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Abstract: Aquila Optimizer (AO) and African Vultures Optimization Algorithm (AVOA) are two 
newly developed meta-heuristic algorithms that simulate several intelligent hunting behaviors of 
Aquila and African vulture in nature, respectively. AO has powerful global exploration capability, 
whereas its local exploitation phase is not stable enough. On the other hand, AVOA possesses 
promising exploitation capability but insufficient exploration mechanisms. Based on the characteristics 
of both algorithms, in this paper, we propose an improved hybrid AO and AVOA optimizer called 
IHAOAVOA to overcome the deficiencies in the single algorithm and provide higher-quality solutions 
for solving global optimization problems. First, the exploration phase of AO and the exploitation phase 
of AVOA are combined to retain the valuable search competence of each. Then, a new composite 
opposition-based learning (COBL) is designed to increase the population diversity and help the hybrid 
algorithm escape from the local optima. In addition, to more effectively guide the search process and 
balance the exploration and exploitation, the fitness-distance balance (FDB) selection strategy is 
introduced to modify the core position update formula. The performance of the proposed IHAOAVOA 
is comprehensively investigated and analyzed by comparing against the basic AO, AVOA, and six 
state-of-the-art algorithms on 23 classical benchmark functions and the IEEE CEC2019 test suite. 
Experimental results demonstrate that IHAOAVOA achieves superior solution accuracy, convergence 
speed, and local optima avoidance than other comparison methods on most test functions. Furthermore, 
the practicality of IHAOAVOA is highlighted by solving five engineering design problems. Our 
findings reveal that the proposed technique is also highly competitive and promising when addressing 
real-world optimization tasks. The source code of the IHAOAVOA is publicly available at 
https://doi.org/10.24433/CO.2373662.v1. 
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1. Introduction 

Optimization is essentially the process of determining the optimal solution for a given problem 
among all potential solutions to achieve maximum profit, productivity, and efficiency [1–4]. Over the 
past several decades, with the development of human society and modern science, the complexity of 
optimization problems in the real world has been increasing sharply, thus putting higher demands on 
the reliability and effectiveness of optimization techniques [5,6]. In general, existing optimization 
technology can be classified into deterministic algorithms and meta-heuristic algorithms (MAs) [7]. 
For a deterministic algorithm, candidate solutions are generated using the same initial values according 
to the analytical properties of problems and converge mechanically toward the global optimum without 
any randomness. Newton-Raphson method and Conjugate Gradient are two representative 
deterministic algorithms. Although this type of algorithm can provide satisfactory solutions in solving 
certain nonlinear problems, it needs the derivative information of the problem and frequently falls into 
the local optima when confronting the challenges of multimodal, large-scale, and sub-optimal search 
space [8]. Recently, as an ideal alternative to deterministic algorithms, MAs have attracted the attention 
of more and more scholars worldwide due to their simple structure, low computational consumption, 
no need for gradient information, and powerful local optimal avoidance capability. Based on the 
requirements of the objective function, such algorithms iteratively use different operators to randomly 
sample the search space to acquire better decision variables [9,10]. Compared with traditional 
methods, these merits enable MAs to find the global optimal solution for complex optimization 
problems more effectively. Therefore, MAs have been widely applied in a variety of research areas, 
such as engineering design [11–14], feature selection [15–17], photovoltaic (PV) parameter 
extraction [18–21], image segmentation [22–24], and path planning [25]. 

As their name implies, MAs build optimization models by imitating a series of natural stochastic 
phenomena. On the basis of different design inspirations, MAs can be divided into four dominant 
classes (as illustrated in Figure 1) [1]: evolutionary algorithms, physics-based algorithms, swarm-
based algorithms, and human-based algorithms. Evolutionary algorithms stem from the mechanisms 
of biological evolution, such as selection, mutation, recombination, and elimination. One of the most 
used algorithms in this category is the Genetic Algorithm (GA) [26], which simulates Darwinian 
evolution theory. Some other well-known evolutionary algorithms include Genetic Programming 
(GP) [27], Differential Evolution (DE) [28], Evolution Strategy (ES) [29], and Biogeography-Based 
Optimization (BBO) [30]. Physics-based algorithms are mainly inspired by the physical laws of the 
surrounding world. Examples of such algorithms contain Simulated Annealing (SA) [31], Gravity 
Search Algorithm (GSA) [32], Multi-Verse Optimizer (MVO) [33], Atom Search Optimization 
(ASO) [34], Black Hole Algorithm (BHA) [35], Sine Cosine Algorithm (SCA) [36], Thermal 
Exchange Optimization (TEO) [37], and Arithmetic Optimization Algorithm (AOA) [38]. Swarm-
based algorithms originate from the self-organization and collective behaviors of organisms in nature. 
Particle Swarm Algorithm (PSO) [39] is considered the most classic embodiment of this branch, which 
searches for the optimal solution to a problem by emulating the collaborative foraging of bird flocks. 
Of course, there are many other very famous swarm-based algorithms such as Ant Colony 
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Optimization (ACO) [40], Dragonfly Algorithm (DA) [41], Ant Lion Optimizer (ALO) [42], Whale 
Optimization Algorithm (WOA) [43], Grey Wolf Optimizer (GWO) [44], and Salp Swarm Algorithm 
(SSA) [45]. The fourth category is human-based algorithms, derived from some human activities in 
the community. Examples of such algorithms are Tabu Search (TS) [46], Harmony Search (HS) [47], 
Search Group Algorithm (SGA) [48], Imperialist Competitive Algorithm (ICA) [49], and Teaching 
Learning-Based Optimization (TLBO) [50]. In addition to the above algorithms, more MAs have 
been proposed in recent years, like Moth-Flame Optimization (MFO) [51], Slime Mould Algorithm 
(SMA) [52], Tunicate Swarm Algorithm (TSA) [53], Harris Hawks Optimization (HHO) [54], 
Gorilla Troops Optimizer (GTO) [55], Remora Optimization Algorithm (ROA) [56], Hunger Games 
Search (HGS) [57], and Reptile Search Algorithm (RSA) [58]. Although these nature-inspired 
MAs share distinct characteristics, they all have two important phases in the search gradation: 
exploration and exploitation [59,60]. In the exploration phase, search agents explore the whole 
target space as much as possible to find the parts that may have the optimal solution. Then, in the 
exploitation phase, more local searches are conducted to improve the quality and precision of the 
gained optimal solution. For a well-organized optimizer, it is vital to maintain a proper balance 
between exploration and exploitation. 

 

Figure 1. Classification of meta-heuristic algorithms. 

Despite the success of MAs in many aspects of computational science, they may still suffer from 
slow convergence speed, the tendency to fall into the local optima, and premature convergence [61,62]. 
As stated in the No-Free-Lunch (NFL) theorem [63], no one algorithm can work for all kinds of 
optimization problems. Therefore, motivated by this theorem, numerous scholars dedicate themselves 
to designing new MAs or enhancing existing ones. Nowadays, apart from adding some effective search 
strategies, it has become one popular trend to hybridize the two basic MAs for better comprehensive 
performance in the improvements of existing algorithms. Unlike the single algorithm, a hybrid 
algorithm promotes diversity and shares more useful information within the population, which endows 
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it with a stronger search capability. For example, Zheng et al. [60] introduced AOA into SMA and 
constructed a new hybrid optimization algorithm called DESMAOA. Compared with basic algorithms, 
experimental results suggested that DESMAOA has a high superiority on 23 standard benchmark 
functions and three engineering design problems. Chakraborty et al. [64] integrated WOA and HGS 
into an efficient hybrid optimizer named HSWOA, which has been successfully applied to solve seven 
real-world engineering problems and IEEE CEC2019 test set. Pirozmand et al. [65] presented a novel 
hybrid technique based on GA and GSA to address task scheduling problems in cloud infrastructure. 
Bao et al. [22] proposed the HHO-DE algorithm for multi-level thresholding color image segmentation 
by incorporating HHO and DE. Besides, Abdel-Mawgoud et al. [66] combined SCA with MFO and 
used this hybrid approach to find the optimal allocation of distributed generations and capacitors in 
distribution networks. 

In this paper, we focus on the two latest swarm-based MAs, namely Aquila Optimizer (AO) [67] and 
African Vultures Optimization Algorithm (AVOA) [68]. The AO algorithm was first proposed in 2021, 
which simulates four unique hunting methods of Aquila. Since AO has powerful robustness and global 
exploration capability, it has been extensively applied to lots of scenarios. Guo et al. [69] adopted AO to 
adjust the proportional-integral-derivative (PID) coefficients of the phase-locked loop (PLL), a key 
component in the PV inverter, to smooth power fluctuations and improve the quality of grid connection. 
Experimental results demonstrated that the AO-optimized PLL adjustment strategy could effectively 
reduce power fluctuations and overshoot with a short response time. Hussan et al. [70] used AO to 
optimize the selective harmonic elimination equations for the seven-level H-bridge inverter to decrease 
the component count and total harmonic distortion. Vashishtha et al. [71] applied AO to determine the 
optimal minimal entropy deconvolution (MED) filter length to boost the recognition accuracy during 
the bearing fault diagnosis of the Francis turbine. AlRassas et al. [72] adopted AO to identify the 
optimal parameters of the adaptive neuro-fuzzy inference system (ANFIS) network to increase its 
prediction accuracy in oil production time series forecasting. In [73], AO is employed to address the 
stochastic optimal power flow (SCOPF) problem to obtain the best dispatch power from wind farms 
while minimizing total operating costs. These researches all have proven that AO is a promising 
optimization tool. However, similar to other MAs, the basic AO algorithm inevitably has the defects 
of premature convergence and being prone to falling into local minima, mainly caused by its 
insufficient exploitation phase. As a result, many improved and hybrid attempts have been 
implemented to enhance the performance of AO. Zhao et al. [74] developed a heterogeneous AO (HAO) 
based on the multiple updating mechanism to enhance the search capability of the algorithm and 
alleviate the stagnation in the later exploitation phase. Kandan et al. [75] proposed a novel quasi-
oppositional AO called QOAO for solving the issue of resource allocation and management in the 
internet of things (IoT)-enabled cloud environment. The quasi-oppositional-based learning is used to 
diversify the initial population and help the algorithm eliminate the local optima. Li et al. [76] proposed 
an improved variant of AO, namely IAO, to provide the optimal configuration for combined cooling, 
heating, and power (CCHP) system, which integrated the self-adaptive weight and Logistic chaotic 
mapping to facilitate the possibility of finding the high-precision solution. In [77], a simplified AO 
algorithm was developed by removing the equations controlling the exploitation phase and retaining 
the two exploration tactics. Simulation results on unimodal, multimodal, and the CEC2021 test suite 
fully validated the superiority of this method. Mahajan et al. [78] blended AO and AOA for complex 
numerical optimization. The convergence speed and stability of the hybrid algorithm are significantly 
strengthened in comparison to the basic AO and AOA. Wang et al. [12] presented an excellent hybrid 
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optimizer known as IHAOHHO by combining the exploration phase of AO and the exploitation phase 
of HHO. Meanwhile, the random opposition-based learning and nonlinear escaping energy parameter 
mechanisms are introduced into the hybrid algorithm to further boost its exploration ability and local 
optima avoidance. The worth of the IHAOHHO algorithm is well reflected in settling industrial 
engineering optimization tasks. Yao et al. [25] constructed an improved hybrid algorithm named 
IHSSAO by combining AO with SSA and pinhole imaging opposition-based learning. The IHSSAO 
algorithm is able to balance exploration and exploitation well and provide the shortest global path for 
unmanned aerial vehicle (UAV) path planning in complex terrain. Zhang et al. [79] proposed a hybrid 
AOAAO algorithm for tackling benchmark function optimization and engineering design problems. 

For another algorithm concerned in this paper, AVOA was also developed in 2021. This algorithm 
mimics the foraging and navigation behaviors of African vultures in nature and has drawn many 
scholars to apply it to resolve real-world optimization problems [80–82]. In contrast to the AO 
algorithm, AVOA possesses strong exploitation mechanisms, but its exploration capability and 
convergence speed are not satisfactory [83]. Due to the relatively short time since the algorithm has 
been proposed, there are few studies on the improvement of AVOA. 

Given the above discussion, this paper tries to hybridize the AO and AVOA algorithms to give 
full play to the advantages of both and achieve better overall optimization performance, and then 
proposes a novel improved hybrid meta-heuristic algorithm for global optimization, namely 
IHAOAVOA. To be specific, first, we integrate the exploration phase of AO and the exploitation phase 
of AVOA, which extracts and inherits the robust exploration and exploitation capabilities of the two 
basic algorithms. Then, a new composite opposition-based learning (COBL) mechanism is designed 
and embedded into the hybrid algorithm to avoid the local optima and increase the population diversity. 
Finally, the fitness-distance balance (FDB) selection method is utilized to select one candidate solution 
with the highest score from the population to replace the original random individual in the position 
update formula. This is considered from boosting the search efficiency and balancing the exploration 
and exploitation trends of the hybrid algorithm. To verify the effectiveness and practicality of 
IHAOAVOA, 23 classical benchmark functions, IEEE CEC2019 test suite, and five real-world 
engineering design problems are used for the tests. And the proposed method is compared with the 
basic AO, AVOA, and six state-of-the-art MAs, including SCA, WOA, GWO, MFO, TSA, and AOA. 
Experimental results indicate that the proposed IHAOAVOA performs better than other competitors 
with regard to solution accuracy, convergence speed, stability, and local optima avoidance. The main 
contributions of this paper are summarized as follows: 
 IHAOAVOA, a novel hybrid improved algorithm based on the Aquila Optimizer (AO) and African 
Vultures Optimization Algorithm (AVOA), is proposed to solve global optimization problems. 
 A new mechanism called composite opposition-based learning (COBL) and fitness-distance 
balance (FDB) selection method are carried out to enhance the searchability of the hybrid algorithm. 
 The proposed method (IHAOAVOA) is tested on several optimization problems, including 23 
classical benchmark functions, IEEE CEC2019 test suite, and five engineering design problems, and 
compared with different state-of-the-art MAs. 
 Experimental results suggest that IHAOAVOA has more reliable performance than other 
comparison optimization algorithms. 

The structure of this paper is organized as follows. Section 2 presents a brief overview of the 
basic AO and AVOA algorithms, as well as COBL and FDB strategies. Section 3 describes the 
proposed IHAOAVOA algorithm in detail. Section 4 evaluates the performance of IHAOAVOA on 
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benchmark functions and analyzes the obtained experimental results. In Section 5, the proposed 
IHAOAVOA is applied to solve five real-world engineering design problems. Finally, Section 6 
concludes the paper and discusses potential research directions. 

2. Preliminaries 

2.1. Aquila Optimizer (AO) 

Aquila Optimizer (AO) is a new bionic, gradient-free, and swarm-based meta-heuristic algorithm 
developed by Abualigah et al. [67] in 2021. The main inspiration of this algorithm derives from the 
hunting behavior of the Aquila, a famous bird of prey found in the Northern Hemisphere. Aquila exerts 
its fast speed and dexterity, as well as strong feet and sharp talons, to snatch rabbits, marmots, and 
many other ground animals. During the foraging activities, four different strategies are recognized to 
be utilized by the Aquila, including: 1) High-altitude soar with vertical stoop; 2) Contour flight along 
with short glide attack; 3) Low flight along with slow descent attack; 4) Capturing the prey while 
walking. Thus, the optimization procedure of the AO algorithm can be modeled into four discrete 
phases, which are briefly described as follows. 

In AO, Aquilas are candidate solutions and the best solution in each step is defined as the intended 
prey. First, as with the fundamental framework of other optimization paradigms, the initial population 
of AO is generated randomly in the search space of the given problem using Eq (1). 

 𝑋௜ ൌ 𝑟𝑎𝑛𝑑 ൈ ሺ𝑢𝑏 െ 𝑙𝑏ሻ ൅ 𝑙𝑏, 𝑖 ൌ 1,2, … , 𝑁  (1) 

where 𝑋௜  denotes the position of 𝑖 -th Aquila in the population, 𝑟𝑎𝑛𝑑  denotes a random number 
within the interval of 0 and 1, 𝑁 denotes the total number of Aquilas, i.e., population size, 𝑢𝑏 and 
𝑙𝑏 demonstrate the upper and lower bounds of the search domain, respectively. 

To lay a good foundation for the smooth transition from global exploration to local exploitation, 
AO establishes the following switching condition: 

 ቊ
Execution of exploration, 𝑖𝑓 𝑡 ൑ ቀଶ

ଷ
ቁ ൈ 𝑇

Execution of exploitation,𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2) 

where 𝑡 is the current iteration, and 𝑇 is the maximum number of iterations. Next, the four phases 
involved in the mathematical model of AO are presented. 

2.1.1. Expanded exploration: high-altitude soar with vertical stoop 

In this phase, Aquila flies high over the ground to explore the hunting area extensively, and once 
the prey is detected, it will make a vertical dive towards the intended prey. This behavior is simulated 
as in Eq (3). 

 𝑋௜ሺ𝑡 ൅ 1ሻ ൌ 𝑋௕௘௦௧ሺ𝑡ሻ ൈ ቀ1 െ ௧

்
ቁ ൅ 𝑋௠ሺ𝑡ሻ െ 𝑋௕௘௦௧ሺ𝑡ሻ ൈ 𝑟𝑎𝑛𝑑 (3) 

where 𝑋௜ሺ𝑡 ൅ 1ሻ  refers to the updated position of 𝑖 -th Aquila in the next iteration 𝑡 , 𝑋௕௘௦௧ሺ𝑡ሻ 
indicates the location of the prey, i.e., optimal solution found so far, 𝑡 and 𝑇 are the current number 
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of iterations and the maximum iteration, respectively. And 𝑋௠ሺ𝑡ሻ represents the average position of 
all Aquilas in the population, which is calculated as follows: 

 𝑋௠ሺ𝑡ሻ ൌ ଵ

ே
∑ 𝑋௜ሺ𝑡ሻே

௜ୀଵ  (4) 

where 𝑋௜ሺ𝑡ሻ is the current position vector of 𝑖-th Aquila, and 𝑁 is the population size. 

2.1.2. Narrowed exploration: contour flight along with short glide attack 

In the second phase, Aquila circles above the target prey determined from a high soar, gets ready 
to land, and then launches an attack. The mathematical model of this behavior is expressed as follows: 

 𝑋௜ሺ𝑡 ൅ 1ሻ ൌ 𝑋௕௘௦௧ሺ𝑡ሻ ൈ Levyሺ𝐷ሻ ൅ 𝑋௥ሺ𝑡ሻ ൅ ሺ𝑦 െ 𝑥ሻ ൈ 𝑟𝑎𝑛𝑑 (5) 

where 𝑋௥ indicates a random position of Aquila selected from the current population ሾ1, 𝑁ሿ. Levy ሺ∙ሻ 
implies the Lévy flight function, which is presented as follows: 

 Levyሺ𝑥ሻ ൌ 0.01 ൈ ௨ൈఙ

|௩|
భ
ഁ

, 𝜎 ൌ ቆ
Γሺଵାఉሻൈୱ୧୬ሺഏഁ

మ
ሻ

Γሺଵାఉሻൈఉൈଶሺ
ഁషభ

మ ሻ
ቇ

భ
ഁ

 (6) 

where 𝑢 and 𝑣 are random numbers within the interval ሾ0, 1ሿ, Γሺ∙ሻ denotes the gamma function, 
and 𝛽 is a constant value equal to 1.5. In Eq (5), 𝑦 and 𝑥 stand for the contour spiral shape during 
the search, which can be calculated as follows: 

 ቐ
𝑥 ൌ ሺ𝑟 ൅ 𝑈 ൈ 𝐷ଵሻ ൈ 𝑠𝑖𝑛ሺ െ 𝜔 ൈ 𝐷ଵ ൅ ଷൈగ

ଶ
ሻ

𝑦 ൌ ሺ𝑟 ൅ 𝑈 ൈ 𝐷ଵሻ ൈ 𝑐𝑜𝑠ሺ െ 𝜔 ൈ 𝐷ଵ ൅ ଷൈగ

ଶ
ሻ
 (7) 

where 𝑟 denotes the number of search cycles between 1 and 20, 𝑈 is a constant fixed to 0.00565, 
𝐷ଵ is a vector of integers from 1 to the dimension size ሺ𝐷ሻ, and 𝜔 is also a small value equivalent 
to 0.005. 

2.1.3. Expanded exploitation: low flight along with slow descent attack 

As the area of the prey is precisely specified, Aquila descends vertically to perform a preliminary 
attack to probe the prey's response. Here, AO exploits the selected area to approach and attack the prey. 
The position update formula of Aquila in this phase is described as follows: 

 𝑋௜ሺ𝑡 ൅ 1ሻ ൌ ሺ𝑋௕௘௦௧ሺ𝑡ሻ െ 𝑋௠ሺ𝑡ሻሻ ൈ 𝛼 െ 𝑟𝑎𝑛𝑑 ൅ ሺሺ𝑢𝑏 െ 𝑙𝑏ሻ ൈ 𝑟𝑎𝑛𝑑 ൅ 𝑙𝑏ሻ ൈ 𝛿 (8) 

where 𝛼 and 𝛿 are the exploitation control coefficients set as 0.1. 

2.1.4. Narrowed exploitation: walk and catch the prey 

In the fourth phase, Aquila comes to the land and pursues the prey according to its random motion 
trajectory, and finally, Aquila will attack the prey at the appropriate moment. The mathematical 
representation of this case is given as: 
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 𝑋௜ሺ𝑡 ൅ 1ሻ ൌ 𝑄𝐹 ൈ 𝑋௕௘௦௧ሺ𝑡ሻ െ 𝐺ଵ ൈ 𝑋௜ሺ𝑡ሻ ൈ 𝑟𝑎𝑛𝑑 െ 𝐺ଶ ൈ Levyሺ𝐷ሻ ൅ 𝐺ଵ ൈ 𝑟𝑎𝑛𝑑 (9) 

 𝑄𝐹ሺ𝑡ሻ ൌ 𝑡
మൈೝೌ೙೏షభ

ሺభష೅ሻమ  (10) 

 ቊ
𝐺ଵ ൌ 2 ൈ 𝑟𝑎𝑛𝑑 െ 1

𝐺ଶ ൌ 2 ൈ ሺ1 െ ௧

்
ሻ  (11) 

where 𝑄𝐹  refers to the quality function used to balance the search strategy, 𝐺ଵ  indicates the 
movement parameter of Aquila while tracking the prey, which is a random number between -1 and 1, 
while 𝐺ଶ denotes the flight slope in the process of Aquila chasing the prey from the first to the last 
location, which decreases linearly from 2 to 0. 

The flow chart of the basic AO is illustrated in Figure 2. 

 

Figure 2. Flow chart of the basic AO algorithm. 

2.2. African Vultures Optimization Algorithm (AVOA) 

As a novel population-based optimization technique proposed by Abdollahzadeh et al. [68] 
in 2021, AVOA mimics the living habit and foraging behavior of African vulture. African vultures 
rarely launch an offensive against healthy animals, but may kill a weak or diseased animal and 
even feed on the human carcass. One interesting feature of these predatory birds is their bald heads, 
which play an important role in regulating the body temperature and protecting themselves from 
bacteria and getting sick. In natural circumstances, vultures continuously travel long distances from 
one place to another to discover better food sources, and rotational flight is a common mode of flight 
for them. Frequently, after a food supply is located, the vultures will come into conflict with each other 
to achieve more allocations. The weak vultures surround the stronger vultures and wait to receive food 
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until the latter become tired of eating. With the above biological concepts, the mathematical model of 
the AVOA algorithm is accomplished in four separate phases. A brief description of each step is 
presented as follows. 

2.2.1. Phase one: determining the best vulture in any group 

Once the initial random population of the AVOA algorithm is generated, the objective values of 
all solutions are evaluated, where the best solution is picked as the best vulture in the first group and 
the vulture corresponding to the second-best solution is placed in the second group. Besides, the rest 
of the vultures are arranged in the third group. Since these two best vultures have guiding effects, 
Eq (12) is designed to help the current individual determine which vulture it should move towards 
in each iteration. 

 𝑋஻ ൌ ൜
𝐵𝑒𝑠𝑡𝑣𝑢𝑙𝑡𝑢𝑟𝑒ଵ, 𝑖𝑓 𝑝௜ ൌ 𝐿ଵ
𝐵𝑒𝑠𝑡𝑣𝑢𝑙𝑡𝑢𝑟𝑒ଶ, 𝑖𝑓 𝑝௜ ൌ 𝐿ଶ

 (12) 

where 𝑋஻  denotes the best vulture selected, 𝐵𝑒𝑠𝑡𝑣𝑢𝑙𝑡𝑢𝑟𝑒ଵ  and 𝐵𝑒𝑠𝑡𝑣𝑢𝑙𝑡𝑢𝑟𝑒ଶ  denote the best 
vultures of the first group and second group, respectively, 𝐿ଵ  and 𝐿ଶ  represent two parameters 
between 0 and 1 measured before the optimization operation, where 𝐿ଵ ൅ 𝐿ଶ ൌ 1. The probability of 
selecting the best solution from each group 𝑝௜  is calculated according to the Roulette Wheel 
mechanism, and its formula is as follows. 

 𝑝௜ ൌ ௙೔

∑ ௙೔
೘
೔సభ

 (13) 

where 𝑓௜ means the fitness values of vultures, and 𝑚 is the total number of vultures in the first and 
second groups. 

2.2.2. Phase two: starvation rate of vultures 

When vultures feel satiated, they have high energy levels allowing them to go longer distances to 
seek food. Conversely, if they don’t have adequate energy, hungry vultures will become aggressive 
and thus fight with the nearby stronger vultures to obtain free food. Based on this, the starvation degree 
of vultures is modeled as follows: 

 𝐹 ൌ ሺ2 ൈ 𝑟𝑎𝑛𝑑 ൅ 1ሻ ൈ 𝑧 ൈ ሺ1 െ ௧

்
ሻ ൅ 𝑔 (14) 

 𝑔 ൌ ℎ ൈ ሺ𝑠𝑖𝑛௪ሺ గ

ଶ
ൈ ௧

்
ሻ ൅ 𝑐𝑜𝑠ሺ గ

ଶ
ൈ ௧

்
ሻ െ 1ሻ (15) 

where 𝐹 means the hunger degree of vultures, 𝑟𝑎𝑛𝑑 is a random number between 0 and 1, 𝑧 is a 
random number between -1 and 1, 𝑡 and 𝑇 are the current number of iterations and the maximum 
iteration, respectively, ℎ is a random number within the interval ሾെ2, 2ሿ, and 𝑤 signifies a constant. 

As we see from Eq (14), the parameter 𝐹 shows a decreasing trend with the increasing number 
of iterations. Therefore, it is also used to construct the transition between the exploration phase and 
the exploitation phase in the AVOA algorithm. Here, in the case of |𝐹| ൒ 1, it means the vulture is 
satiated and searches for new food in different areas, which is also known as the exploration phase. On 
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the other hand, when |𝐹| ൏ 1, the vulture hunts for food in the neighborhood of the solutions, and 
AVOA enters the exploitation phase. 

2.2.3. Phase three: exploration 

In nature, vultures have excellent visual skills to spot poor dying animals. When vultures begin 
foraging, they first spend a lot of time carefully scrutinizing their living environment and then go long 
distances to search for food. Considering the habits of vultures, two distinct mechanisms are designed 
in the exploration stage of AVOA so as to explore different random regions as much as possible. Each 
mechanism is selected by using a parameter called 𝑃ଵ, which must be assigned a value within the 
interval [0, 1] before the search operation. The mathematical model can be expressed as follows. 

If 𝑟𝑎𝑛𝑑 ൑ 𝑃ଵ: 

 𝑋௜ሺ𝑡 ൅ 1ሻ ൌ 𝑋஻ሺ𝑡ሻ െ 𝐷௜ሺ𝑡ሻ ൈ 𝐹 (16) 

 𝐷௜ሺ𝑡ሻ ൌ |𝐶 ൈ 𝑋஻ሺ𝑡ሻ െ 𝑋௜ሺ𝑡ሻ| (17) 

If 𝑟𝑎𝑛𝑑 ൐ 𝑃ଵ: 

 𝑋௜ሺ𝑡 ൅ 1ሻ ൌ 𝑋஻ሺ𝑡ሻ െ 𝐹 ൅ 𝑟𝑎𝑛𝑑 ൈ ൫ሺ𝑢𝑏 െ 𝑙𝑏ሻ ൈ 𝑟𝑎𝑛𝑑 ൅ 𝑙𝑏൯ (18) 

where 𝑋௜ሺ𝑡 ൅ 1ሻ denotes the position vector of 𝑖-th vulture in the next iteration 𝑡, 𝑋௜ሺ𝑡ሻ denotes 
the current position of 𝑖-th vulture, 𝑋஻ሺ𝑡ሻ denotes the current best vulture selected according to 
Eq (12), 𝐹 describes the hunger rate of vultures calculated by Eq (14), 𝐶 is a random number 
in the range ሾ0, 2ሿ, 𝑢𝑏 and 𝑙𝑏 are the upper and lower bounds of the search range. 

2.2.4. Phase four: exploitation 

When the value of |𝐹|  is less than 1, AVOA performs the exploitation phase, which further 
contains two stages with two different mechanisms. Likewise, in each internal stage, the selection or 
not of each mechanism is decided by two parameters, namely 𝑃ଶ and 𝑃ଷ. The parameter 𝑃ଶ is used 
to choose the mechanism available in the first stage and parameter 𝑃ଷ  is utilized to select the 
mechanism available in the second stage, both of which need to be valued in the range of 0 and 1 
before optimization. 

 Exploitation (Stage 1) 

If the value of |𝐹| is ranged in the interval ሾ0.5, 1ሿ, the algorithm proceeds to the first part of 
exploitation. Here, two behaviors are carried out: siege-fight and rotating flight. When |𝐹| ൒ 0.5, the 
vultures are relatively satiated and energetic. At such time, vultures with great physical strength are 
reluctant to share food with other vultures, while the weaker vultures attempt to get food from the 
strong ones by gathering together and provoking small conflicts to make them exhausted. This 
behavior can be simulated as follows: 

 𝑋௜ሺ𝑡 ൅ 1ሻ ൌ 𝐷௜ሺ𝑡ሻ ൈ ሺ𝐹 ൅ 𝑟𝑎𝑛𝑑ሻ െ 𝑑௜ሺ𝑡ሻ (19) 

In Eq (19), 𝑑௜ሺ𝑡ሻ indicates the distance between the 𝑖-th vulture and the current best vulture, 
which is calculated as follows: 
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 𝑑௜ሺ𝑡ሻ ൌ 𝑋஻ሺ𝑡ሻ െ 𝑋௜ሺ𝑡ሻ (20) 

In addition to the behavior described above, vultures often make a rotational flight, which is 
similar to Spiral Motion. To model this process, a spiral equation is developed between all vultures 
and one of the two best vultures. The mathematical expression is given by: 

 𝑋௜ሺ𝑡 ൅ 1ሻ ൌ 𝑋஻ሺ𝑡ሻ െ ሺ𝑆ଵሺ𝑡ሻ ൅ 𝑆ଶሺ𝑡ሻሻ (21) 

 𝑆ଵሺ𝑡ሻ ൌ 𝑋஻ሺ𝑡ሻ ൈ ቀ௥௔௡ௗൈ௑೔ሺ௧ሻ

ଶగ
ቁ ൈ 𝑐𝑜𝑠ሺ𝑋௜ሺ𝑡ሻሻ (22) 

 𝑆ଶሺ𝑡ሻ ൌ 𝑋஻ሺ𝑡ሻ ൈ ቀ௥௔௡ௗൈ௑೔ሺ௧ሻ

ଶగ
ቁ ൈ 𝑠𝑖𝑛ሺ𝑋௜ሺ𝑡ሻሻ (23) 

 Exploitation (Stage 2) 

If the value of |𝐹| is less than 0.5, the algorithm enters the second part of exploitation. At this 
stage, the accumulation of vultures over the food source and violent siege-strife mechanism are 
implemented. When |𝐹| ൏ 0.5, almost all vultures in the population are well full, but the two best 
vultures become hungry after prolonged exertion. Due to a large amount of food has been consumed 
at this time, it may happen that many types of vultures gather on a single food resource and compete 
against each other. In this situation, the position update formula of vultures is expressed as follows: 

 𝑋௜ሺ𝑡 ൅ 1ሻ ൌ ஺భሺ௧ሻା஺మሺ௧ሻ

ଶ
 (24) 

 𝐴ଵሺ𝑡ሻ ൌ 𝐵𝑒𝑠𝑡𝑣𝑢𝑙𝑡𝑢𝑟𝑒ଵሺ𝑡ሻ െ ஻௘௦௧௩௨௟௧௨௥௘భሺ௧ሻൈ௑೔ሺ௧ሻ

஻௘௦௧௩௨௟௧௨௥௘భሺ௧ሻି௑೔ሺ௧ሻమ ൈ 𝐹 (25) 

 𝐴ଶሺ𝑡ሻ ൌ 𝐵𝑒𝑠𝑡𝑣𝑢𝑙𝑡𝑢𝑟𝑒ଶሺ𝑡ሻ െ ஻௘௦௧௩௨௟௧௨௥௘మሺ௧ሻൈ௑೔ሺ௧ሻ

஻௘௦௧௩௨௟௧௨௥௘మሺ௧ሻି௑೔ሺ௧ሻమ ൈ 𝐹 (26) 

On the other hand, in the quest for the little food left, the other vultures will also turn vicious 
and make their way in various directions toward the head vulture. This movement is simulated as 
in Eq (27). 

 𝑋௜ሺ𝑡 ൅ 1ሻ ൌ 𝑋஻ሺ𝑡ሻ െ |𝑑௜ሺ𝑡ሻ| ൈ 𝐹 ൈ Levyሺ𝐷ሻ (27) 

where 𝑑௜ሺ𝑡ሻ is calculated according to Eq (20), 𝐷 is the problem dimension, and Levy ሺ∙ሻ denotes 
the Lévy flight function used to boost the effectiveness of the AVOA. Same as that in AO, the 
mathematical expression of Lévy flight is as follows: 

 Levyሺ𝑥ሻ ൌ 0.01 ൈ ௨ൈఙ

|௩|
భ
ഁ

, 𝜎 ൌ ቆ
Γሺଵାఉሻൈୱ୧୬ሺഏഁ

మ
ሻ

Γሺଵାఉሻൈఉൈଶሺ
ഁషభ

మ ሻ
ቇ

భ
ഁ

 (28) 

where 𝑢 and 𝑣 are random numbers within the interval ሾ0, 1ሿ, Γሺ∙ሻ is the gamma function, and 𝛽 
is a constant fixed to 1.5. 

The flow chart of the basic AVOA is illustrated in Figure 3. 
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2.3. Composite opposition-based learning (COBL) 

Opposition-based learning (OBL) [84] is a powerful optimization tool in intelligent computing, 
which has been successfully used to improve different native meta-heuristic algorithms [11,85–87]. 
The optimization procedure often starts with an initial stochastic solution. If this initial solution is near 
the global optimal solution, the algorithm converges quickly. On the contrary, the initial solution may 
be far from the optimum or just in the opposite direction, which will cause it to take quite a long time 
to converge or even fall into a stagnant state [88]. The main ideology of OBL is to simultaneously 
evaluate the fitness values of the current solution as well as its inverse solution, and then the fitter one 
is retained to participate in the subsequent iterative calculation. Therefore, OBL can effectively 
increase the probability of finding a better candidate solution. However, it has been indicated that OBL 
can only generate the inverse solution at a fixed position in optimization, and it still fails to ameliorate 
the defects of the algorithm when solving complex problems [1,89]. In recent years, more and more 
enhanced variants of OBL have been proposed, of which lens opposition-based learning (LOBL) [90] 
and random opposition-based learning (ROBL) [91] are two typical examples. Both methods are 
effective in improving the ability of the algorithm to avoid falling into local optima, where LOBL can 
also considerably boost the convergence speed of the algorithm, and ROBL has a unique strength in 
enriching the population diversity [12]. Considering the superior performance of the two forms of 
opposition-based learning, we integrate them and propose a novel search strategy: composite 
opposition-based learning (COBL). As illustrated in Figure 4, the basic principles of LOBL and ROBL 
will be described first below. 

 

Figure 3. Flow chart of the basic AVOA algorithm. 
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(a) Lens opposition-based learning (b) Random opposition-based learning 

Figure 4. Principle of lens opposition-based learning and random opposition-based learning. 

Lens imaging is a common optical phenomenon that specifically refers to when an object is placed 
at more than twice principal focal lengths away from the convex lens, an inverted and contracted image 
will be produced on the other side of the lens. Take the one-dimensional search space in Figure 4(a) 
for instance, the cardinal point 𝑂 represents the midpoint of the search range ሾ𝑙𝑏, 𝑢𝑏ሿ, and the 𝑦-
axis is considered a convex lens. Besides, there is an object 𝑝 with height ℎ located at the point 𝑋௜ 
(𝑋௜ is the 𝑖-th solution in the population), which is outside twice the lens’s focal length. Through lens 
imaging, the corresponding image 𝑝෤ with the height ℎ෨ can be obtained, and its projection on the 
coordinate axis is 𝑋LOBL

෫ . Consequently, the geometric relationship in the figure can be formulated 
as follows. 

 
ሺ௟௕ା௨௕ሻ/ଶି௑೔

௑LOBL෫ ିሺ௟௕ା௨௕ሻ/ଶ
ൌ ℎ

ℎ෨
 (29) 

Let 𝑘 ൌ ℎ/ℎ෨, the opposite solution 𝑋LOBL
෫  based on the theory of lens imaging is calculated by 

modifying the Eq (29): 

 𝑋LOBL෫ ൌ ሺ௟௕ା௨௕ሻ

ଶ
൅ ሺ௟௕ା௨௕ሻ

ଶ௞
െ ௑೔

௞
 (30) 

Compared to the complex metaphors of the former, ROBL has a much simpler concept. In the 
search space of Figure 4(b), the point 𝑋௜ on the 𝑥-axis denotes the 𝑖-th solution in the population, 
and its random opposite solution 𝑋ROBL

෫  can be defined by: 

 𝑋ROBL෫ ൌ 𝑙𝑏 ൅ 𝑢𝑏 െ 𝑟𝑎𝑛𝑑 ൈ 𝑋௜ (31) 

From Eq (31), it can be seen that the generated inverse solution has good randomness for 
exploration, which greatly helps to provide more population diversity at the later stage of the search, 
thus avoiding the algorithm from falling into the local optima. 

To make full use of the characteristics of LOBL and ROBL, a probability of 50% is assumed to 
choose between them in the optimization process. Finally, the mathematical expression of the 
developed COBL is given as follows. 

 𝑋COBL෫ ൌ ቊ
𝑙𝑏 ൅ 𝑢𝑏 െ 𝑟𝑎𝑛𝑑 ൈ 𝑋௜, 𝑖𝑓 𝑞 ൏ 0.5
ሺ௟௕ା௨௕ሻ

ଶ
൅ ሺ௟௕ା௨௕ሻ

ଶ௞
െ ௑೔

௞
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (32) 

where 𝑋௜ is the 𝑖-th solution in the population, 𝑋COBL
෫  is the opposite solution of 𝑋௜ generated by 

COBL, 𝑞 illustrates a random number in ሾ0, 1ሿ, 𝑘 represents the distance coefficient, 𝑢𝑏 and 𝑙𝑏 
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are the upper and lower bounds of the search space. 
Generally, most optimization problems are multi-dimensional, so the above Eq (32) can also be 

extended into D-dimensional space as follows: 

 𝑋COBL,ఫ෫ ൌ ൝
𝑙𝑏௝ ൅ 𝑢𝑏௝ െ 𝑟𝑎𝑛𝑑 ൈ 𝑋௜,௝, 𝑖𝑓 𝑞 ൏ 0.5
ሺ௟௕ೕା௨௕ೕሻ

ଶ
൅

ሺ௟௕ೕା௨௕ೕሻ

ଶ௞
െ

௑೔,ೕ

௞
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 𝑗 ൌ 1,2, ⋯ , 𝐷 (33) 

where 𝑋௜,௝ and 𝑋COBL,j
෫  are the 𝑗-dimensional components of 𝑋௜ and 𝑋COBL

෫ , respectively, 𝑙𝑏௝ and 

𝑢𝑏௝ are the lower and upper boundaries in the 𝑗-th dimension. 

2.4. Fitness-Distance Balance (FDB) 

Selection methods in the meta-heuristic algorithms are used to identify the individual to be 
referenced from the whole population to guide future search directions and establish a balance 
between exploration and exploitation [92]. As a new selection method developed by Kahraman et 
al. [93] in 2020, the aim of FDB is to discover one or more candidate solutions that will make the 
most contribution to the algorithm's search process. Since it was first proposed, FDB has been 
widely applied to many algorithms to improve their exploration capability and overall search 
performance, such as Symbiotic Organism Search (SOS) [93], Stochastic Fractal Search (SFS) [94], 
and Coyote Optimization Algorithm (COA) [95]. What distinguishes FDB from other selection 
methods is that the selection process is executed in accordance with the score of the candidate 
solution, not just its fitness value. In the score calculation, two traits of candidate solutions, including 
the fitness function value and their distance from the best solution (𝑋௕௘௦௧), are taken into account 
simultaneously. This guarantees that the candidate solution with the highest score value would be 
chosen to guide the population search in a more effective way. The implementation steps of the FDB 
selection method are as follows. 

i) Suppose the dimension of the optimization problem is 𝐷 , and 𝑁  is the total number of 
candidate solutions in the population. The 𝑖 -th candidate solution can be defined as 𝑋௜ ൌ

൫𝑥௜,ଵ, 𝑥௜,ଶ, ⋯ , 𝑥௜,஽൯, 𝑖 ൌ 1,2, ⋯ , 𝑁 . Thus, the Euclidean distance between each solution and the best 

solution in the population 𝑋௕௘௦௧ is calculated as shown in Eq (34). 

 ∀௜ୀଵ
ே 𝑋௜, 𝐷௑೔

ൌ ඥሺ𝑥௜,ଵ െ 𝑥௕௘௦௧,ଵሻଶ ൅ ሺ𝑥௜,ଶ െ 𝑥௕௘௦௧,ଶሻଶ ൅ ⋯ ൅ ሺ𝑥௜,஽ െ 𝑥௕௘௦௧,஽ሻଶ (34) 

ii) The distance vector 𝐷௑ for each candidate solution can be expressed as in Eq (35). 

 𝐷௑ ≡ ൥
𝑑ଵ
⋮
𝑑ே

൩

ேൈଵ

 (35) 

iii) After normalization, the fitness and distance values of candidate solutions are used for 
calculating the score, shown as: 

 ∀௜ୀଵ
ே 𝑋௜, 𝑆௑೔

ൌ 𝛾 ⋅ 𝑛𝑜𝑟𝑚𝐹௑೔
൅ ሺ1 െ 𝛾ሻ ⋅ 𝑛𝑜𝑟𝑚𝐷௑೔

 (36) 
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where 𝛾 is a constant equal to 0.5, 𝑛𝑜𝑟𝑚𝐹௑೔
 denotes the normalized fitness values of the solution, 

and 𝑛𝑜𝑟𝑚𝐷௑೔
 denotes the normalized distance values. 

iv) Finally, the score vector 𝑆௑, which stands for the FDB score values of the whole population, 
is given in Eq (37). 

 𝑆௑ ≡ ൥
𝑠ଵ
⋮
𝑠ே

൩

ேൈଵ

 (37) 

Once 𝑆௑ is created, the algorithm could select more suitable candidate solutions to direct the 
search process based on their FDB scores. 

3. The proposed IHAOAVOA algorithm 

3.1. Detailed design of the proposed IHAOAVOA algorithm 

In the exploration phase of the AO algorithm, the predatory behavior of Aquila to detect the 
potential fast-moving prey over a broad flight area is modeled (see Eqs (3) and (5)), which gives the 
algorithm robust global search capability and fast convergence rate [12]. Nonetheless, the selected 
search space cannot be searched thoroughly during the exploitation phase. As Figure 9 in the original 
paper [67] shows that the convergence curve remains unchanged in the later iterations, and the weak 
escape effects of the Lévy flight lead the algorithm to converge prematurely. In brief, AO has strong 
exploration capability, but its exploitation stage is still not sufficient. For the AVOA algorithm, the 
transition between exploration and exploitation depends on the hunger rate of vultures 𝐹. In the early 
exploration phase, the poor population diversity makes the algorithm exhibit a slow convergence rate. 
With the increase of iterations, the value of 𝐹  gradually decreases and the algorithm proceeds to 
perform the exploitation phase. A total of four different hunting strategies (see Eqs (19), (21), (24), 
and (27)) are used to achieve various position updating of vultures, which allows the algorithm to 
effectively exploit the solution information in the search space to approach the global optimum. As a 
result, AVOA has promising exploitation capability. 

In view of the above analysis, we hybridize the exploration phase of AO and the exploitation 
phase of AVOA to make full use of the advantages of the two basic algorithms. First, the AVOA 
algorithm is considered as the core framework, and we replace its original position updating rule in 
the exploration phase with Eqs (3) and (5) from AO, as follows: 

If 𝑟𝑎𝑛𝑑 ൑ 0.5: 

 𝑋௜ሺ𝑡 ൅ 1ሻ ൌ 𝑋஻ሺ𝑡ሻ ൈ ቀ1 െ ௧

்
ቁ ൅ 𝑋௠ሺ𝑡ሻ െ 𝑋஻ሺ𝑡ሻ ൈ 𝑟𝑎𝑛𝑑 (38) 

If 𝑟𝑎𝑛𝑑 ൐ 0.5: 

 𝑋௜ሺ𝑡 ൅ 1ሻ ൌ 𝑋஻ሺ𝑡ሻ ൈ Levyሺ𝐷ሻ ൅ 𝑋௥ሺ𝑡ሻ ൅ ሺ𝑦 െ 𝑥ሻ ൈ 𝑟𝑎𝑛𝑑 (39) 

This hybrid operation preserves the algorithm's stronger global and local search capabilities, as 
well as faster convergence speed. Then, to further improve the overall search performance of the 
preliminary hybrid algorithm, we introduce the COBL and FDB strategies. As described in Section 2.3, 
COBL is beneficial to enrich the population diversity and escape from the local optima. Hence, the 
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COBL strategy is employed to find better candidate solutions before each iterative calculation. 
Meanwhile, it can be seen from Eq (39) in the hybrid algorithm that the next generation position of 
the 𝑖 -th search agent primarily relies on the current best individual 𝑋஻  and one individual 𝑋௥ 
randomly selected from the whole population. Such reference individual obtained through the random 
selection method may not properly guide the algorithm to explore and exploit. To boost the search 
efficiency and maintain a better balance between the exploration and exploitation stages, we adopt the 
FDB selection strategy to identify one candidate 𝑋ி஽஻ that will make the most contribution to the 
search process to replace 𝑋௥ , as shown in Eq (40). All these strategies significantly enhance the 
convergence speed, solution quality, and robustness of the hybrid algorithm. Finally, this improved 
hybrid Aquila Optimizer and African Vultures Optimization Algorithm developed in this paper is 
named IHAOAVOA. 

 𝑋௜ሺ𝑡 ൅ 1ሻ ൌ 𝑋஻ሺ𝑡ሻ ൈ Levyሺ𝐷ሻ ൅ 𝑋ி஽஻ሺ𝑡ሻ ൅ ሺ𝑦 െ 𝑥ሻ ൈ 𝑟𝑎𝑛𝑑 (40) 

Figure 5 depicts the flow chart of the proposed IHAOAVOA algorithm, and its pseudo-code is 
summarized in Algorithm 1. 

3.2. Computational complexity of IHAOAVOA 

The computational complexity of the proposed IHAOAVOA is associated with three components: 
initialization, fitness evaluation, and updating of positions. In the initialization phase, the positions of 
all search agents are generated randomly in the search space, which needs computational complexity 
𝑂ሺ𝑁ሻ, where 𝑁 is the population size. Then in the iteration procedure, the algorithm evaluates the 
fitness value of each individual and updates the population positions sequentially, so the computational 
complexity is 𝑂ሺ2 ൈ 𝑇 ൈ 𝑁 ൅ 2 ൈ 𝑇 ൈ 𝑁 ൈ 𝐷ሻ, where 𝑇 denotes the maximum number of iterations 
and 𝐷  denotes the dimension of specific problems. Thus, the total computational complexity of 
IHAOAVOA should be 𝑂ሺ𝑁 ൈ ሺ1 ൅ 2𝑇 ൅ 2𝑇𝐷ሻሻ. As per the references [67,68], the computational 
complexity of both AO and AVOA is 𝑂ሺ𝑁 ൈ ሺ1 ൅ 𝑇 ൅ 𝑇𝐷ሻሻ. Compared with the basic algorithms, 
the computational complexity of IHAOAVOA increases to some extent as a consequence of the 
introduced COBL and FDB strategies. However, these extra time costs can greatly improve the search 
performance of the algorithm, which is acceptable based on the NFL theorem [63]. 
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Figure 5. Flow chart of the proposed IHAOAVOA algorithm. 

Algorithm 1 Pseudo-code of the proposed IHAOAVOA 

Initialization 

1.   Initialize the population size 𝑁 and the maximum iterations 𝑇 

2.   Initialize the positions of each search agent 𝑋௜ሺ𝑖 ൌ 1,2, ⋯ , 𝑁ሻ 

Iteration 

3.   While 𝑡 ൑ 𝑇 

4.     Check if the position goes beyond the search space boundary and then adjust it 

5.     Evaluate the fitness values of all search agents 

6.     Set 𝐵𝑒𝑠𝑡𝑣𝑢𝑙𝑡𝑢𝑟𝑒ଵ and 𝐵𝑒𝑠𝑡𝑣𝑢𝑙𝑡𝑢𝑟𝑒ଶ as the first-best solution and second-best solution respectively 

7.     For each search agent 𝑋௜ do 

8.       Select the best vulture 𝑋஻ according to Eq (12) 

9.       Update the parameter 𝐹 according to Eq (14) 

10.      Perform COBL to generate the opposite solution 𝑋COBL
෫  of 𝑋௜ using Eq (32)   //COBL 

11.      If the fitness of the opposite solution 𝑓ሺ𝑋COBL
෫ ሻ < the fitness of candidate solution 𝑓ሺ𝑋௜ሻ then 

12.        𝑋௜ ൌ 𝑋COBL
෫ , 𝑓ሺ𝑋௜ሻ ൌ 𝑓ሺ𝑋COBL

෫ ሻ 

13.      End If 

14.      If |𝐹| ൒ 1 then   //AO-Exploration 

15.        If 𝑟𝑎𝑛𝑑 ൑ 0.5 then 

16.          Update the position using Eq (38) 

17.        Else 

18.          Use FDB to select one candidate solution with the highest score 𝑋ி஽஻ from the whole population //FDB 

19.          Update the position using Eq (40) 

20.        End If 

21．     Else if |𝐹| ൏ 1 then   //AVOA-Exploitation 

Continued on next page
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22.        If |𝐹| ൒ 0.5 then 

23.          If 𝑟𝑎𝑛𝑑 ൑ 𝑃ଶ then 

24.            Update the position using Eq (19) 

25.          Else 

26.            Update the position using Eq (21) 

27.          End If 

28.        Else 

29.          If 𝑟𝑎𝑛𝑑 ൑ 𝑃ଷ then 

30.            Update the position using Eq (24) 

31.          Else 

32.            Update the position using Eq (27) 

33.          End If 

34.        End If 

35.      End If 

36.    End For 

37.    𝑡 ൌ 𝑡 ൅ 1 

38.  End While 

Output 

39.  Return the first-best solution 𝐵𝑒𝑠𝑡𝑣𝑢𝑙𝑡𝑢𝑟𝑒ଵ 

4. Experimental results and discussion 

In this section, the effectiveness and feasibility of the proposed IHAOAVOA are thoroughly 
validated on two groups of optimization functions. The classical benchmark functions are first 
employed to estimate the performance of the algorithm in solving 23 simple numerical problems. 
Afterward, 10 IEEE CEC2019 benchmark functions are used to assess the algorithm with respect to 
addressing complex numerical problems. To illustrate the advantage of the proposed algorithm, 
IHAOAVOA is compared with the native AO [67], AVOA [68], and six other state-of-the-art 
algorithms, namely Sine Cosine Algorithm (SCA) [36], Whale Optimization Algorithm (WOA) [43], 
Grey Wolf Optimizer (GWO) [44], Moth-Flame Optimization algorithm (MFO) [51], Tunicate Swarm 
Algorithm (TSA) [53], and Arithmetic Optimization Algorithm (AOA) [38]. For consistency and 
fairness of the comparison, the maximum iteration and population size are set as 500 and 30, 
respectively. All the mentioned algorithms run independently 30 times to decrease random errors, and 
the average fitness (Avg) and standard deviation (Std) of experimental results are adopted as two 
evaluation metrics, where the average fitness represents the searchability of the algorithm, and the 
closer the average fitness is to the theoretical optimum value indicates the higher convergence accuracy 
of the algorithm, while the standard deviation characterizes the deviation degree of the experimental 
data, and the smaller the standard deviation indicates the better robustness of the algorithm. Moreover, 
the Wilcoxon rank-sum test [96], Friedman ranking test [97], and mean absolute error (MAE) test are 
used to determine whether there are significant differences between IHAOAVOA and other 
competitors in a statistical sense. Table 1 lists the important parameter values of each algorithm, which 
are set the same as those recommended in the original literature. The proposed IHAOAVOA succeeds 
the parameter settings for each stage of AO and AVOA algorithms, and the distance coefficient 𝑘 for 
the COBL mechanism is fixed to 12,000 according to the literature [89] as well as extensive trials. 
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All the experimental series are implemented in MATLAB R2017a software (version 9.2.0) with 
Microsoft Windows 10 system, and the hardware platform of the computer is configured as Intel (R) 
Core (TM) i5-10300H CPU @ 2.50GHz and 16GB RAM. 

Table 1. Parameter settings of different algorithms. 

algorithm parameter setting 

AO [67] 𝑈 ൌ 0.00565; 𝑟 ൌ 10; 𝜔 ൌ 0.005; 𝛼 ൌ 0.1; 𝛿 ൌ 0.1; 𝐺ଵ ∈ ሾെ1,1ሿ; 𝐺ଶ ൌ ሾ2,0ሿ 

SCA [36] 𝑎 ൌ 2 

WOA [43] 𝑏 ൌ 1; 𝑎ଵ ൌ ሾ2,0ሿ; 𝑎ଶ ൌ ሾെ2, െ1ሿ 

GWO [44] 𝑎 ൌ ሾ2,0ሿ 

MFO [51] 𝑏 ൌ 1; 𝑡 ൌ ሾെ1,1ሿ; 𝑎 ∈ ሾെ1, െ2ሿ 

TSA [53] 𝑃௠௜௡ ൌ 1; 𝑃௠௔௫ ൌ 4 

AOA [38] 𝛼 ൌ 5; 𝜇 ൌ 0.499; 𝑀𝑖𝑛 ൌ 0.2; 𝑀𝑎𝑥 ൌ 0.9 

AVOA [68] 𝐿ଵ ൌ 0.8; 𝐿ଶ ൌ 0.2; 𝑤 ൌ 2.5; 𝑃ଵ ൌ 0.6; 𝑃ଶ ൌ 0.4; 𝑃ଷ ൌ 0.6 

IHAOAVOA 𝐿ଵ ൌ 0.8; 𝐿ଶ ൌ 0.2; 𝑤 ൌ 2.5; 𝑃ଶ ൌ 0.4; 𝑃ଷ ൌ 0.6; 𝑈 ൌ 0.00565; 𝑟 ൌ 10; 𝜔 ൌ 0.005; 𝑘 ൌ 12,000 

4.1. Experiment 1: classical benchmark functions 

In this subsection, a set of 23 classical benchmark functions selected from the reference [68] are 
utilized to evaluate the performance of the proposed IHAOAVOA. The 23 benchmark functions can 
be classified into three different categories on the basis of their properties: unimodal, multimodal, and 
fix-dimension multimodal. The unimodal benchmark functions (F1–F7) have only one global optimal 
value and are usually applied to check the algorithm's exploitation competence. By contrast, the 
multimodal benchmark functions (F8–F13) are characterized by multiple local minima. This kind of 
function is designed to examine the exploration capability and the local optima avoidance of the 
algorithm. It is worth mentioning here that the dimensions of the unimodal and multimodal benchmark 
functions (F1–F13) can be set as required, so they can optionally be used to see the performance of the 
proposed algorithm on high-dimensional problems. The fix-dimension multimodal benchmark 
functions (F14–F23) can be regarded as a combination of the first two categories of functions but with 
a lower dimension. They are used to study the stability of the algorithm in the transition between 
exploration and exploitation. The formula, dimension size ( 𝐷 ), variable range, and theoretical 
minimum ሺ𝐹minሻ of each function are outlined in Tables 2–4. Figure 6 intuitively shows the search 
space of some representative benchmark functions. 

In the experiments of classical benchmark functions, the impacts of two introduced strategies are 
first examined. Then, IHAOAVOA, AO, AVOA, and six state-of-the-art meta-heuristic algorithms are 
tested on these 23 functions concurrently. Several aspects of the obtained results are analyzed, 
including exploitation capability, exploration capability, boxplot, convergence curve, average 
computational time, and statistical differences. In addition, the scalability of IHAOAVOA for large-
scale optimization is also investigated. 
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Table 2. Unimodal benchmark functions. 

function D range Fmin 

𝐹ଵሺ𝑥ሻ ൌ ∑ 𝑥௜
ଶ஽

௜ୀଵ   30 [-100, 100] 0 

𝐹ଶሺ𝑥ሻ ൌ ∑ |𝑥௜|
஽
௜ୀଵ ൅ ∏ |𝑥௜|

஽
௜ୀଵ   30 [-10, 10] 0 

𝐹ଷሺ𝑥ሻ ൌ ∑ ሺ∑ 𝑥௝
஽
௝ୀଵ ሻଶ஽

௜ୀଵ   30 [-100, 100] 0 

𝐹ସሺ𝑥ሻ ൌ 𝑚𝑎𝑥௜ሼ|𝑥௜|,1 ൑ 𝑖 ൑ 𝐷ሽ 30 [-100, 100] 0 

𝐹ହሺ𝑥ሻ ൌ ∑ ሾ100ሺ𝑥௜ାଵ െ 𝑥௜
ଶሻଶ ൅ ሺ𝑥௜ െ 1ሻଶሿ஽ିଵ

௜ୀଵ   30 [-30, 30] 0 

𝐹଺ሺ𝑥ሻ ൌ ∑ ሺ|𝑥௜ ൅ 0.5|ሻଶ஽
௜ୀଵ   30 [-100, 100] 0 

𝐹଻ሺ𝑥ሻ ൌ ∑ 𝑖𝑥௜
ସ஽

௜ୀଵ ൅ 𝑟𝑎𝑛𝑑𝑜𝑚ሾ0,1ሻ  30 [-1.28, 1.28] 0 

Table 3. Multimodal benchmark functions. 

function D range Fmin 

𝐹 ሺ𝑥ሻ ൌ ∑ െ𝑥௜ sin൫ඥ|𝑥௜|൯஽
௜ୀଵ   30 [-500, 500] -418.9829 × Dim 

𝐹ଽሺ𝑥ሻ ൌ ∑ ሾ𝑥௜
ଶ െ 10 cosሺ2𝜋𝑥௜ሻ ൅ 10ሿ஽

௜ୀଵ   30 [-5.12, 5.12] 0 

𝐹ଵ଴ሺ𝑥ሻ ൌ െ20 expሺ െ 0.2ටଵ

௡
∑ 𝑥௜

ଶ஽
௜ୀଵ ሻ െ

expሺ
ଵ

௡
∑ cosሺ 2𝜋𝑥௜ሻ஽

௜ୀଵ ሻ ൅ 20 ൅ 𝑒  

30 [-32, 32] 0 

𝐹ଵଵሺ𝑥ሻ ൌ
ଵ

ସ଴଴଴
∑ 𝑥௜

ଶ஽
௜ୀଵ െ ∏ cosሺ

௫೔

√௜
ሻ஽

௜ୀଵ ൅ 1  30 [-600, 600] 0 

𝐹ଵଶሺ𝑥ሻ ൌ
గ

஽
ሼ10 sinሺ𝜋𝑦ଵሻ ൅ ∑ ሺ𝑦௜ െ 1ሻଶሾ1 ൅஽ିଵ

௜ୀଵ

10 sinଶሺ𝜋𝑦௜ାଵሻሿ ൅ ሺ𝑦஽ െ 1ሻଶሽ ൅ ∑ 𝑢ሺ𝑥௜, 10,100,4ሻ஽
௜ୀଵ    

𝑦௜ ൌ 1 ൅
𝑥௜ ൅ 1

4
, 𝑢ሺ𝑥௜, 𝑎, 𝑘, 𝑚ሻ ൌ ቐ

𝑘ሺ𝑥௜ െ 𝑎ሻ௠, 𝑥௜ ൐ 𝑎
0, െ𝑎 ൏ 𝑥௜ ൏ 𝑎
𝑘ሺെ𝑥௜ െ 𝑎ሻ௠, 𝑥௜ ൏ െ𝑎

 

30 [-50, 50] 0 

𝐹ଵଷሺ𝑥ሻ ൌ 0.1൛sinଶሺ3𝜋𝑥௜ሻ ൅ ∑ ሺ𝑥௜ െ 1ሻଶሾ1 ൅ sinଶሺ3𝜋𝑥௜ ൅஽
௜ୀଵ

1ሻሿ ൅ ሺ𝑥஽ െ 1ሻଶሾ1 ൅ sinଶሺ2𝜋𝑥௡ሻሿൟ ൅ ∑ 𝑢ሺ𝑥௜, 5,100,4ሻ஽
௜ୀଵ   

30 [-50, 50] 0 
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Table 4. Fix-dimension multimodal benchmark functions. 

function D range Fmin 

𝐹ଵସሺ𝑥ሻ ൌ ሺ
ଵ

ହ଴଴
൅ ∑ ሺ𝑗 ൅ ∑ ሺ𝑥௜ െ 𝑎௜௝ሻ଺ሻିଵଶ

௜ୀଵ
ଶହ
௝ୀଵ ሻିଵ  2 [-65, 65] 0.998 

𝐹ଵହሺ𝑥ሻ ൌ ∑ ሾ𝑎௜ െ
௫భሺ௕೔

మା௕೔௫మሻ

௕೔
మା௕೔௫యା௫ర

ሿଶଵଵ
௜ୀଵ   4 [-5, 5] 0.00030 

𝐹ଵ଺ሺ𝑥ሻ ൌ 4𝑥ଵ
ଶ െ 2.1𝑥ଵ

ସ ൅
1
3

𝑥ଵ
଺ ൅ 𝑥ଵ𝑥ଶ െ 4𝑥ଶ

ଶ ൅ 4𝑥ଶ
ସ 2 [-5, 5] -1.0316 

𝐹ଵ଻ሺ𝑥ሻ ൌ ሺ𝑥ଶ െ
5.1
4𝜋ଶ 𝑥ଵ

ଶ ൅
5
𝜋

𝑥ଵ െ 6ሻଶ ൅ 10ሺ1 െ
1

8𝜋
ሻ cos 𝑥ଵ ൅ 10 2 [-5, 5] 0.398 

𝐹ଵ଼ሺ𝑥ሻ ൌ ሾ1 ൅ ሺ𝑥ଵ ൅ 𝑥ଶ ൅ 1ሻଶሺ19 െ 14𝑥ଵ ൅ 3𝑥ଵ
ଶ െ 14𝑥ଶ ൅ 6𝑥ଵ𝑥ଶ ൅ 3𝑥ଶ

ଶሻሿ
ൈ ሾ30 ൅ ሺ2𝑥ଵ െ 3𝑥ଶሻଶ ൈ ሺ18 െ 32𝑥ଶ ൅ 12𝑥ଵ

ଶ ൅ 48𝑥ଶ െ 36𝑥ଵ𝑥ଶ ൅ 27𝑥ଶ
ଶሻሿ

 2 [-2, 2] 3 

𝐹ଵଽሺ𝑥ሻ ൌ െ ∑ 𝑐௜ expሺ െ ∑ 𝑎௜௝ሺ𝑥௝ െ 𝑝௜௝ሻଶଷ
௝ୀଵ ሻସ

௜ୀଵ   3 [-1, 2] -3.8628 

𝐹ଶ଴ሺ𝑥ሻ ൌ െ ∑ 𝑐௜ expሺ െ ∑ 𝑎௜௝ሺ𝑥௝ െ 𝑝௜௝ሻଶ଺
௝ୀଵ ሻସ

௜ୀଵ   6 [0, 1] -3.32 

𝐹ଶଵሺ𝑥ሻ ൌ െ ∑ ሾሺ𝑋 െ 𝑎௜ሻሺ𝑋 െ 𝑎௜ሻ் ൅ 𝑐௜ሿିଵହ
௜ୀଵ   4 [0, 10] -10.1532 

𝐹ଶଶሺ𝑥ሻ ൌ െ ∑ ሾሺ𝑋 െ 𝑎௜ሻሺ𝑋 െ 𝑎௜ሻ் ൅ 𝑐௜ሿିଵ଻
௜ୀଵ   4 [0, 10] -10.4028 

𝐹ଶଷሺ𝑥ሻ ൌ െ ∑ ሾሺ𝑋 െ 𝑎௜ሻሺ𝑋 െ 𝑎௜ሻ் ൅ 𝑐௜ሿିଵଵ଴
௜ୀଵ   4 [0, 10] -10.5363 

 

Figure 6. 3D view of some typical benchmark functions. 
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4.1.1. Impacts of components 

To overcome the defects in the single algorithm, this paper proposes a novel improved hybrid 
optimizer. First, the exploration phase of AO is hybridized with the exploitation phase of AVOA to 
achieve better convergence performance. Then, we introduce the COBL mechanism into the 
preliminary hybrid algorithm to help search agents escape from the local optima. Besides, to maintain 
a good balance between exploration and exploitation, the FDB method is adopted to select one more 
suitable reference individual for the population search. Hence, the proposed IHAOAVOA can be 
regarded as a hybrid of AO and AVOA integrated with COBL and FDB strategies. To evaluate the 
effectiveness of each component, three IHAOAVOA-derived variants are designed individually for 
comparison study in this subsection, which are listed below: 
 IHAOAVOA-1 (Hybrid of AO and AVOA only); 
 IHAOAVOA-2 (Hybrid of AO and AVOA integrated with COBL); 
 IHAOAVOA-3 (Hybrid of AO and AVOA integrated with FDB). 

Under the same experimental setting, IHAOAVOA-1, IHAOAVOA-2, IHAOAVOA-3, and 
IHAOAVOA are tested on 23 different types of benchmark functions in Tables 2–4 concurrently. The 
obtained average fitness (Avg) and standard deviation (Std) results are listed in  

Table 5. Based on the results, we can find that IHAOAVOA-2, IHAOAVOA-3, and IHAOAVOA 
always obtain better convergence accuracy and standard deviation values than IHAOAVOA-1 on test 
functions F2–F8, F12–F15, and F20. For F16–F19 and F21–F23, four algorithms could obtain the same 
optimal fitness, but IHAOAVOA-2, IHAOAVOA-3, and IHAOAVOA still slightly outperform 
IHAOAVOA-1 regarding the standard deviation. These demonstrate that the introduced COBL and 
FDB strategies are indeed effective in improving the search breadth and robustness of the hybrid 
algorithm to some extent; in particular, the role of COBL is more important and irreplaceable. 
Compared to IHAOAVOA-2 and IHAOAVOA-3, which have one single strategy, it is clear that 
IHAOAVOA wins on F5–F8 and F12–F15. In addition, IHAOAVOA shows a higher level of stability in 
solving almost all test issues. Thus, we can conclude that the reasonable combination of COBL and 
FDB has a significant synergistic effect on boosting the comprehensive performance of 
IHAOAVOA, enabling it to provide very excellent solutions. After validation, IHAOAVOA is 
selected as the final version for further comparison and discussion. 

Table 5. Comparison results of IHAOAVOA-1, IHAOAVOA-2, IHAOAVOA-3, and 
IHAOAVOA on 23 benchmark functions. 

Fn 
IHAOAVOA-1 IHAOAVOA-2 IHAOAVOA-3 IHAOAVOA 

Avg Std Avg Std Avg Std Avg Std 

F1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F2 1.51E-157 8.24E-157 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F3 2.28E-260 4.31E-260 0.00E+00 0.00E+00 2.90E-272 0.00E+00 0.00E+00 0.00E+00 

F4 1.84E-163 7.64E-163 0.00E+00 0.00E+00 1.06E-172 0.00E+00 0.00E+00 0.00E+00 

F5 3.23E-05 4.31E-05 2.41E-06 1.17E-05 2.91E-05 3.61E-05 8.30E-07 2.43E-06 

F6 8.27E-08 7.19E-08 3.04E-08 3.42E-08 5.08E-08 4.52E-08 2.00E-08 2.52E-08 

F7 1.20E-04 1.08E-04 4.12E-05 4.16E-05 9.66E-05 9.39E-05 3.41E-05 3.28E-05 

F8 -11372.005 1.85E+03 -12045.671 1.33E+03 -11455.163 1.82E+03 -12115.001 1.07E+03 

Continued on next page 
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Fn 
IHAOAVOA-1 IHAOAVOA-2 IHAOAVOA-3 IHAOAVOA 

Avg Std Avg Std Avg Std Avg Std 

F9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F10 8.88E-16 0.00E+00 8.88E-16 0.00E+00 8.88E-16 0.00E+00 8.88E-16 0.00E+00 

F11 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F12 8.17E-09 7.84E-09 3.95E-09 5.99E-09 5.27E-09 5.70E-09 3.83E-09 4.34E-09 

F13 4.10E-08 6.52E-08 5.27E-09 6.91E-09 2.31E-08 2.09E-08 3.36E-09 4.30E-09 

F14 3.05E+00 3.76E+00 1.49E+00 8.54E-01 2.79E+00 3.47E+00 1.23E+00 6.21E-01 

F15 3.17E-04 1.54E-05 3.12E-04 6.51E-06 3.15E-04 1.41E-05 3.11E-04 5.06E-06 

F16 -1.0316 4.77E-16 -1.0316 4.32E-16 -1.0316 4.59E-16 -1.0316 4.36E-16 

F17 3.98E-01 3.24E-16 3.98E-01 0.00E+00 3.98E-01 0.00E+00 3.98E-01 0.00E+00 

F18 3.00E+00 7.45E-07 3.00E+00 2.44E-09 3.00E+00 2.86E-08 3.00E+00 3.63E-10 

F19 -3.8628 4.34E-12 -3.8628 2.01E-11 -3.8628 2.97E-12 -3.8628 1.32E-12 

F20 -3.2669 6.56E-02 -3.2784 6.62E-02 -3.2850 5.77E-02 -3.2903 5.35E-02 

F21 -10.1532 8.49E-14 -10.1532 4.20E-13 -10.1532 1.99E-13 -10.1532 6.68E-14 

F22 -10.4029 3.32E-13 -10.4029 2.93E-13 -10.4029 3.18E-13 -10.4029 1.89E-13 

F23 -10.5364 6.78E-13 -10.5364 7.57E-13 -10.5364 4.53E-13 -10.5364 8.64E-14 

Note: The best results obtained have been marked in bold. 

4.1.2. Evaluation of exploitation and exploration capabilities 

According to the previously described unimodal, multimodal, and fix-dimension multimodal 
benchmark functions, in this part, we give a complete assessment of the exploitation and exploration 
capabilities of the proposed algorithm. Table 6 lists the average fitness and standard deviation results 
obtained by IHAOAVOA and other algorithms for each function F1–F23 in the dimension 𝐷 ൌ 30. 
As can be seen from this table, the proposed IHAOAVOA outperforms its peers on the majority of 
the test problems. 

Specifically, for the unimodal functions (F1–F7), IHAOAVOA can effectively search for the 
global optimum (0) on F1–F4, and the solution accuracy of the proposed improved hybrid algorithm is 
greatly increased compared to the basic AO and AVOA. On functions F5–F7, though IHAOAVOA does 
not obtain the theoretical optimal values, its solution accuracy is still marginally higher than that of 
AO and AVOA by several orders of magnitude, ranking first in all comparison algorithms. As far as 
the standard deviation is concerned, IHAOAVOA also provides the best performance on these 
problems. The goal of unimodal functions is to evaluate the exploitation capability. From the above 
results, we can confirm that IHAOAVOA has competitive local exploitation potential. 

For the multimodal functions (F8–F13), the average fitness and standard deviation of IHAOAVOA on 
F8, F12, and F13 are completely superior to other competitor algorithms. On functions F9 and F10, the 
proposed algorithm obtains the same performance as AO, AOA, and AVOA, but much better than SCA, 
WOA, GWO, MFO, and TSA. On function F11, AO, AVOA, and IHAOAVOA show no difference, and all 
provide the most satisfactory results. The purpose of multimodal functions is to measure the exploration 
ability. Therefore, these results prove that IHAOAVOA possesses excellent global exploration capability. 
This is mainly attributed to the fact that the designed COBL strategy can efficiently expand the unknown 
search region and help the algorithm bypass the local optima to find higher-quality solutions. 



When solving fix-dimension multimodal functions (F14–F23), IHAOAVOA could comfortably outperform others in terms of the average 
fitness and standard deviation on F14, F15, F20, and F23. For the remaining functions, whereas some comparison algorithms can achieve the same 
best average fitness values as IHAOAVOA, the standard deviation of the proposed algorithm is the smallest among them. This reveals the superior 
robustness of IHAOAVOA. In light of the properties of the fix-dimension multimodal functions, these results indicate that IHAOAVOA is capable 
of better balancing the exploration and exploitation, which benefits from the FDB selection method. 

4.1.3. Boxplots analysis 

Since the boxplot can visualize the data distribution, it is a well-suited diagram for describing the agreement between the data. Based on the 
results obtained through 30 independent runs in Table 6, to better understand the algorithm’s distribution characteristics, the boxplots of 
IHAOAVOA and other algorithms on 12 representative benchmark functions are depicted in Figure 7. In this figure, the center marker of each box 
denotes the median value, the bottom and top fringes of the box respectively represent the first and third quartiles, and the notation "+" represents 
the outliers. From Figure 7, it can be seen that the proposed IHAOAVOA shows great consistency and produces no outliers during the optimization 
process for almost all test cases. At the same time, the median, maximum, and minimum values achieved by IHAOAVOA are more concentrated 
compared with competitor algorithms. On function F8, despite individual outliers, the overall distribution of IHAOAVOA remains superior to that 
of others. The above demonstrates that the IHAOAVOA proposed in this paper has strong stability. 

Table 6. Comparison results of different algorithms on 23 benchmark functions. 

Fn criteria AO SCA WOA GWO MFO TSA AOA AVOA IHAOAVOA 

F1 
Avg 1.65E-101 8.60E+00 2.21E-71 6.79E-28 3.00E+03 9.17E-21 3.44E-26 9.28E-301 0.00E+00 

Std 9.04E-101 1.18E+01 1.20E-70 9.42E-28 5.35E+03 4.50E-20 1.88E-25 0.00E+00 0.00E+00 

F2 
Avg 2.30E-55 3.44E-02 1.12E-49 1.13E-16 3.38E+01 7.45E-14 0.00E+00 1.34E-149 0.00E+00 

Std 1.26E-54 4.97E-02 6.06E-49 9.49E-17 1.86E+01 6.22E-14 0.00E+00 7.32E-149 0.00E+00 

F3 
Avg 9.21E-106 9.04E+03 4.55E+04 8.29E-05 2.01E+04 3.38E-04 2.81E-03 9.87E-208 0.00E+00 

Std 4.03E-105 5.83E+03 1.20E+04 4.16E-04 1.01E+04 6.64E-04 7.69E-03 0.00E+00 0.00E+00 

F4 
Avg 1.60E-51 3.35E+01 5.03E+01 1.03E-06 6.70E+01 3.73E-01 2.57E-02 1.53E-146 0.00E+00 

Std 8.76E-51 1.11E+01 2.63E+01 2.00E-06 9.60E+00 3.50E-01 2.07E-02 8.23E-146 0.00E+00 

F5 
Avg 5.17E-03 4.92E+04 2.79E+01 2.70E+01 5.36E+06 3.12E+01 2.85E+01 4.82E-05 5.83E-07 

Std 1.82E-02 1.02E+05 4.10E-01 6.82E-01 2.03E+07 1.54E+01 2.80E-01 4.40E-05 9.72E-07 

Continued on next page 
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Fn criteria AO SCA WOA GWO MFO TSA AOA AVOA IHAOAVOA 

F6 
Avg 9.93E-05 2.07E+01 4.33E-01 7.79E-01 2.01E+03 3.72E+00 3.20E+00 5.27E-07 2.17E-08 

Std 1.60E-04 3.48E+01 2.02E-01 3.94E-01 4.08E+03 5.83E-01 3.19E-01 5.06E-07 4.06E-08 

F7 
Avg 1.31E-04 1.17E-01 3.65E-03 1.93E-03 2.99E+00 9.99E-03 6.07E-05 1.29E-04 3.22E-05 

Std 1.28E-04 1.14E-01 4.94E-03 8.63E-04 4.42E+00 5.40E-03 6.64E-05 8.95E-05 2.53E-05 

F8 
Avg -7666.078 -3710.356 -9574.657 -6086.846 -8436.128 -6084.151 -5267.714 -12365.251 -12514.211 

Std 3.57E+03 3.60E+02 1.59E+03 7.35E+02 7.67E+02 3.51E+02 3.89E+02 4.16E+02 3.03E+02 

F9 
Avg 0.00E+00 3.37E+01 5.67E+00 2.57E+00 1.59E+02 1.88E+02 0.00E+00 0.00E+00 0.00E+00 

Std 0.00E+00 2.62E+01 3.11E+01 3.49E+00 3.75E+01 3.95E+01 0.00E+00 0.00E+00 0.00E+00 

F10 
Avg 8.88E-16 1.49E+01 4.80E-15 1.02E-13 1.29E+01 1.59E+00 8.88E-16 8.88E-16 8.88E-16 

Std 0.00E+00 8.32E+00 2.35E-15 1.86E-14 8.44E+00 1.53E+00 0.00E+00 0.00E+00 0.00E+00 

F11 
Avg 0.00E+00 9.45E-01 1.64E-02 4.96E-03 2.20E+01 1.07E-02 1.50E-01 0.00E+00 0.00E+00 

Std 0.00E+00 3.33E-01 5.30E-02 8.06E-03 3.87E+01 1.55E-02 1.24E-01 0.00E+00 0.00E+00 

F12 
Avg 3.45E-06 8.42E+04 2.87E-02 4.32E-02 1.27E+04 7.94E+00 5.15E-01 2.41E-08 3.35E-09 

Std 5.68E-06 2.82E+05 4.43E-02 2.43E-02 5.07E+04 3.61E+00 4.35E-02 1.32E-08 2.99E-09 

F13 
Avg 2.03E-05 2.23E+05 5.36E-01 6.71E-01 1.37E+07 3.08E+00 2.81E+00 4.15E-08 8.32E-09 

Std 3.39E-05 7.25E+05 2.35E-01 2.14E-01 7.49E+07 7.42E-01 9.95E-02 3.59E-08 2.30E-08 

F14 
Avg 2.92E+00 1.66E+00 2.96E+00 5.14E+00 2.68E+00 8.88E+00 9.42E+00 1.36E+00 1.26E+00 

Std 3.76E+00 9.51E-01 3.23E+00 4.41E+00 2.01E+00 5.51E+00 4.23E+00 1.79E+00 6.86E-01 

F15 
Avg 4.71E-04 1.03E-03 5.65E-04 5.05E-03 1.23E-03 3.93E-03 1.18E-02 4.08E-04 3.25E-04 

Std 1.21E-04 3.92E-04 2.15E-04 8.60E-03 1.39E-03 7.54E-03 1.41E-02 1.99E-04 6.11E-05 

F16 
Avg -1.0313 -1.0316 -1.0316 -1.0316 -1.0316 -1.0253 -1.0316 -1.0316 -1.0316 

Std 3.78E-04 4.67E-05 4.89E-09 2.53E-08 6.78E-16 1.29E-02 1.18E-07 4.46E-16 4.34E-16 

F17 
Avg 3.98E-01 4.00E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 4.10E-01 3.98E-01 3.98E-01 

Std 3.19E-04 1.87E-03 8.49E-05 2.96E-06 0.00E+00 5.51E-05 1.06E-02 5.42E-16 0.00E+00 

F18 
Avg 3.04E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 6.60E+00 1.24E+01 3.00E+00 3.00E+00 

Std 3.90E-02 7.14E-05 9.90E-05 3.22E-05 1.55E-15 9.34E+00 1.95E+01 6.67E-06 2.81E-08 

F19 Avg -3.8546 -3.8552 -3.8491 -3.8617 -3.8628 -3.8620 -3.8527 -3.8628 -3.8628 

Continued on next page 
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Fn Criteria AO SCA WOA GWO MFO TSA AOA AVOA IHAOAVOA 

 Std 6.88E-03 3.23E-03 4.07E-02 2.26E-03 1.36E-11 1.96E-03 3.00E-03 7.01E-11 2.71E-15 

F20 Avg -3.1375 -2.8605 -3.2402 -3.2656 -3.2266 -3.2513 -3.0903 -3.2704 -3.2824 

Std 1.00E-01 3.92E-01 9.56E-02 7.69E-02 6.40E-02 6.86E-02 7.36E-02 6.00E-02 5.70E-02 

F21 Avg -10.1434 -2.1289 -8.2722 -9.5607 -5.8923 -6.3812 -3.8602 -10.1532 -10.1532 

Std 1.33E-02 1.77E+00 2.49E+00 1.84E+00 3.42E+00 2.94E+00 1.35E+00 7.59E-13 6.03E-13 

F22 Avg -10.3894 -3.1252 -8.1968 -10.4010 -6.9732 -6.9165 -3.5839 -10.4029 -10.4029 

Std 1.56E-02 1.80E+00 3.16E+00 1.47E-03 3.58E+00 3.45E+00 1.08E+00 6.78E-13 1.00E-13 

F23 Avg -10.5293 -3.8926 -7.2253 -10.5345 -7.3135 -6.9438 -4.1219 -10.5360 -10.5364 

Std 8.12E-03 1.69E+00 3.44E+00 9.63E-04 3.58E+00 3.71E+00 1.79E+00 4.42E-08 3.35E-13 

Note: The best results obtained have been marked in bold. 



 

Figure 7. Boxplots of different algorithms on some benchmark functions. 

4.1.4. Convergence behavior analysis 

Normally, search agents tend to change dramatically in the early iterations to explore the 
promising area of the search space as much as possible, then exploit it at length and converge gradually 
with the number of iterations. To analyze the convergence behavior of the algorithm in the search for 
the optimal solution, Figure 8 plots the convergence curves of AO, SCA, WOA, GWO, MFO, TSA, 
AOA, AVOA, and IHAOAVOA on 23 benchmark functions throughout the iterations. 

As we can observe from this figure, the proposed IHAOAVOA has superior and competitive 
convergence performance compared with other state-of-the-art algorithms. For unimodal benchmark 
functions (F1–F7), the proposed IHAOAVOA can rapidly converge to the global optimum in the initial 
phase of functions F1–F4, and its convergence curve displays the fastest decay rate; however, other 
algorithms suffer from significant lag and are slow to search. This phenomenon is because the designed 
COBL mechanism can provide better randomness and population diversity at the initial stage, thus 
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deeply extending the search range of IHAOAVOA. On functions F5 and F6, IHAOAVOA presents a 
similar but better convergence trend than AO at the beginning of the iteration, and later it progressively 
follows the same trend as AVOA. Eventually, IHAOAVOA obtains the highest convergence accuracy 
among these algorithms with a considerable improvement over the basic AO and AVOA. These 
behaviors exactly validate the general framework of the proposed algorithm. The combination of the 
exploration phase of AO and the exploitation phase of AVOA contributes to effectively enhancing the 
search performance and accelerating the convergence. On function F7, IHAOAVOA also obtains the 
best convergence accuracy with the least number of iterations compared with its peers. 

Since the multimodal benchmark functions (F8–F13) consist of several local optima, it becomes 
more challenging to solve them. Nevertheless, IHAOAVOA still maintains excellent convergence 
behavior in these test cases. In particular, on functions F9 and F11, IHAOAVOA can achieve the global 
optimum within ten iterations. On functions F8 and F10, although the theoretical optimal value is not 
obtained, the convergence speed and final solution accuracy of the proposed method again rank first 
among all algorithms. On function F12, IHAOAVOA lags behind AO at the beginning of the search 
process. Yet, during the later iterations, AO falls into the local optima, but the proposed method 
commences to show its advantages and accelerate convergence to yield higher-quality results. 
Furthermore, the superior local optima avoidance capability of IHAOAVOA is well demonstrated on 
F13. These convergence behaviors of IHAOAVOA on multimodal functions present strong evidence 
that the hybrid operation and COBL mechanism are beneficial to help get rid of the local optima. For 
fix-dimension multimodal benchmark functions (F14–F23), it can be noted that IHAOAVOA quickly 
shifts from exploration to exploitation phases, converges towards the global optimum in the early 
stages of the iterations, and gradually determines the optimal value. Compared with the AO, AVOA, 
and other competitor algorithms, the calculation accuracy and operating efficiency of the proposed 
algorithm on these functions are also improved to some extent, which mainly owes to the role of the 
FDB selection method in guiding the search process. 

In short, the proposed IHAOAVOA can provide a better convergence pattern no matter for 
unimodal or multimodal functions. 

4.1.5. Computational time analysis 

To investigate the computational cost of the proposed IHAOAVOA, Table 7 reports the average 
computational time obtained by each algorithm on 23 benchmark functions. For a more intuitive 
overview of the results, the total runtime of the nine methods has been calculated and sorted as follows: 
IHAOAVOA > AO > AVOA > GWO > MFO > TSA > SCA > AOA > WOA. It can be noticed that 
IHAOAVOA consumes more computational time than AO and AVOA, which ranks last among all 
algorithms. One of the main reasons for this is the high time consumption of AO and AVOA themselves. 
Furthermore, IHAOAVOA employs COBL to generate the opposite candidate solution to boost the 
algorithm’s local optima avoidance capability and extend the unknown search space, and the FDB 
selection method is used to better guide the search procedure. These introduced strategies also increase 
the steps of the hybrid algorithm and extra computational time cost. However, on the whole, 
considering the NFL theorem and the substantial time consumption of function evaluation in resolving 
real-life optimization tasks, it is acceptable to sacrifice some runtime to achieve more reliable and 
accurate solutions. 
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Table 7. Average computational time of different algorithms on 23 benchmark functions (unit: s). 

Fn AO SCA WOA GWO MFO TSA AOA AVOA IHAOAVOA 

F1 2.42E-01 1.08E-01 7.88E-02 1.29E-01 1.08E-01 1.15E-01 9.67E-02 2.06E-01 3.23E-01 

F2 2.64E-01 1.13E-01 8.63E-02 1.40E-01 1.17E-01 1.24E-01 1.01E-01 1.96E-01 3.29E-01 

F3 9.72E-01 4.66E-01 4.32E-01 5.00E-01 4.73E-01 4.80E-01 4.52E-01 5.49E-01 1.40E+00 

F4 2.36E-01 1.08E-01 7.49E-02 1.26E-01 1.08E-01 1.10E-01 9.17E-02 1.84E-01 2.92E-01 

F5 2.80E-01 1.24E-01 9.37E-02 1.47E-01 1.31E-01 1.35E-01 1.13E-01 2.12E-01 3.60E-01 

F6 2.31E-01 1.06E-01 7.40E-02 1.23E-01 1.02E-01 1.07E-01 8.54E-02 1.75E-01 2.86E-01 

F7 3.55E-01 1.63E-01 1.30E-01 1.83E-01 1.65E-01 1.72E-01 1.51E-01 2.44E-01 4.68E-01 

F8 2.85E-01 1.30E-01 9.53E-02 1.45E-01 1.28E-01 1.38E-01 1.13E-01 2.04E-01 3.62E-01 

F9 2.42E-01 1.13E-01 7.94E-02 1.28E-01 1.12E-01 1.18E-01 9.58E-02 1.80E-01 2.98E-01 

F10 2.70E-01 1.29E-01 9.02E-02 1.37E-01 1.26E-01 1.27E-01 1.02E-01 1.95E-01 3.39E-01 

F11 2.93E-01 1.39E-01 1.06E-01 1.48E-01 1.38E-01 1.34E-01 1.20E-01 2.13E-01 3.69E-01 

F12 6.28E-01 3.01E-01 2.70E-01 3.15E-01 3.03E-01 3.01E-01 2.88E-01 3.71E-01 8.72E-01 

F13 6.44E-01 3.09E-01 2.72E-01 3.22E-01 3.03E-01 3.11E-01 2.81E-01 3.79E-01 8.91E-01 

F14 1.34E+00 6.22E-01 6.14E-01 6.10E-01 6.28E-01 6.16E-01 6.25E-01 7.15E-01 1.95E+00 

F15 1.96E-01 6.40E-02 6.27E-02 6.66E-02 6.87E-02 6.61E-02 6.78E-02 1.51E-01 2.64E-01 

F16 1.61E-01 4.82E-02 4.74E-02 4.94E-02 5.52E-02 4.81E-02 5.08E-02 1.36E-01 2.13E-01 

F17 1.62E-01 4.41E-02 4.25E-02 4.47E-02 4.81E-02 4.38E-02 4.52E-02 1.30E-01 1.97E-01 

F18 1.59E-01 4.30E-02 4.23E-02 4.60E-02 5.05E-02 4.45E-02 4.32E-02 1.33E-01 1.99E-01 

F19 2.64E-01 9.55E-02 9.03E-02 9.51E-02 9.92E-02 8.95E-02 9.55E-02 1.79E-01 3.48E-01 

F20 2.62E-01 9.71E-02 9.21E-02 1.03E-01 1.05E-01 9.96E-02 9.42E-02 1.84E-01 3.56E-01 

F21 3.85E-01 1.55E-01 1.54E-01 1.55E-01 1.59E-01 1.57E-01 1.58E-01 2.43E-01 5.33E-01 

F22 4.68E-01 1.99E-01 1.91E-01 2.00E-01 2.04E-01 1.96E-01 1.92E-01 2.89E-01 6.52E-01 

F23 5.85E-01 2.55E-01 2.48E-01 2.51E-01 2.60E-01 2.52E-01 2.54E-01 3.51E-01 8.41E-01 

Note: The best results obtained have been marked in bold. 

4.1.6. Statistical test 

Because the results attained by each algorithm are random, it is usually not sufficient to evaluate 
the relevant performance based only on the average fitness and standard deviation values. To 
statistically validate whether there is a significant difference between the proposed IHAOAVOA and 
the comparison algorithm, the Wilcoxon rank-sum test [96], Friedman ranking test [97], and mean 
absolute error (MAE) test are conducted in this subsection. 

For Wilcoxon rank-sum test, a non-parametric statistical method, the significance level is set 
as 5%. Specifically, if the 𝑝-value is less than 0.05, it means that IHAOAVOA performs better 
than the comparison algorithm; otherwise, IHAOAVOA performs worse than the comparison 
algorithm. Additionally, NaN indicates that IHAOAVOA performs consistently with the 
comparison algorithm. The obtained 𝑝-values of the Wilcoxon rank-sum test on each benchmark 
function are recorded in Table 9. For convenience, in the last line of this table, we use the letter 
symbols (W/T/L) to denote the number of winner times, the number of tie times, and the number of 
loss times for IHAOAVOA, respectively. As shown in Table 9, IHAOAVOA is able to outperform AO 
on 20 functions, SCA on 23 functions, WOA on 23 functions, GWO on 23 functions, MFO on 22 
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functions, TSA on 23 functions, AOA on 20 functions, and AVOA on 18 functions, which proves the 
significant superiority of the proposed work. 

To reveal the overall performance ranking of each algorithm on 23 benchmark functions, another 
non-parametric comparison method: the Friedman ranking test, is used to assess the average fitness 
data “Avg” obtained in Table 6. As presented in Figure 9, the proposed IHAOAVOA achieves the best 
Friedman mean ranking value of 1.6522 among these algorithms. Thus, based on the theories of 
statistical analysis, we can consider that IHAOAVOA has a noticeable improvement over the basic AO 
and AVOA, and it can provide the best performance in all comparative algorithms. 

At last, each algorithm's mean absolute error (MAE) on these classical test functions is also 
evaluated and ranked. The statistical MAE is a measure to reveal the gap between estimates and the 
theoretical values, which is formulated as follows: 

 MAE ൌ ଵ

ேி
∑ |𝑓௜ െ 𝑓௜

∗|ேி
௜ୀଵ  (41) 

where 𝑁𝐹 is the number of test functions, 𝑓௜ denotes the optimization result of the 𝑖-th function 
obtained by the algorithm, and 𝑓௜

∗ denotes the global optimum of the 𝑖-th function. 

Table 8. Mean absolute error of different algorithms on 23 benchmark functions. 

algorithms MAE rank 

AO 2.13E+02 3 

SCA 1.63E+04 8 

WOA 2.11E+03 7 

GWO 2.83E+02 4 

MFO 8.31E+05 9 

TSA 2.93E+02 5 

AOA 3.21E+02 6 

AVOA 8.90E+00 2 

IHAOAVOA 2.42E+00 1 

Note: The best results obtained have been marked in bold. 

Table 8 records the MAE and ranking of all algorithms. From this table, IHAOAVOA has the 
smallest MAE value with a reduction of 98.87 and 72.84% compared to AO and AVOA respectively, 
and it ranks first among all algorithms. These results once again prove the superiority of the proposed 
method statistically. 
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Figure 8. Convergence curves of different algorithms on 23 benchmark functions. 
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Table 9. Statistical results of the Wilcoxon rank-sum test between IHAOAVOA and other 
algorithms on 23 benchmark functions. 

Fn 
IHAOAVOA VS. 

AO SCA WOA GWO MFO TSA AOA AVOA 

F1 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 8.87E-07 

F2 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 NaN 1.21E-12 

F3 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

F4 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

F5 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.34E-11 

F6 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 6.07E-11 

F7 8.84E-07 3.02E-11 2.37E-10 3.02E-11 3.02E-11 3.02E-11 1.15E-02 7.74E-06 

F8 7.39E-11 3.02E-11 6.70E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 7.30E-04 

F9 NaN 1.21E-12 1.61E-11 1.17E-12 1.21E-12 1.21E-12 NaN NaN 

F10 NaN 1.21E-12 3.32E-10 1.15E-12 1.21E-12 1.21E-12 NaN NaN 

F11 NaN 1.21E-12 4.19E-02 1.37E-03 1.21E-12 5.37E-06 1.21E-12 NaN 

F12 4.98E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 1.21E-10 

F13 6.72E-10 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.82E-09 

F14 1.20E-07 3.16E-08 1.12E-08 8.71E-10 6.35E-05 8.53E-11 5.73E-11 7.83E-03 

F15 6.12E-10 4.98E-11 5.09E-08 2.53E-04 3.67E-11 7.74E-06 9.92E-11 2.25E-04 

F16 3.15E-12 3.15E-12 3.15E-12 3.15E-12 6.78E-16 3.15E-12 3.15E-12 8.12E-01 

F17 1.21E-12 1.21E-12 1.21E-12 1.21E-12 NaN 1.21E-12 1.21E-12 5.14E-06 

F18 3.02E-11 3.34E-11 7.39E-11 3.02E-11 2.48E-11 3.02E-11 3.35E-08 6.72E-10 

F19 2.99E-11 2.99E-11 2.99E-11 2.99E-11 1.20E-12 2.99E-11 2.99E-11 9.88E-01 

F20 8.48E-09 3.02E-11 6.77E-05 6.77E-05 7.69E-08 4.74E-06 8.15E-11 3.92E-02 

F21 3.01E-11 3.01E-11 3.01E-11 3.01E-11 7.17E-10 3.01E-11 3.01E-11 6.52E-05 

F22 3.00E-11 3.00E-11 3.00E-11 3.00E-11 3.00E-11 3.00E-11 3.00E-11 4.18E-03 

F23 2.98E-11 2.98E-11 2.98E-11 2.98E-11 2.98E-11 2.98E-11 2.98E-11 1.22E-07 

(W|T|L) 20/3/0 23/0/0 23/0/0 23/0/0 22/1/0 23/0/0 20/3/0 18/3/2 

Note: The obtained p-values greater than 0.5 have been marked in bold. 

 

Figure 9. Friedman mean rank of different algorithms on 23 benchmark functions. 



4.1.7. Scalability analysis 

Scalability is a critical metric that represents the impact of dimension expansion on performance fluctuations of the algorithm. From the 
above experimental results, it can be seen that IHAOAVOA achieves good convergence on low-dimensional benchmark functions. However, 
complex high-dimensional optimization problems prevail in practical applications, and many algorithms are prone to failure when dealing 
with such problems. To further verify the effectiveness of the proposed method for high-dimensional optimization, IHAOAVOA is applied 
to solve 13 benchmark functions F1–F13 in different dimensions 𝐷 ൌ ሼ100, 500, 1000ሽ. The parameter settings remain the same as in the 
previous experiments, and the obtained results of the nine algorithms after 30 independent runs are reported in Table 10. 

From the data comparison in Table 10, it can be seen that IHAOAVOA also performs well in the condition of high dimensions. For functions 
F1–F4, F9, and F11, IHAOAVOA always finds the global optimal solution to the problem, regardless of whether the dimensions change. For 
functions F5–F8, F12, and F13, like its peers, the optimization accuracy of IHAOAVOA decreases as the number of dimensions increases. The main 
reason for this is that the larger the dimension of the data, the more complex the search space and the more elements that need to be optimized. 
However, the performance of IHAOAVOA does not deteriorate significantly. Compared with AO, AVOA, and other optimizers, the proposed 
method still provides superior outcomes. For function F10, the scalable results of IHAOAVOA are consistent with those of AO and AVOA. 
Meanwhile, it is worth noting from Table 10 that these comparison algorithms (SCA, WOA, GWO, MFO, TSA, and AOA) show poor search 
capability for some issues, especially in higher dimensions. In order to better illustrate the overall performance of IHAOAVOA on scalable test 
functions, a Friedman ranking test based on the average fitness values is carried out and presented in Figure 10. It is clear from this figure that the 
proposed IHAOAVOA ranks first among all algorithms independent of dimensionality. 

These results prove that IHAOAVOA doesn't suffer from the so-called “curse of dimension.” It can not only easily resolve low-dimensional 
problems, but also high-dimensional problems stably. 

Table 10. Comparison results of IHAOAVOA and other algorithms on 13 benchmark functions in different dimensions (𝐷 ൌ
100/500/1000). 

Fn dimension criteria AO SCA WOA GWO MFO TSA AOA AVOA IHAOAVOA 

F1 

100 
Avg 3.65E-109 1.14E+04 8.16E-73 2.23E-12 6.02E+04 4.57E-10 2.46E-02 1.24E-286 0.00E+00 

Std 1.96E-108 8.83E+03 2.92E-72 2.08E-12 1.32E+04 5.31E-10 7.55E-03 0.00E+00 0.00E+00 

500 
Avg 2.02E-98 2.10E+05 4.83E-68 1.75E-03 1.16E+06 3.15E-02 6.31E-01 4.82E-291 0.00E+00 

Std 1.10E-97 8.92E+04 2.65E-67 7.17E-04 4.14E+04 2.74E-02 4.73E-02 0.00E+00 0.00E+00 

1000 Avg 2.01E-98 4.28E+05 6.52E-70 2.62E-01 2.74E+06 5.49E+00 1.72E+00 7.28E-275 0.00E+00 

Continued on next page 
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Fn dimension criteria AO SCA WOA GWO MFO TSA AOA AVOA IHAOAVOA 

  Std 1.10E-97 1.33E+05 2.59E-69 5.37E-02 6.28E+04 5.29E+00 7.99E-02 0.00E+00 0.00E+00 

F2 

100 
Avg 3.15E-52 8.44E+00 4.10E-50 4.64E-08 2.50E+02 1.86E-07 2.37E-47 2.71E-151 0.00E+00 

Std 1.70E-51 6.84E+00 1.61E-49 1.89E-08 3.84E+01 1.89E-07 1.30E-46 1.46E-150 0.00E+00 

500 
Avg 9.17E-54 1.15E+02 1.39E-48 1.12E-02 1.39E+131 8.00E-03 1.17E-03 2.68E-149 0.00E+00 

Std 5.02E-53 5.59E+01 4.89E-48 1.86E-03 7.61E+131 4.27E-03 1.42E-03 1.47E-148 0.00E+00 

1000 
Avg 3.62E-56 Inf 1.13E-47 6.64E-01 Inf 2.78E-02 1.37E-02 2.15E-167 0.00E+00 

Std 1.98E-55 NaN 5.75E-47 3.48E-01 NaN 1.81E-02 4.73E-03 0.00E+00 0.00E+00 

F3 

100 
Avg 1.10E-100 2.39E+05 1.02E+06 7.84E+02 2.33E+05 1.39E+04 8.92E-01 7.42E-190 0.00E+00 

Std 5.21E-100 7.24E+04 3.34E+05 1.04E+03 5.44E+04 5.82E+03 5.54E-01 0.00E+00 0.00E+00 

500 
Avg 8.08E-98 6.86E+06 3.08E+07 3.10E+05 5.15E+06 1.40E+06 2.89E+01 1.76E-141 0.00E+00 

Std 4.43E-97 1.48E+06 9.14E+06 7.34E+04 1.07E+06 2.08E+05 1.46E+01 9.66E-141 0.00E+00 

1000 
Avg 7.08E-99 3.00E+07 1.24E+08 1.54E+06 1.81E+07 6.00E+06 1.33E+02 6.26E-137 0.00E+00 

Std 3.88E-98 5.35E+06 3.97E+07 2.78E+05 3.51E+06 8.85E+05 6.30E+01 3.43E-136 0.00E+00 

F4 

100 
Avg 2.32E-55 9.05E+01 7.68E+01 1.19E+00 9.29E+01 5.39E+01 9.23E-02 2.79E-145 0.00E+00 

Std 1.04E-54 2.87E+00 2.18E+01 1.54E+00 1.81E+00 1.17E+01 1.12E-02 1.53E-144 0.00E+00 

500 
Avg 5.78E-66 9.91E+01 8.14E+01 6.58E+01 9.88E+01 9.92E+01 1.76E-01 3.17E-135 0.00E+00 

Std 3.08E-65 2.26E-01 2.16E+01 5.56E+00 4.27E-01 1.95E-01 1.17E-02 1.74E-134 0.00E+00 

1000 
Avg 2.11E-52 9.96E+01 8.07E+01 7.95E+01 9.95E+01 9.96E+01 2.11E-01 1.73E-142 0.00E+00 

Std 1.14E-51 1.07E-01 2.13E+01 3.10E+00 1.35E-01 1.06E-01 1.24E-02 5.85E-142 0.00E+00 

F5 

100 
Avg 1.55E-02 1.26E+08 9.81E+01 9.78E+01 1.64E+08 9.79E+01 9.89E+01 4.40E-04 9.38E-06 

Std 2.97E-02 5.75E+07 2.92E-01 7.70E-01 6.41E+07 7.90E-01 6.46E-02 4.35E-04 2.26E-05 

500 
Avg 1.96E-01 1.92E+09 4.96E+02 4.98E+02 5.02E+09 1.68E+05 4.99E+02 9.13E-03 5.02E-03 

Std 5.22E-01 4.07E+08 3.87E-01 3.50E-01 2.17E+08 2.93E+05 9.35E-02 2.40E-02 3.41E-03 

1000 
Avg 1.76E-01 4.68E+09 9.94E+02 1.05E+03 1.25E+10 4.31E+07 9.99E+02 2.25E-02 2.34E-03 

Std 3.39E-01 8.24E+08 8.99E-01 1.64E+01 2.21E+08 2.80E+07 1.36E-01 3.21E-02 4.73E-03 

F6 100 
Avg 4.75E-04 1.08E+04 4.31E+00 1.02E+01 6.12E+04 1.45E+01 1.81E+01 1.11E-03 7.11E-06 

Std 1.29E-03 5.64E+03 8.66E-01 1.09E+00 1.47E+04 1.09E+00 4.87E-01 4.33E-03 1.03E-05 
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Fn dimension criteria AO SCA WOA GWO MFO TSA AOA AVOA IHAOAVOA 

 500 Avg 9.26E-04 1.84E+05 3.08E+01 9.14E+01 1.16E+06 1.03E+02 1.16E+02 6.68E-02 9.07E-05 

 

 Std 1.88E-03 8.36E+04 9.20E+00 1.92E+00 3.36E+04 1.89E+00 1.04E+00 1.66E-01 1.67E-04 

1000 
Avg 9.62E-03 4.58E+05 6.47E+01 2.04E+02 2.72E+06 2.33E+02 2.42E+02 1.96E-01 7.29E-05 

Std 4.81E-02 1.72E+05 1.55E+01 2.66E+00 5.21E+04 4.54E+00 1.42E+00 3.90E-01 1.38E-04 

F7 

100 
Avg 1.04E-04 1.73E+02 3.86E-03 7.35E-03 2.55E+02 4.92E-02 6.81E-05 1.45E-04 3.93E-05 

Std 1.11E-04 1.04E+02 3.61E-03 2.74E-03 1.09E+02 1.99E-02 8.37E-05 1.60E-04 3.02E-05 

500 
Avg 6.38E-05 1.59E+04 4.32E-03 4.72E-02 3.84E+04 2.74E+00 6.75E-05 2.15E-04 3.60E-05 

Std 6.13E-05 3.40E+03 5.14E-03 1.66E-02 1.97E+03 1.03E+00 3.76E-05 2.50E-04 3.32E-05 

1000 
Avg 1.04E-04 6.92E+04 5.33E-03 1.53E-01 1.97E+05 3.00E+02 9.35E-05 2.00E-04 4.50E-05 

Std 8.32E-05 1.11E+04 6.57E-03 3.13E-02 7.79E+03 1.53E+02 6.11E-05 2.07E-04 5.80E-05 

F8 

100 
Avg -9328.482 -7056.794 -34621.557 -15216.923 -23112.332 -12933.983 -10052.935 -40933.164 -41793.696 

Std 1.86E+03 7.12E+02 6.31E+03 3.35E+03 1.92E+03 1.07E+03 7.33E+02 1.81E+03 4.30E+02 

500 
Avg -41534.395 -15465.639 -185802.018 -55265.276 -61273.898 -31127.517 -22505.588 -200569.062 -203821.173 

Std 1.29E+04 1.28E+03 2.68E+04 1.27E+04 4.38E+03 2.30E+03 1.63E+03 1.39E+04 1.99E+04 

1000 
Avg -60526.163 -22031.394 -354116.605 -84858.638 -89734.384 -45407.853 -32295.698 -403963.628 -409246.624 

Std 1.13E+04 1.50E+03 5.61E+04 1.81E+04 5.97E+03 3.24E+03 2.22E+03 2.19E+04 4.02E+04 

F9 

100 
Avg 0.00E+00 2.96E+02 3.79E-15 1.10E+01 8.55E+02 9.59E+02 0.00E+00 0.00E+00 0.00E+00 

Std 0.00E+00 1.09E+02 2.08E-14 7.55E+00 6.78E+01 1.25E+02 0.00E+00 0.00E+00 0.00E+00 

500 
Avg 0.00E+00 1.13E+03 3.03E-14 7.78E+01 6.96E+03 5.84E+03 6.08E-06 0.00E+00 0.00E+00 

Std 0.00E+00 5.21E+02 1.66E-13 2.20E+01 1.75E+02 6.14E+02 5.47E-06 0.00E+00 0.00E+00 

1000 
Avg 6.06E-14 1.87E+03 6.06E-14 1.88E+02 1.55E+04 9.86E+03 6.05E-05 0.00E+00 0.00E+00 

Std 3.32E-13 6.87E+02 3.32E-13 4.00E+01 2.02E+02 1.81E+03 1.52E-05 0.00E+00 0.00E+00 

F10 

100 
Avg 8.88E-16 1.84E+01 3.97E-15 1.28E-07 1.98E+01 1.00E-01 5.51E-04 8.88E-16 8.88E-16 

Std 0F.00E+00 4.10E+00 2.59E-15 5.39E-08 1.98E-01 5.50E-01 9.61E-04 0.00E+00 0.00E+00 

500 
Avg 8.88E-16 1.97E+01 3.85E-15 1.99E-03 2.03E+01 1.22E-02 7.92E-03 8.88E-16 8.88E-16 

Std 0.00E+00 2.79E+00 2.10E-15 3.92E-04 1.64E-01 6.72E-03 3.73E-04 0.00E+00 0.00E+00 

1000 Avg 8.88E-16 1.84E+01 4.32E-15 1.78E-02 2.04E+01 9.91E-02 9.26E-03 8.88E-16 8.88E-16 
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Fn dimension criteria AO SCA WOA GWO MFO TSA AOA AVOA IHAOAVOA 

  Std 0.00E+00 4.62E+00 2.18E-15 2.54E-03 2.02E-01 4.31E-02 2.76E-04 0.00E+00 0.00E+00 

F11 100 Avg 0.00E+00 1.05E+02 1.05E-02 4.31E-03 5.50E+02 1.16E-02 6.17E+02 0.00E+00 0.00E+00 

 

 Std 0.00E+00 5.66E+01 5.74E-02 1.01E-02 1.87E-02 1.87E-02 1.94E+02 0.00E+00 0.00E+00 

500 
Avg 0.00E+00 1.76E+03 0.00E+00 1.04E-02 1.02E+04 3.18E-02 1.09E+04 0.00E+00 0.00E+00 

Std 0.00E+00 6.34E+02 0.00E+00 2.73E-02 2.76E+02 7.30E-02 2.71E+03 0.00E+00 0.00E+00 

1000 
Avg 0.00E+00 3.92E+03 0.00E+00 4.35E-02 2.46E+04 3.33E-01 2.82E+04 0.00E+00 0.00E+00 

Std 0.00E+00 1.37E+03 0.00E+00 6.94E-02 3.99E+02 2.20E-01 2.97E+02 0.00E+00 0.00E+00 

F12 

100 
Avg 1.87E-06 3.30E+08 4.86E-02 2.97E-01 2.61E+08 1.22E+01 9.06E-01 9.92E-07 5.66E-08 

Std 3.02E-06 1.71E+08 2.88E-02 6.58E-02 1.57E+08 4.24E+00 2.21E-02 2.35E-06 7.68E-08 

500 
Avg 7.58E-07 6.06E+09 9.05E-02 7.39E-01 1.21E+10 3.34E+06 1.09E+00 7.86E-06 9.84E-08 

Std 1.50E-06 1.13E+09 4.06E-02 5.92E-02 7.34E+08 3.63E+06 1.14E-02 3.58E-05 1.47E-07 

1000 
Avg 1.25E-06 1.29E+10 9.69E-02 1.24E+00 3.02E+10 5.25E+08 1.11E+00 9.31E-06 8.78E-08 

Std 2.49E-06 2.33E+09 3.70E-02 2.99E-01 1.44E+09 2.37E+08 5.40E-03 2.15E-05 1.65E-07 

F13 

100 
Avg 4.67E-05 4.96E+08 3.00E+00 7.00E+00 6.68E+08 1.28E+01 9.98E+00 1.46E-07 4.88E-08 

Std 7.09E-05 2.77E+08 1.01E+00 3.94E-01 3.66E+08 1.59E+00 4.17E-02 1.65E-07 8.26E-08 

500 
Avg 2.79E-04 9.65E+09 1.96E+01 5.09E+01 2.19E+10 1.15E+06 5.02E+01 8.40E-07 6.80E-07 

Std 4.18E-04 2.02E+09 6.16E+00 1.38E+00 1.36E+09 1.24E+06 3.62E-02 1.60E-06 1.26E-06 

1000 
Avg 5.17E-04 2.21E+10 3.81E+01 1.23E+02 5.60E+10 3.07E+08 1.01E+02 5.04E-03 3.41E-06 

Std 8.71E-04 4.63E+09 1.17E+01 8.57E+00 1.89E+09 2.23E+08 5.93E-02 2.01E-02 6.58E-06 

Note: The best results obtained have been marked in bold. 



 

Figure 10. Friedman mean rank of different algorithms in 100/500/1000 dimensions. 

4.2. Experiment 2: IEEE CEC2019 test suite 

Classical benchmark function experiments have proven the prominent performance of 
IHAOAVOA with respect to solving simple optimization problems. To further emphasize the 
superiority of the improved algorithm in this paper, this subsection uses the IEEE CEC2019 test 
suite [98], also known as 100-Digit Challenge, to estimate the performance of IHAOAVOA in 
solving complex numerical problems. This test suite comprises ten complicated and latest 
benchmark functions, the profiles of which are listed in Table 11. As stated in the previous 
subsection, the proposed IHAOAVOA and other eight comparison algorithms run independently 30 
times on each function with the maximum iteration and population size fixed to 500 and 30, 
respectively. The obtained average value and standard deviation results of this test are presented in 
Table 12. Meanwhile, the Friedman mean rank values used for statistical analysis of algorithms are 
included in the last line of this table. 

Table 11. Details of IEEE CEC2019 test suite. 

function name D range Fmin 

CEC-01 Storn’s Chebyshev Polynomial Fitting Problem 9 [-8192, 8192] 1 

CEC-02 Inverse Hilbert Matrix Problem 16 [-16384, 16384] 1 

CEC-03 Lennard-Jones Minimum Energy Cluster 18 [-4, 4] 1 

CEC-04 Rastrigin’s Function 10 [-100, 100] 1 

CEC-05 Griewangk’s Function 10 [-100, 100] 1 

CEC-06 Weierstrass Function 10 [-100, 100] 1 

CEC-07 Modified Schwefel’s Function 10 [-100, 100] 1 

CEC-08 Expanded Schaffer’s F6 Function 10 [-100, 100] 1 

CEC-09 Happy Cat Function 10 [-100, 100] 1 

CEC-10 Ackley Function 10 [-100, 100] 1 



From Table 12, it is clear that IHAOAVOA outperforms the other eight algorithms on 6 out of 10 test functions. For CEC-2, although GWO 
and MFO achieve the same average fitness as IHAOAVOA, the proposed algorithm has a smaller standard deviation, which demonstrates the 
better stability of IHAOAVOA. For CEC-5 and CEC-9, the performance of IHAOAVOA is slightly worse than that of MFO, but it still ranks 
second among all algorithms. For CEC-7, AOA provides the most satisfactory solutions, whereas IHAOAVOA also performs quite competitively. 
Besides, compared with its peers, IHAOAVOA obtains the best Friedman mean ranking value of 1.8000 followed by the MFO algorithm. These 
findings demonstrate that the proposed IHAOVAOA is capable of tackling various challenging optimization problems as well. 

To summarize, the effectiveness and superiority of the proposed method are thoroughly verified in this section through a series of experiments 
on classical benchmark functions and the IEEE CEC2019 test suite. Whether solving simple or complex numerical problems, IHAOAVOA can 
give satisfactory results in most cases. IHAOAVOA inherits the merits of the basic AO and AVOA and makes use of the COBL and FDB strategies 
to compensate for the defects of poor population diversity, the tendency to fall into local optima, and the imbalance between exploration and 
exploitation. Of course, a good algorithm needs to be applied in practice to show its value. In the next section, IHAOAVOA will be used to address 
five constrained industrial engineering problems. 

Table 12. Comparison results of different algorithms on IEEE CEC2019 test suite. 

Fn criteria AO SCA WOA GWO MFO TSA AOA AVOA IHAOAVOA 

CEC-1 
Avg 5.58E+04 3.76E+09 3.77E+10 1.75E+08 1.96E+10 2.03E+08 7.86E+09 4.50E+04 4.14E+04 

Std 8.33E+03 4.69E+09 4.58E+10 3.03E+08 2.96E+10 3.54E+08 2.74E+10 3.35E+03 2.60E+03 

CEC-2 
Avg 1.74E+01 1.75E+01 1.74E+01 1.73E+01 1.73E+01 1.85E+01 1.93E+01 1.74E+01 1.73E+01 

Std 1.13E-02 5.17E-02 1.55E-02 3.06E-04 7.14E-12 6.14E-01 4.85E-01 6.10E-02 9.47E-14 

CEC-3 
Avg 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 

Std 6.95E-06 1.05E-04 1.54E-06 8.00E-06 2.77E-04 9.66E-04 1.23E-03 5.21E-09 1.26E-09 

CEC-4 
Avg 7.15E+02 1.48E+03 3.66E+02 1.38E+02 1.82E+02 4.14E+03 1.31E+04 1.56E+02 1.28E+02 

Std 4.63E+02 6.40E+02 1.18E+02 4.30E+02 1.91E+02 2.76E+03 5.83E+03 6.60E+01 4.03E+01 

CEC-5 
Avg 1.59E+00 2.19E+00 1.86E+00 1.39E+00 1.28E+00 2.79E+00 4.22E+00 1.52E+00 1.36E+00 

Std 2.74E-01 4.15E-01 3.64E-01 2.21E-01 1.38E-01 7.72E-01 1.00E+00 3.45E-01 2.15E-01 

CEC-6 
Avg 1.07E+01 1.09E+01 9.70E+00 1.10E+01 6.21E+00 1.12E+01 8.97E+00 6.23E+00 5.77E+00 

Std 7.52E-01 7.05E-01 1.26E+00 6.08E-01 2.21E+00 6.12E-01 2.00E+00 1.87E+00 1.79E+00 

CEC-7 
Avg 4.32E+02 8.03E+02 4.92E+02 4.22E+02 3.52E+02 6.96E+02 2.03E+02 3.60E+02 3.07E+02 

Std 2.10E+02 1.78E+02 2.35E+02 2.95E+02 1.91E+02 1.88E+02 1.15E+02 2.01E+02 1.67E+02 
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Fn criteria AO SCA WOA GWO MFO TSA AOA AVOA IHAOAVOA 

CEC-8 
Avg 5.45E+00 5.97E+00 6.09E+00 5.41E+00 5.67E+00 6.20E+00 5.47E+00 5.55E+00 5.32E+00 

Std 5.66E-01 4.66E-01 5.10E-01 9.01E-01 6.79E-01 6.03E-01 5.28E-01 5.77E-01 5.03E-01 

CEC-9 
Avg 5.00E+00 9.82E+01 5.09E+00 4.76E+00 2.87E+00 6.03E+02 7.66E+02 3.62E+00 3.54E+00 

Std 7.93E-01 6.64E+01 9.13E-01 9.75E-01 3.89E-01 6.71E+02 4.36E+02 7.50E-01 6.52E-01 

CEC-10 
Avg 2.04E+01 2.05E+01 2.03E+01 2.02E+01 2.02E+01 2.05E+01 2.01E+01 2.03E+01 2.00E+01 

Std 1.16E-01 7.95E-02 1.19E-01 1.48E+00 1.51E-01 8.28E-02 6.61E-02 6.71E-02 5.41E-02 

Friedman mean ranking 5.1000 7.0500 6.1500 3.8500 3.5500 7.6500 5.9000 3.9500 1.8000 

Note: The best results obtained have been marked in bold. 

5. IHAOAVOA for solving engineering design problems 

In this section, five common engineering design problems from the structural field are utilized to highlight the applicability and black-box 
nature of the proposed IHAOAVOA in real-world constrained optimization, which are tension/compression spring design problem, welded beam 
design problem, cantilever beam design problem, speed reducer design problem, and rolling element bearing design problem. For convenience, 
the death penalty function [99] is introduced here to handle those infeasible candidate solutions subject to equality and inequality constraints. In 
the same way, we set the maximum number of iterations and population size as 500 and 30, respectively. The detailed comparison results of 
IHAOAVOA and other algorithms after 30 times of independent runs on each project are presented and discussed below. 

5.1. Tension/compression spring design problem 

As shown in Figure 11, the goal of this optimization problem is to find three optimal design variables, namely diameter of the wire (𝑑), 
average coil diameter (𝐷), and active coils number (𝑁), to reduce the weight of a tension/compression spring as much as possible. Meanwhile, the 
constraints of shear stress, surge frequency, and minimum deflection should be satisfied in the minimization process. The mathematical model of 
this design is formulated as follows.  

Consider 

𝑧 ൌ ሾ𝑧ଵ, 𝑧ଶ, 𝑧ଷሿ ൌ ሾ𝑑, 𝐷, 𝑁ሿ 



Minimize 

𝑓ሺ𝑧ሻ ൌ ሺ𝑧ଷ ൅ 2ሻ𝑧ଶ𝑧ଵ
ଶ  

Subject to 

𝑔ଵሺ𝑧ሻ ൌ 1 െ
௭మ

య௭య

଻ଵ଻଼ହ௭భ
ర ൑ 0, 𝑔ଶሺ𝑧ሻ ൌ

ସ௭మ
మି௭భ௭మ

ଵଶହ଺଺൫௭మ௭భ
యି௭భ

ర൯
൅

ଵ

ହଵ଴଼௭భ
మ ൑ 0, 𝑔ଷሺ𝑧ሻ ൌ 1 െ

ଵସ଴.ସହ௭భ

௭మ
మ௭య

൑ 0, 𝑔ସሺ𝑧ሻ ൌ
௭భା௭మ

ଵ.ହ
െ 1 ൑ 0 

Variable range 

0.05 ൑ 𝑧ଵ ൑ 2,0.25 ൑ 𝑧ଶ ൑ 1.30,2.00 ൑ 𝑧ଷ ൑ 15.00  

 

Figure 11. Schematic view of tension/compression spring design problem. 

Table 13. Comparison results of different algorithms for tension/compression spring design problem. 

algorithm 
optimal values for variables 

minimum weight 
𝑑ሺ𝑧ଵሻ 𝐷ሺ𝑧ଶሻ 𝑁ሺ𝑧ଷሻ 

AO 0.0505978 0.330908 13.1244 0.012708 

SCA 0.0500431 0.318378 13.7796 0.012757 

WOA 0.0500000 0.310414 15.0000 0.013193 

GWO 0.0545730 0.430150 8.1728 0.012811 

MFO 0.0571830 0.503870 6.2155 0.013181 

TSA 0.0536750 0.405150 9.4851 0.012840 

AOA 0.0526750 0.380910 9.8629 0.012683 

AVOA 0.0500150 0.317762 14.3427 0.012718 

IHAOAVOA 0.0518973 0.361749 10.5783 0.012666 

Note: The best results obtained have been marked in bold. 

The performance evaluation of the optimal solution obtained by the proposed IHAOAVOA on 
this application is compared with those of AO, SCA, WOA, GWO, MFO, TSA, AOA, and AVOA, as 
listed in Table 13. It can be observed from this table that IHAOAVOA outperforms all other comparison 
algorithms and reveals the minimum weight 𝑓௠௜௡ሺ𝑧ሻ ൌ 0.012666 corresponding to the best solution 
𝑧 ൌ ሾ0.0518973, 0.361749, 10.5783ሿ, which demonstrates the merits of IHAOAVOA in resolving 
the tension/compression spring design problem. 

5.2. Welded beam design problem 

Just as its name implies, this well-known engineering case first proposed by Coello [99] aims at 
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minimizing the overall fabrication cost of a welded beam under the constraints on shear stress, bending 
stress in the beam, buckling load, and end deflection. As illustrated in Figure 12, there are four decision 
parameters that need to be considered in this problem such as the weld thickness (ℎ), the length of the 
joint beam (𝑙 ), the height of the beam (𝑡 ), and the thickness of the beam (𝑏 ). The mathematical 
representation of this optimization is described as follows. 

Consider 

𝑧 ൌ ሾ𝑧ଵ, 𝑧ଶ, 𝑧ଷ, 𝑧ସሿ ൌ ሾℎ, 𝑙, 𝑡, 𝑏ሿ  

Minimize 

𝑓ሺ𝑧ሻ ൌ 1.10471𝑧ଵ
ଶ𝑧ଶ ൅ 0.04811𝑧ଷ𝑧ସሺ14 ൅ 𝑧ଶሻ  

Subject to 
𝑔ଵሺ𝑧ሻ ൌ 𝜏ሺ𝑧ሻ െ 𝜏୫ୟ୶ ൑ 0, 𝑔ଶሺ𝑧ሻ ൌ 𝜎 െ 𝜎୫ୟ୶ ൑ 0, 𝑔ଷሺ𝑧ሻ ൌ 𝛿 െ 𝛿୫ୟ୶ ൑ 0, 

𝑔ସሺ𝑧ሻ ൌ 𝑧ଵ െ 𝑧ସ ൑ 0, 𝑔ହሺ𝑧ሻ ൌ 𝑃 െ 𝑃௖ሺ𝑧ሻ ൑ 0, 𝑔଺ሺ𝑧ሻ ൌ 0.125 െ 𝑧ଵ ൑ 0, 

𝑔଻ሺ𝑧ሻ ൌ 1.10471𝑧ଵ
ଶ ൅ 0.04811𝑧ଷ𝑧ସሺ14 ൅ 𝑧ଶሻ െ 5 ൑ 0 

Variable range 

0.1 ൑ 𝑧ଵ, 𝑧ସ ൑ 2,0.1 ൑ 𝑧ଶ, 𝑧ଷ ൑ 10 

where 

𝜏ሺ𝑧ሻ ൌ ටሺ𝜏 ′ሻଶ ൅ 2𝜏 ′𝜏″ ௭మ

ଶோ
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ெோ

௃
, 𝑀 ൌ 𝑃 ቀ𝐿 ൅

௭మ

ଶ
ቁ , 𝑅 ൌ ට௭మ

మ

ସ
൅ ሺ

௭భା௭య

ଶ
ሻଶ,  

𝐽 ൌ 2 ቄ√2𝑧ଵ𝑧ଶሾ
௭మ

మ

ସ
൅ ሺ

௭భା௭య

ଶ
ሻଶሿቅ , 𝜎ሺ𝑧ሻ ൌ

଺௉௅

ா௭య
మ௭ర

 𝛿ሺ𝑧ሻ ൌ
଺௉௅య

ா௭య
మ௭ర

, 𝑃஼ሺ𝑧ሻ ൌ
ସ.଴ଵଷாට೥య

మ೥ర
ల

యల

௅మ ቆ1 െ
௭య

ଶ௅
ට ா

ସீ
ቇ , 𝑃 ൌ 6000lb, 

𝐿 ൌ 14in, 𝐸 ൌ 30 ൈ 10଺psi, 𝐺 ൌ 12 ൈ 10଺psi,𝛿୫ୟ୶ ൌ 0.25in, 𝜏୫ୟ୶ ൌ 13600psi, 𝜎୫ୟ୶ ൌ 30000psi. 

 

Figure 12. Schematic view of welded beam design problem. 

This problem has been figured out using IHAOAVOA and the remaining eight methods. The 
optimal solutions are summarized in Table 14. It can be seen that the minimum manufacturing cost of 
IHAOAVOA is 1.7249 when the four variables ℎ, 𝑙, 𝑡, and 𝑏 are set as 0.20573, 3.4705, 9.0366, 
and 0.20573, respectively. In this comparison, IHAOAVOA attains a superior outcome to all the other 
optimization techniques, which suggests that the proposed hybrid algorithm in this paper can be 
regarded as a promising tool to deal with the welded beam design problem. 
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Table 14. Comparison results of different algorithms for welded beam design problem. 

algorithm 
optimal values for variables 

minimum cost 
ℎሺ𝑧ଵሻ 𝑙ሺ𝑧ଵሻ 𝑡ሺ𝑧ଷሻ 𝑏ሺ𝑧ସሻ 

AO 0.20355 3.5170 9.0392 0.20572 1.7281 

SCA 0.19979 3.6142 9.0393 0.20572 1.7352 

WOA 0.20241 3.5518 9.0302 0.20609 1.7322 

GWO 0.20476 3.4958 9.0409 0.20576 1.7277 

MFO 0.20288 3.5332 9.0359 0.20576 1.7290 

TSA 0.19894 3.6141 9.0584 0.20562 1.7364 

AOA 0.20628 3.4652 9.0199 0.20649 1.7279 

AVOA 0.20638 3.4721 9.0212 0.20661 1.7301 

IHAOAVOA 0.20573 3.4705 9.0366 0.20573 1.7249 

Note: The best results obtained have been marked in bold. 

5.3. Cantilever beam design problem 

The design of the cantilever beam is also a popular research concern in real-life engineering 
optimization. Its main intention is to locate five optimal structural variables to dwindle the total weight 
of a cantilever beam when meeting the load capacity requirements. Figure 13 illustrates the architecture 
of the cantilever beam, which is made up of several hollow square-shaped sections. Mathematically, 
this problem is stated as follows. 

Consider 

𝑧 ൌ ሾ𝑧ଵ, 𝑧ଶ, 𝑧ଷ, 𝑧ସ, 𝑧ହሿ  

Minimize 

𝑓ሺ𝑧ሻ ൌ 0.6224ሺ𝑧ଵ ൅ 𝑧ଶ ൅ 𝑧ଷ ൅ 𝑧ସ ൅ 𝑧ହሻ  

Subject to 

𝑔ሺ𝑧ሻ ൌ
61
𝑧ଵ

ଷ ൅
27
𝑧ଶ

ଷ ൅
19
𝑧ଷ

ଷ ൅
7
𝑧ସ

ଷ ൅
1
𝑧ହ

ଷ െ 1 ൑ 0 

Variable range 

0.01 ൑ 𝑧ଵ, 𝑧ଶ, 𝑧ଷ, 𝑧ସ, 𝑧ହ ൑ 100 

 

Figure 13. Schematic view of cantilever beam design problem. 
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The best results obtained by all algorithms for the cantilever beam design problem are recorded 
in Table 15. As can be seen from this table, the proposed IHAOAVOA has achieved the best design 
assurance with the lowest weight compared with the other optimizers. Besides, the basic AO and 
AVOA come in the second and seventh ranks, respectively. Therefore, it is reasonable to believe that 
IHAOAVOA has good potential for solving such a problem. 

Table 15. Comparison results of different algorithms for cantilever beam design problem. 

algorithm 
optimal values for variables 

minimum weight 
𝑧ଵ 𝑧ଵ 𝑧ଷ 𝑧ସ 𝑧ହ 

AO 6.3708 5.0687 4.5731 3.4451 2.0924 1.3447 

SCA 5.9121 5.0872 4.9220 3.4056 2.2583 1.3469 

WOA 6.3667 5.2580 3.8672 4.0987 2.3313 1.3679 

GWO 5.7371 5.5770 4.4891 3.5928 2.1354 1.3436 

MFO 5.8949 5.4072 4.5087 3.4724 2.2016 1.3407 

TSA 5.8791 5.2745 4.5557 3.5769 2.2081 1.3412 

AOA 5.7563 5.3133 4.4690 3.7889 2.2155 1.3443 

AVOA 5.9292 5.3891 4.4645 3.5405 2.1566 1.3403 

IHAOAVOA 6.0108 5.3170 4.4678 3.5324 2.1466 1.3400 

Note: The best results obtained have been marked in bold. 

5.4. Speed reducer design problem 

The purpose of this speed reducer design problem is to minimize the mass of a reducer by 
optimizing seven decision variables, which are the face width (𝑧ଵ), module of teeth (𝑧ଶ), the number 
of teeth in the pinion (𝑧ଷ), length of the shafts between bearings (𝑧ସ, 𝑧ହ), and diameter of the shafts 
(𝑧଺ , 𝑧଻ ). In addition, the design is subject to the limitations of the gear teeth’ bending stress, the 
transverse deflection of the shafts, surface stress, and stresses in the shafts. The structure of this 
problem is depicted in Figure 14, and the related mathematical description can be specified as follows. 

Consider 

𝑧 ൌ ሾ𝑧ଵ, 𝑧ଶ, 𝑧ଷ, 𝑧ସ, 𝑧ହ, 𝑧଺, 𝑧଻ሿ  

Minimize 

𝑓ሺ𝑧ሻ ൌ 0.7854𝑧ଵ𝑧ଶ
ଶሺ3.3333𝑧ଷ

ଶ ൅ 14.9334𝑧ଷ െ 43.0934ሻ െ 1.508𝑧ଵሺ𝑧଺
ଶ ൅ 𝑧଻

ଶሻ ൅ 7.4777ሺ𝑧଺
ଷ ൅ 𝑧଻

ଷሻ  
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ଵ.ଽଷ௭ఱ
య
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ቁ
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𝑔଼ሺ𝑧ሻ ൌ
ହ௭మ

௭భ
െ 1 ൑ 0, 𝑔ଽሺ𝑧ሻ ൌ

௭భ

ଵଶ௭మ
െ 1 ൑ 0, 𝑔ଵ଴ሺ𝑧ሻ ൌ

ଵ.ହ௭లାଵ.ଽ

௭ర
െ 1 ൑ 0, 𝑔ଵଵሺ𝑧ሻ ൌ

ଵ.ଵ௭ళାଵ.ଽ

௭ఱ
െ 1 ൑ 0 

Variable range 

2.6 ൑ 𝑧ଵ ൑ 3.6,0.7 ൑ 𝑧ଶ ൑ 0.8,17 ൑ 𝑧ଷ ൑ 28,7.3 ൑ 𝑧ସ ൑ 8.3,7.8 ൑ 𝑧ହ ൑ 8.3,2.9 ൑ 𝑧଺ ൑ 3.9,5.0 ൑ 𝑧଻ ൑ 5.5  

 

Figure 14. Schematic view of speed reducer design problem. 

Table 16 shows the comparison results between different algorithms when solving the speed 
reducer design problem. Compared to AO, SCA, WOA, GWO, MFO, TSA, AOA, and AVOA, the 
proposed IHAOAVOA effectively provides higher-quality results. The optimal solution of 
IHAOAVOA is attained at 𝑧 ൌ ሾ3.5,0.7,17,7.30000,7.71532,3.35021,5.28665ሿ with the minimum 
weight 𝑓௠௜௡ሺ𝑧ሻ ൌ 2994.4711 . This example again showcases the excellent performance of 
IHAOAVOA at the practical application level. 

Table 16. Comparison results of different algorithms for speed reducer design problem. 

algorithm 
optimal values for variables 

minimum weight 
𝑧ଵ 𝑧ଶ 𝑧ଷ 𝑧ସ 𝑧ହ 𝑧଺ 𝑧଻ 

AO 3.5 0.7 17 7.30091 7.82289 3.35022 5.28669 2996.8676

SCA 3.52991 0.7 17 7.64007 7.73596 3.38152 5.28666 3017.7743

WOA 3.5 0.7 17 8.27222 7.99218 3.35215 5.28675 3009.6826

GWO 3.50242 0.7 17.0123 7.46923 7.86195 3.35336 5.28693 3003.2403

MFO 3.5 0.7 17 7.53278 7.73890 3.35066 5.28666 2997.1598

TSA 3.50693 0.7 17 8.00463 8.11691 3.35393 5.28683 3013.2930

AOA 3.5 0.7 17 7.35758 7.78101 3.35032 5.28668 2996.4624

AVOA 3.5 0.7 17.0002 7.36821 7.72042 3.35034 5.28666 2995.2443

IHAOAVOA 3.5 0.7 17 7.30000 7.71532 3.35021 5.28665 2994.4711

Note: The best results obtained have been marked in bold. 

5.5. Rolling element bearing design problem 

The last constrained engineering problem is the design of the rolling element bearing, as 
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illustrated in Figure 15. In contrast to the optimization tasks mentioned above, the final objective of 
this test case is to maximize the dynamic loading carrying capacity of rolling element bearings. In this 
optimum design, a total of ten geometric parameters need to be taken into account, including pitch 
diameter (𝐷௠), ball diameter (𝐷௕), the number of balls (𝑍), the inner and outer raceway curvature 
radius coefficient (𝑓௜ and 𝑓௢), 𝐾ௗ௠௜௡, 𝐾ௗ௠௔௫, , 𝑒, and . The problem has nine constraints and its 
mathematical formula is as follows. 

Maximize 

𝐶ௗ ൌ ቊ
𝑓௖𝑍ଶ/ଷ𝐷௕

ଵ.଼         , 𝑖𝑓 𝐷௕ ൑ 25.4mm
3.647𝑓௖𝑍ଶ/ଷ𝐷௕

ଵ.ସ, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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𝑔ଵሺ𝑧ሻ ൌ
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Figure 15. Schematic view of rolling element bearing design problem. 

The detailed results of the optimum variables and cost for this problem are presented in Table 17. 
By examining the data in this table, it is evident that the proposed IHAOAVOA is capable of detecting 
a much better cost than its competitors, which is 85549.1628. And the results of MFO and AVOA are 
also very competitive. 

In summary, the findings of this section strongly demonstrate that IHAOAVOA is equally 



effective and feasible for practical engineering design applications. Attributed to the hybrid operation, COBL, and FDB, the exploration and 
exploitation capabilities of the algorithm developed in this paper have been dramatically improved. It is highly hopeful to apply IHAOAVOA to 
solve more real-life problems in various scenarios. 

Table 17. Comparison results of different algorithms for rolling element bearing design problem. 

algorithm AO SCA WOA GWO MFO TSA AOA AVOA IHAOAVOA 

𝐷௠ 125.5912 125 126.3104 125.6319 125.7191 125.3916 125 125.7186 125.7191 

𝐷௕ 21.39605 21.15739 21.03404 21.39261 21.42559 21.28729 21.27301 21.42548 21.42559 

𝑍 11.13631 10.90745 10.95836 11.03602 11.0039 10.78929 11.36323 10.7434 10.62575 

𝑓௜ 0.515 0.515 0.515 0.515 0.515 0.515 0.515 0.515 0.515 

𝑓௢ 0.5240512 0.5359205 0.515 0.58441 0.5343591 0.5628563 0.515 0.5200027 0.5154035 

𝐾ௗ௠௜௡ 0.4096218 0.4 0.4064247 0.4138138 0.4223729 0.4159249 0.4997957 0.4766428 0.4129783 

𝐾ௗ௠௔௫ 0.657841 0.6423859 0.6011677 0.6946858 0.6512409 0.6156199 0.6964319 0.6598702 0.6282836 

 0.301808 0.3 0.3008351 0.3021904 0.3 0.3 0.3 0.3000088 0.3 

𝑒 0.05709046 0.02251181 0.02775154 0.09110937 0.02285913 0.04570604 0.08114373 0.02112543 0.02000012 

 0.6169172 0.6 0.6 0.6154725 0.6001039 0.6 0.6 0.6041762 0.6507823 

Maximum cost 85336.3471 83645.9245 82812.5215 85298.9012 85545.3137 84558.2474 84459.7849 85547.5187 85549.1628 

Note: The best results obtained have been marked in bold. 

6. Conclusions and future work 

Considering the characteristics of Aquila Optimizer and African Vultures Optimization Algorithm, this paper proposed a novel improved hybrid 
meta-heuristic algorithm, namely IHAOAVOA, for solving global optimization problems. First, the exploration phase of AO and the exploitation phase 
of AVOA were integrated to accomplish superior overall search performance and alleviate the weaknesses existing in the single algorithm. Second, we 
designed a new composite opposition-based learning mechanism to enhance population diversity and increase the probability of obtaining the global 
optimal solution. Meanwhile, the fitness-distance balance selection method was used to choose one candidate solution that contributes most to the search 
process to replace the original random individual in the position update rules, which helps to better balance the exploration and development capabilities 
of the hybrid algorithm. To fully evaluate the function optimization performance, the proposed IHAOAVOA was compared with the basic AO, AVOA, 
and six advanced metaheuristics based on 23 classical benchmark functions and the IEEE CEC2019 test suite. The significance of obtained results was 



verified through the Wilcoxon rank-sum test, Friedman test, and mean absolute error test. Numerical and 
statistical results indicate that IHAOAVOA significantly outperforms the other algorithms in terms of 
accuracy, convergence speed, stability, and local optima avoidance. Moreover, the proposed algorithm also 
shows stable performance in high-dimensional cases ( 𝐷 ൌ 100/500/1000 ). To demonstrate the 
applicability of IHAOAVOA in practice, five engineering design problems were employed. It has been 
found that the proposed IHAOAVOA can effectively provide very competitive solutions in solving such 
real-life optimization issues as well. 

Even though the proposed IHAOAVOA has remarkable improvements over the AO and AVOA 
algorithms, its computational cost is a potential limitation, and the performance on partial CEC2019 
benchmark functions still has room to be further enhanced. In the subsequent research works, we will: 1) 
introduce some parallel strategies in IHAOAVOA, such as the co-evolutionary mechanism or cell model 
to reduce the time consumption under the guarantee of ensuring performance; 2) strengthen the exploration 
and exploitation capabilities of IHAOAVOA through other hybrid and general modification techniques to 
remove barriers on the IEEE CEC2019 test suite; 3) evaluate the performance differences between 
IHAOAVOA and some improved variants of AO on more challenging engineering application 
problems; 4) integrate the designed composite opposition-based learning mechanism into more MAs 
to enhance their search capabilities; 5) apply IHAOAVOA to solve different optimization problems in 
a wider range of disciplines, like feature selection, path planning, PID parameters self-tuning, forecast 
modeling, and image segmentation. Meanwhile, the identification of optimal process parameters for 
selective laser sintering (SLS) would also be a meaningful research topic. 
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