doi: 10.3389/fenrg.2021.812467
    [70] M. R. Hussan, M. I. Sarwar, A. Sarwar, M. Tariq, S. Ahmad, A. Shah Noor Mohamed, et al., Aquila optimization based harmonic elimination in a modified H-bridge inverter, Sustainability, 14 (2022), 929. doi: 10.3390/su14020929
    [71] G. Vashishtha, R. Kumar, Autocorrelation energy and aquila optimizer for MED filtering of sound signal to detect bearing defect in Francis turbine, Meas. Sci. Technol., 33 (2021), 015006. doi: 10.1088/1361-6501/ac2cf2
    [72] A. M. AlRassas, M. A. A. Al-qaness, A. A. Ewees, S. Ren, M. Abd Elaziz, R. Damaševičius, et al., Optimized ANFIS model using Aquila optimizer for oil production forecasting, Processes, 9 (2021), 1194. doi: 10.3390/pr9071194
    [73] A. K. Khamees, A. Y. Abdelaziz, M. R. Eskaros, A. El-Shahat, M. A. Attia, Optimal power flow solution of wind-integrated power system using novel metaheuristic method, Energies, 14 (2021), 6117. doi: 10.3390/en14196117
    [74] J. Zhao, Z. M. Gao, The heterogeneous Aquila optimization algorithm, Math. Biosci. Eng., 19 (2022), 5867–5904. doi: 10.3934/mbe.2022275
    [75] M. Kandan, A. Krishnamurthy, S. A. M. Selvi, M. Y. Sikkandar, M. A. Aboamer, T. Tamilvizhi, Quasi oppositional Aquila optimizer-based task scheduling approach in an IoT enabled cloud environment, J. Supercomput., 78 (2022), 10176–10190. doi: 10.1007/s11227-022-04311-y
    [76] X. Li, S. Mobayen, Optimal design of a PEMFC‐based combined cooling, heating and power system based on an improved version of Aquila optimizer, Concurrency Comput. Pract. Exper., 34 (2022), e6976. doi: 10.1002/cpe.6976
    [77] J. Zhao, Z. M. Gao, H. F. Chen, The simplified aquila optimization algorithm, IEEE Access, 10 (2022), 22487–22515. doi: 10.1109/ACCESS.2022.3153727
    [78] S. Mahajan, L. Abualigah, A. K. Pandit, M. Altalhi, Hybrid Aquila optimizer with arithmetic optimization algorithm for global optimization tasks, Soft Comput., 26 (2022), 4863–4881. doi: 10.1007/s00500-022-06873-8
    [79] Y. Zhang, Y. Yan, J. Zhao, Z. Gao, AOAAO: The hybrid algorithm of arithmetic optimization algorithm with aquila optimizer, IEEE Access, 10 (2022), 10907–10933. doi: 10.1109/ACCESS.2022.3144431
    [80] G. Vashishtha, S. Chauhan, A. Kumar, R. Kumar, An ameliorated African vulture optimization algorithm to diagnose the rolling bearing defects, Meas. Sci. Technol., 33 (2022), 075013. doi: 10.1088/1361-6501/ac656a
    [81] M. R. Kaloop, B. Roy, K. Chaurasia, S. M. Kim, H. M. Jang, J. W. Hu, et al., Shear strength estimation of reinforced concrete deep beams using a novel hybrid metaheuristic optimized SVR models, Sustainability, 14 (2022), 5238. doi: 10.3390/su14095238
    [82] M. Manickam, R. Siva, S. Prabakeran, K. Geetha, V. Indumathi, T. Sethukarasi, Pulmonary disease diagnosis using African vulture optimized weighted support vector machine approach, Int. J. Imaging Syst. Technol., 32 (2022), 843–856. doi: 10.1002/ima.22669
    [83] J. Fan, Y. Li, T. Wang, An improved African vultures optimization algorithm based on tent chaotic mapping and time-varying mechanism, PLoS One, 16 (2021), e0260725. doi: 10.1371/journal.pone.0260725
    [84] H. R. Tizhoosh, Opposition-based learning: a new scheme for machine intelligence, in International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, (2005), 695–701.
    [85] N. A. Alawad, B. H. Abed-alguni, Discrete island-based cuckoo search with highly disruptive polynomial mutation and opposition-based learning strategy for scheduling of workflow applications in cloud environments, Arabian J. Sci. Eng., 46 (2021), 3213–3233. doi: 10.1007/s13369-020-05141-x
    [86] T. T. Nguyen, H. J. Wang, T. K. Dao, J. S. Pan, J. H. Liu, S. Weng, An improved slime mold algorithm and its application for optimal operation of cascade hydropower stations, IEEE Access, 8 (2020), 226754–226772. doi: 10.1109/access.2020.3045975
    [87] Y. Zhang, Y. Wang, Y. Yan, J. Zhao, Z. Gao, LMRAOA: an improved arithmetic optimization algorithm with multi-leader and high-speed jumping based on opposition-based learning solving engineering and numerical problems, Alexandria Eng. J., 61 (2022), 12367–12403. doi: 10.1016/j.aej.2022.06.017
    [88] S. Wang, H. Jia, Q. Liu, R. Zheng, An improved hybrid Aquila optimizer and Harris Hawks optimization for global optimization, Math. Biosci. Eng., 18 (2021), 7076–7109. doi: 10.3934/mbe.2021352
    [89] Q. Fan, Z. Chen, W. Zhang, X. Fang, ESSAWOA: Enhanced whale optimization algorithm integrated with salp swarm algorithm for global optimization, Eng. Comput., 38 (2022), 797–814. doi: 10.1007/s00366-020-01189-3
    [90] F. Yu, Y. Li, B. Wei, X. Xu, Z. Zhao, The application of a novel OBL based on lens imaging principle in PSO, Acta Electron. Sin., 42 (2014), 230–235. doi: 10.3969/j.issn.0372-2112.2014.02.004
    [91] W. Long, J. Jiao, X. Liang, S. Cai, M. Xu, A random opposition-based learning grey wolf optimizer, IEEE Access, 7 (2019), 113810–113825. doi: 10.1109/access.2019.2934994
    [92] H. T. Kahraman, H. Bakir, S. Duman, M. Katı, S. Aras, U. Guvenc, Dynamic FDB selection method and its application: modeling and optimizing of directional overcurrent relays coordination, Appl. Intell., 52 (2022), 4873–4908. doi: 10.1007/s10489-021-02629-3
    [93] H. T. Kahraman, S. Aras, E. Gedikli, Fitness-distance balance (FDB): a new selection method for meta-heuristic search algorithms, Knowl.-Based Syst., 190 (2020), 105169. doi: 10.1016/j.knosys.2019.105169
    [94] S. Aras, E. Gedikli, H. T. Kahraman, A novel stochastic fractal search algorithm with fitness-distance balance for global numerical optimization, Swarm Evol. Comput., 61 (2021), 100821. doi: 10.1016/j.swevo.2020.100821
    [95] S. Duman, H. T. Kahraman, U. Guvenc, S. Aras, Development of a Lévy flight and FDB-based coyote optimization algorithm for global optimization and real-world ACOPF problems, Soft Comput., 25 (2021), 6577–6617. doi: 10.1007/s00500-021-05654-z
    [96] S. García, A. Fernández, J. Luengo, F. Herrera, Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power, Inf. Sci., 180 (2010), 2044–2064. doi: 10.1016/j.ins.2009.12.010
    [97] E. Theodorsson-Norheim, Friedman and Quade tests: basic computer program to perform nonparametric two-way analysis of variance and multiple comparisons on ranks of several related samples, Comput. Biol. Med., 17 (1987), 85–99. doi: 10.1016/0010-4825(87)90003-5
    [98] K. V. Price, N. H. Awad, M. Z. Ali, P. N. Suganthan, The 100-digit challenge: problem definitions and evaluation criteria for the 100-digit challenge special session and competition on single objective numerical optimization. Technical Report Nanyang Technological University, Singapore, (2018).
    [99] C. A. Coello Coello, Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art, Comput. Methods Appl. Mech. Eng., 191 (2002), 1245–1287. doi: 10.1016/S0045-7825(01)00323-1
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (
通讯作者: 陈斌,
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索


Article views(372) PDF downloads(67) Cited by(0)

Article outline

Figures and Tables

Figures(15)  /  Tables(18)


DownLoad:  Full-Size Img  PowerPoint