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Abstract: Aquila Optimizer (AO) and African Vultures Optimization Algorithm (AVOA) are two
newly developed meta-heuristic algorithms that simulate several intelligent hunting behaviors of
Aquila and African vulture in nature, respectively. AO has powerful global exploration capability,
whereas its local exploitation phase is not stable enough. On the other hand, AVOA possesses
promising exploitation capability but insufficient exploration mechanisms. Based on the characteristics
of both algorithms, in this paper, we propose an improved hybrid AO and AVOA optimizer called
IHAOAVOA to overcome the deficiencies in the single algorithm and provide higher-quality solutions
for solving global optimization problems. First, the exploration phase of AO and the exploitation phase
of AVOA are combined to retain the valuable search competence of each. Then, a new composite
opposition-based learning (COBL) is designed to increase the population diversity and help the hybrid
algorithm escape from the local optima. In addition, to more effectively guide the search process and
balance the exploration and exploitation, the fitness-distance balance (FDB) selection strategy is
introduced to modify the core position update formula. The performance of the proposed IHAOAVOA
is comprehensively investigated and analyzed by comparing against the basic AO, AVOA, and six
state-of-the-art algorithms on 23 classical benchmark functions and the IEEE CEC2019 test suite.
Experimental results demonstrate that IHAOAVOA achieves superior solution accuracy, convergence
speed, and local optima avoidance than other comparison methods on most test functions. Furthermore,
the practicality of IHAOAVOA is highlighted by solving five engineering design problems. Our
findings reveal that the proposed technique is also highly competitive and promising when addressing
real-world optimization tasks. The source code of the IHAOAVOA is publicly available at
https://doi.org/10.24433/C0O.2373662.v1.
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1. Introduction

Optimization is essentially the process of determining the optimal solution for a given problem
among all potential solutions to achieve maximum profit, productivity, and efficiency [1-4]. Over the
past several decades, with the development of human society and modern science, the complexity of
optimization problems in the real world has been increasing sharply, thus putting higher demands on
the reliability and effectiveness of optimization techniques [5,6]. In general, existing optimization
technology can be classified into deterministic algorithms and meta-heuristic algorithms (MAs) [7].
For a deterministic algorithm, candidate solutions are generated using the same initial values according
to the analytical properties of problems and converge mechanically toward the global optimum without
any randomness. Newton-Raphson method and Conjugate Gradient are two representative
deterministic algorithms. Although this type of algorithm can provide satisfactory solutions in solving
certain nonlinear problems, it needs the derivative information of the problem and frequently falls into
the local optima when confronting the challenges of multimodal, large-scale, and sub-optimal search
space [8]. Recently, as an ideal alternative to deterministic algorithms, MAs have attracted the attention
of more and more scholars worldwide due to their simple structure, low computational consumption,
no need for gradient information, and powerful local optimal avoidance capability. Based on the
requirements of the objective function, such algorithms iteratively use different operators to randomly
sample the search space to acquire better decision variables [9,10]. Compared with traditional
methods, these merits enable MAs to find the global optimal solution for complex optimization
problems more effectively. Therefore, MAs have been widely applied in a variety of research areas,
such as engineering design [11-14], feature selection [15-17], photovoltaic (PV) parameter
extraction [18-21], image segmentation [22—24], and path planning [25].

As their name implies, MAs build optimization models by imitating a series of natural stochastic
phenomena. On the basis of different design inspirations, MAs can be divided into four dominant
classes (as illustrated in Figure 1) [1]: evolutionary algorithms, physics-based algorithms, swarm-
based algorithms, and human-based algorithms. Evolutionary algorithms stem from the mechanisms
of biological evolution, such as selection, mutation, recombination, and elimination. One of the most
used algorithms in this category is the Genetic Algorithm (GA) [26], which simulates Darwinian
evolution theory. Some other well-known evolutionary algorithms include Genetic Programming
(GP) [27], Difterential Evolution (DE) [28], Evolution Strategy (ES) [29], and Biogeography-Based
Optimization (BBO) [30]. Physics-based algorithms are mainly inspired by the physical laws of the
surrounding world. Examples of such algorithms contain Simulated Annealing (SA) [31], Gravity
Search Algorithm (GSA) [32], Multi-Verse Optimizer (MVO) [33], Atom Search Optimization
(ASO) [34], Black Hole Algorithm (BHA) [35], Sine Cosine Algorithm (SCA) [36], Thermal
Exchange Optimization (TEO) [37], and Arithmetic Optimization Algorithm (AOA) [38]. Swarm-
based algorithms originate from the self-organization and collective behaviors of organisms in nature.
Particle Swarm Algorithm (PSO) [39] is considered the most classic embodiment of this branch, which
searches for the optimal solution to a problem by emulating the collaborative foraging of bird flocks.
Of course, there are many other very famous swarm-based algorithms such as Ant Colony
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Optimization (ACO) [40], Dragonfly Algorithm (DA) [41], Ant Lion Optimizer (ALO) [42], Whale
Optimization Algorithm (WOA) [43], Grey Wolf Optimizer (GWO) [44], and Salp Swarm Algorithm
(SSA) [45]. The fourth category is human-based algorithms, derived from some human activities in
the community. Examples of such algorithms are Tabu Search (TS) [46], Harmony Search (HS) [47],
Search Group Algorithm (SGA) [48], Imperialist Competitive Algorithm (ICA) [49], and Teaching
Learning-Based Optimization (TLBO) [50]. In addition to the above algorithms, more MAs have
been proposed in recent years, like Moth-Flame Optimization (MFO) [51], Slime Mould Algorithm
(SMA) [52], Tunicate Swarm Algorithm (TSA) [53], Harris Hawks Optimization (HHO) [54],
Gorilla Troops Optimizer (GTO) [55], Remora Optimization Algorithm (ROA) [56], Hunger Games
Search (HGS) [57], and Reptile Search Algorithm (RSA) [58]. Although these nature-inspired
MAs share distinct characteristics, they all have two important phases in the search gradation:
exploration and exploitation [59,60]. In the exploration phase, search agents explore the whole
target space as much as possible to find the parts that may have the optimal solution. Then, in the
exploitation phase, more local searches are conducted to improve the quality and precision of the
gained optimal solution. For a well-organized optimizer, it is vital to maintain a proper balance
between exploration and exploitation.

Meta-heuristic algorithms

]
Evolutionary Physics-based Swarm-based Human-based
algorithms algorithms algorithms algorithms
I [ | |
Genetic Algorithm Simulated Particle Swarm
(GA) Annealing (SA) Optimization (PSO) Tabu Search (TS)
[ [ | |
Genetic Gravitational Search Ant Colony Harmony Search
Programming (GP) Algorithm (GSA) Optimization (ACO) (HS)
[ [ [
Difterential Multi-Verse Dragonfly Search Group
Evolution (DE) Optimizer (MVO) Algorithm (DA) Algorithm (SGA)
[ [ | |
Evolution Atomic Search Ant Lion Optimizer Imperialist Competitive
Strategy (ES) Optimization (ASO) (ALO) Algorithm (ICA)

[ [ | |
Biogeography-Based Black Hole Whale Optimization Teaching Learning-Based
Optimizer (BBO) Algorithm (BHA) Algorithm (WOA) Optimization (TLBO)
[ |
Sine Cosine Grey Wolf
Algorithm (SCA) Optimizer (GWO)

[ |

Thermal Exchange Salp Swarm
Optimization (TEO) Algorithm (SSA)

Figure 1. Classification of meta-heuristic algorithms.

Despite the success of MAs in many aspects of computational science, they may still suffer from
slow convergence speed, the tendency to fall into the local optima, and premature convergence [61,62].
As stated in the No-Free-Lunch (NFL) theorem [63], no one algorithm can work for all kinds of
optimization problems. Therefore, motivated by this theorem, numerous scholars dedicate themselves
to designing new MAs or enhancing existing ones. Nowadays, apart from adding some effective search
strategies, it has become one popular trend to hybridize the two basic MAs for better comprehensive
performance in the improvements of existing algorithms. Unlike the single algorithm, a hybrid
algorithm promotes diversity and shares more useful information within the population, which endows
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it with a stronger search capability. For example, Zheng et al. [60] introduced AOA into SMA and
constructed a new hybrid optimization algorithm called DESMAOA. Compared with basic algorithms,
experimental results suggested that DESMAOA has a high superiority on 23 standard benchmark
functions and three engineering design problems. Chakraborty et al. [64] integrated WOA and HGS
into an efficient hybrid optimizer named HSWOA, which has been successfully applied to solve seven
real-world engineering problems and IEEE CEC2019 test set. Pirozmand et al. [65] presented a novel
hybrid technique based on GA and GSA to address task scheduling problems in cloud infrastructure.
Bao et al. [22] proposed the HHO-DE algorithm for multi-level thresholding color image segmentation
by incorporating HHO and DE. Besides, Abdel-Mawgoud et al. [66] combined SCA with MFO and
used this hybrid approach to find the optimal allocation of distributed generations and capacitors in
distribution networks.

In this paper, we focus on the two latest swarm-based MAs, namely Aquila Optimizer (AO) [67] and
African Vultures Optimization Algorithm (AVOA) [68]. The AO algorithm was first proposed in 2021,
which simulates four unique hunting methods of Aquila. Since AO has powerful robustness and global
exploration capability, it has been extensively applied to lots of scenarios. Guo et al. [69] adopted AO to
adjust the proportional-integral-derivative (PID) coefficients of the phase-locked loop (PLL), a key
component in the PV inverter, to smooth power fluctuations and improve the quality of grid connection.
Experimental results demonstrated that the AO-optimized PLL adjustment strategy could effectively
reduce power fluctuations and overshoot with a short response time. Hussan et al. [70] used AO to
optimize the selective harmonic elimination equations for the seven-level H-bridge inverter to decrease
the component count and total harmonic distortion. Vashishtha et al. [71] applied AO to determine the
optimal minimal entropy deconvolution (MED) filter length to boost the recognition accuracy during
the bearing fault diagnosis of the Francis turbine. AlRassas et al. [72] adopted AO to identify the
optimal parameters of the adaptive neuro-fuzzy inference system (ANFIS) network to increase its
prediction accuracy in oil production time series forecasting. In [73], AO is employed to address the
stochastic optimal power flow (SCOPF) problem to obtain the best dispatch power from wind farms
while minimizing total operating costs. These researches all have proven that AO is a promising
optimization tool. However, similar to other MAs, the basic AO algorithm inevitably has the defects
of premature convergence and being prone to falling into local minima, mainly caused by its
insufficient exploitation phase. As a result, many improved and hybrid attempts have been
implemented to enhance the performance of AO. Zhao et al. [74] developed a heterogeneous AO (HAO)
based on the multiple updating mechanism to enhance the search capability of the algorithm and
alleviate the stagnation in the later exploitation phase. Kandan et al. [75] proposed a novel quasi-
oppositional AO called QOAO for solving the issue of resource allocation and management in the
internet of things (IoT)-enabled cloud environment. The quasi-oppositional-based learning is used to
diversify the initial population and help the algorithm eliminate the local optima. Li et al. [76] proposed
an improved variant of AO, namely IAQO, to provide the optimal configuration for combined cooling,
heating, and power (CCHP) system, which integrated the self-adaptive weight and Logistic chaotic
mapping to facilitate the possibility of finding the high-precision solution. In [77], a simplified AO
algorithm was developed by removing the equations controlling the exploitation phase and retaining
the two exploration tactics. Simulation results on unimodal, multimodal, and the CEC2021 test suite
fully validated the superiority of this method. Mahajan et al. [78] blended AO and AOA for complex
numerical optimization. The convergence speed and stability of the hybrid algorithm are significantly
strengthened in comparison to the basic AO and AOA. Wang et al. [12] presented an excellent hybrid
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optimizer known as IHAOHHO by combining the exploration phase of AO and the exploitation phase
of HHO. Meanwhile, the random opposition-based learning and nonlinear escaping energy parameter
mechanisms are introduced into the hybrid algorithm to further boost its exploration ability and local
optima avoidance. The worth of the IHAOHHO algorithm is well reflected in settling industrial
engineering optimization tasks. Yao et al. [25] constructed an improved hybrid algorithm named
IHSSAO by combining AO with SSA and pinhole imaging opposition-based learning. The IHSSAO
algorithm is able to balance exploration and exploitation well and provide the shortest global path for
unmanned aerial vehicle (UAV) path planning in complex terrain. Zhang et al. [79] proposed a hybrid
AOAADO algorithm for tackling benchmark function optimization and engineering design problems.

For another algorithm concerned in this paper, AVOA was also developed in 2021. This algorithm
mimics the foraging and navigation behaviors of African vultures in nature and has drawn many
scholars to apply it to resolve real-world optimization problems [80—82]. In contrast to the AO
algorithm, AVOA possesses strong exploitation mechanisms, but its exploration capability and
convergence speed are not satisfactory [83]. Due to the relatively short time since the algorithm has
been proposed, there are few studies on the improvement of AVOA.

Given the above discussion, this paper tries to hybridize the AO and AVOA algorithms to give
full play to the advantages of both and achieve better overall optimization performance, and then
proposes a novel improved hybrid meta-heuristic algorithm for global optimization, namely
IHAOAVOA. To be specific, first, we integrate the exploration phase of AO and the exploitation phase
of AVOA, which extracts and inherits the robust exploration and exploitation capabilities of the two
basic algorithms. Then, a new composite opposition-based learning (COBL) mechanism is designed
and embedded into the hybrid algorithm to avoid the local optima and increase the population diversity.
Finally, the fitness-distance balance (FDB) selection method is utilized to select one candidate solution
with the highest score from the population to replace the original random individual in the position
update formula. This is considered from boosting the search efficiency and balancing the exploration
and exploitation trends of the hybrid algorithm. To verify the effectiveness and practicality of
IHAOAVOA, 23 classical benchmark functions, IEEE CEC2019 test suite, and five real-world
engineering design problems are used for the tests. And the proposed method is compared with the
basic AO, AVOA, and six state-of-the-art MAs, including SCA, WOA, GWO, MFO, TSA, and AOA.
Experimental results indicate that the proposed IHAOAVOA performs better than other competitors
with regard to solution accuracy, convergence speed, stability, and local optima avoidance. The main
contributions of this paper are summarized as follows:

* [HAOAVOA, anovel hybrid improved algorithm based on the Aquila Optimizer (AO) and African
Vultures Optimization Algorithm (AVOA), is proposed to solve global optimization problems.

* A new mechanism called composite opposition-based learning (COBL) and fitness-distance
balance (FDB) selection method are carried out to enhance the searchability of the hybrid algorithm.
*  The proposed method (IHAOAVOA) is tested on several optimization problems, including 23
classical benchmark functions, IEEE CEC2019 test suite, and five engineering design problems, and
compared with different state-of-the-art MAs.

* Experimental results suggest that IHAOAVOA has more reliable performance than other
comparison optimization algorithms.

The structure of this paper is organized as follows. Section 2 presents a brief overview of the
basic AO and AVOA algorithms, as well as COBL and FDB strategies. Section 3 describes the
proposed IHAOAVOA algorithm in detail. Section 4 evaluates the performance of [IHAOAVOA on
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benchmark functions and analyzes the obtained experimental results. In Section 5, the proposed
IHAOAVOA is applied to solve five real-world engineering design problems. Finally, Section 6
concludes the paper and discusses potential research directions.

2. Preliminaries
2.1. Aquila Optimizer (A0O)

Aquila Optimizer (AO) is a new bionic, gradient-free, and swarm-based meta-heuristic algorithm
developed by Abualigah et al. [67] in 2021. The main inspiration of this algorithm derives from the
hunting behavior of the Aquila, a famous bird of prey found in the Northern Hemisphere. Aquila exerts
its fast speed and dexterity, as well as strong feet and sharp talons, to snatch rabbits, marmots, and
many other ground animals. During the foraging activities, four different strategies are recognized to
be utilized by the Aquila, including: 1) High-altitude soar with vertical stoop; 2) Contour flight along
with short glide attack; 3) Low flight along with slow descent attack; 4) Capturing the prey while
walking. Thus, the optimization procedure of the AO algorithm can be modeled into four discrete
phases, which are briefly described as follows.

In AO, Aquilas are candidate solutions and the best solution in each step is defined as the intended
prey. First, as with the fundamental framework of other optimization paradigms, the initial population
of AO is generated randomly in the search space of the given problem using Eq (1).

X; =rand X (ub—1b)+1b,i =1,2,..,N (1)

where X; denotes the position of i-th Aquila in the population, rand denotes a random number
within the interval of 0 and 1, N denotes the total number of Aquilas, i.e., population size, ub and
[b demonstrate the upper and lower bounds of the search domain, respectively.

To lay a good foundation for the smooth transition from global exploration to local exploitation,
AOQ establishes the following switching condition:

{Execution of exploration, if t < (g) xT @)

Execution of exploitation,otherwise

where t is the current iteration, and T is the maximum number of iterations. Next, the four phases
involved in the mathematical model of AO are presented.

2.1.1.  Expanded exploration: high-altitude soar with vertical stoop

In this phase, Aquila flies high over the ground to explore the hunting area extensively, and once
the prey is detected, it will make a vertical dive towards the intended prey. This behavior is simulated
as in Eq (3).

Xi(t +1) = Xpese (8) X (1= £) + X (t) = Xpese (£) X Tand (3)

where X;(t +1) refers to the updated position of i-th Aquila in the next iteration t, Xp.s (%)
indicates the location of the prey, i.e., optimal solution found so far, t and T are the current number
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of iterations and the maximum iteration, respectively. And X,,(t) represents the average position of
all Aquilas in the population, which is calculated as follows:

1
X() = TZI, X, (1) 4)

where X;(t) is the current position vector of i-th Aquila, and N is the population size.

2.1.2.  Narrowed exploration: contour flight along with short glide attack

In the second phase, Aquila circles above the target prey determined from a high soar, gets ready
to land, and then launches an attack. The mathematical model of this behavior is expressed as follows:

Xi(t+1) = Xpese(t) X Levy(D) + X,.(t) + (y — x) X rand (5)

where X, indicates a random position of Aquila selected from the current population [1, N]. Levy (%)
implies the Lévy flight function, which is presented as follows:

IR

Levy(x) = 0.01 X —,0 =
lv|B

uxe < r@+g)xsin(L) ) ©)

B—1
F(1+B)><B><2(T)
where u and v are random numbers within the interval [0, 1], I'(-) denotes the gamma function,

and [ is a constant value equal to 1.5. In Eq (5), y and x stand for the contour spiral shape during
the search, which can be calculated as follows:

3XT

x=(r+U><D1)><sin(—w><D1+T)

(7)
y=(r+U><D1)><cos(—w><D1+3xTn)

where r denotes the number of search cycles between 1 and 20, U is a constant fixed to 0.00565,
D, is a vector of integers from 1 to the dimension size (D), and w is also a small value equivalent
to 0.005.

2.1.3. Expanded exploitation: low flight along with slow descent attack

As the area of the prey is precisely specified, Aquila descends vertically to perform a preliminary
attack to probe the prey's response. Here, AO exploits the selected area to approach and attack the prey.
The position update formula of Aquila in this phase is described as follows:

Xi(t+1) = Xpest (t) — X (1)) X @ —rand + ((ub — Ib) X rand + lb) X & (8)
where a and § are the exploitation control coefficients set as 0.1.
2.1.4.  Narrowed exploitation: walk and catch the prey
In the fourth phase, Aquila comes to the land and pursues the prey according to its random motion

trajectory, and finally, Aquila will attack the prey at the appropriate moment. The mathematical
representation of this case is given as:
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Xi(t+1) = QF X Xpest(t) — Gy X X;(t) X rand — G, X Levy(D) + G; X rand 9)
2xrand—1
QF(t) =t a-»* (10)

G, =2Xrand — 1
{Gz =2x(1-9H (an

where QF refers to the quality function used to balance the search strategy, G; indicates the
movement parameter of Aquila while tracking the prey, which is a random number between -1 and 1,
while G, denotes the flight slope in the process of Aquila chasing the prey from the first to the last
location, which decreases linearly from 2 to 0.

The flow chart of the basic AO is illustrated in Figure 2.
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Figure 2. Flow chart of the basic AO algorithm.
2.2. African Vultures Optimization Algorithm (AVOA)

As a novel population-based optimization technique proposed by Abdollahzadeh et al. [68]
in 2021, AVOA mimics the living habit and foraging behavior of African vulture. African vultures
rarely launch an offensive against healthy animals, but may kill a weak or diseased animal and
even feed on the human carcass. One interesting feature of these predatory birds is their bald heads,
which play an important role in regulating the body temperature and protecting themselves from
bacteria and getting sick. In natural circumstances, vultures continuously travel long distances from
one place to another to discover better food sources, and rotational flight is a common mode of flight
for them. Frequently, after a food supply is located, the vultures will come into conflict with each other
to achieve more allocations. The weak vultures surround the stronger vultures and wait to receive food
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until the latter become tired of eating. With the above biological concepts, the mathematical model of
the AVOA algorithm is accomplished in four separate phases. A brief description of each step is
presented as follows.

2.2.1.  Phase one: determining the best vulture in any group

Once the initial random population of the AVOA algorithm is generated, the objective values of
all solutions are evaluated, where the best solution is picked as the best vulture in the first group and
the vulture corresponding to the second-best solution is placed in the second group. Besides, the rest
of the vultures are arranged in the third group. Since these two best vultures have guiding effects,
Eq (12) is designed to help the current individual determine which vulture it should move towards
in each iteration.

Bestvulture,,if p; = L
B ={ 1 fpl 1 (12)

Bestvulture,,if p; = L,

where Xp denotes the best vulture selected, Bestvulture; and Bestvulture, denote the best
vultures of the first group and second group, respectively, L; and L, represent two parameters
between 0 and 1 measured before the optimization operation, where L, + L, = 1. The probability of
selecting the best solution from each group p; is calculated according to the Roulette Wheel
mechanism, and its formula is as follows.

fi
= 13
where f; means the fitness values of vultures, and m is the total number of vultures in the first and
second groups.

2.2.2. Phase two: starvation rate of vultures

When vultures feel satiated, they have high energy levels allowing them to go longer distances to
seek food. Conversely, if they don’t have adequate energy, hungry vultures will become aggressive
and thus fight with the nearby stronger vultures to obtain free food. Based on this, the starvation degree
of vultures is modeled as follows:

F=Q@xrand+1)xzx(1-2)+g (14)

g=h><(sin""(%x%)+cos(§><%)—1) (15)

where F means the hunger degree of vultures, rand is a random number between 0 and 1, z is a
random number between -1 and 1, t and T are the current number of iterations and the maximum
iteration, respectively, h is a random number within the interval [—2,2],and w signifies a constant.

As we see from Eq (14), the parameter F shows a decreasing trend with the increasing number
of iterations. Therefore, it is also used to construct the transition between the exploration phase and
the exploitation phase in the AVOA algorithm. Here, in the case of |F| = 1, it means the vulture is
satiated and searches for new food in different areas, which is also known as the exploration phase. On
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the other hand, when |F| < 1, the vulture hunts for food in the neighborhood of the solutions, and
AVOA enters the exploitation phase.

2.2.3. Phase three: exploration

In nature, vultures have excellent visual skills to spot poor dying animals. When vultures begin
foraging, they first spend a lot of time carefully scrutinizing their living environment and then go long
distances to search for food. Considering the habits of vultures, two distinct mechanisms are designed
in the exploration stage of AVOA so as to explore different random regions as much as possible. Each
mechanism is selected by using a parameter called P;, which must be assigned a value within the
interval [0, 1] before the search operation. The mathematical model can be expressed as follows.

If rand < P;:
Xi(t+1) = Xg(t) — D;i(t) X F (16)
D;(t) = |C x X(t) — X; ()] (17)

If rand > P;:
Xi(t+1) = Xz(t) — F + rand x ((ub — Ib) X rand + lb) (18)

where X;(t + 1) denotes the position vector of i-th vulture in the next iteration ¢, X;(t) denotes
the current position of i-th vulture, Xz(t) denotes the current best vulture selected according to
Eq (12), F describes the hunger rate of vultures calculated by Eq (14), C is a random number
in the range [0,2], ub and lb are the upper and lower bounds of the search range.

2.2.4. Phase four: exploitation

When the value of |F| is less than 1, AVOA performs the exploitation phase, which further
contains two stages with two different mechanisms. Likewise, in each internal stage, the selection or
not of each mechanism is decided by two parameters, namely P, and Ps;. The parameter P, is used
to choose the mechanism available in the first stage and parameter P; is utilized to select the
mechanism available in the second stage, both of which need to be valued in the range of 0 and 1
before optimization.

*  Exploitation (Stage 1)

If the value of |F| is ranged in the interval [0.5,1], the algorithm proceeds to the first part of
exploitation. Here, two behaviors are carried out: siege-fight and rotating flight. When |F| = 0.5, the
vultures are relatively satiated and energetic. At such time, vultures with great physical strength are
reluctant to share food with other vultures, while the weaker vultures attempt to get food from the
strong ones by gathering together and provoking small conflicts to make them exhausted. This
behavior can be simulated as follows:

X,(t + 1) = Dy(t) X (F + rand) — d;(t) (19)

In Eq (19), d;(t) indicates the distance between the i-th vulture and the current best vulture,
which is calculated as follows:
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di(t) = Xp(t) — Xi(t) (20)

In addition to the behavior described above, vultures often make a rotational flight, which is
similar to Spiral Motion. To model this process, a spiral equation is developed between all vultures
and one of the two best vultures. The mathematical expression is given by:

Xi(t+ 1) = Xp(0) = (S1(D) + 5;(1)) @D
$1(8) = Xp(8) x (F52) x cos (X,(1)) (22)
S2(8) = Xp(0) x (*F572) x sin(X, () (23)

*  Exploitation (Stage 2)

If the value of |F| is less than 0.5, the algorithm enters the second part of exploitation. At this
stage, the accumulation of vultures over the food source and violent siege-strife mechanism are
implemented. When |F| < 0.5, almost all vultures in the population are well full, but the two best
vultures become hungry after prolonged exertion. Due to a large amount of food has been consumed
at this time, it may happen that many types of vultures gather on a single food resource and compete
against each other. In this situation, the position update formula of vultures is expressed as follows:

A1(t)+A2(t)

Xi(t+1) === (24)

Bestvultureq (t)xXX;(t)
A4 (t) = Bestvulture,(t) — Bestvultwe;(t)_xi(t)z (25)
Az(t) _ Bestvulturez (t) _ Bestvulture; (£)xX;(t) (26)

Bestvulture, (t)—X;(t)?

On the other hand, in the quest for the little food left, the other vultures will also turn vicious
and make their way in various directions toward the head vulture. This movement is simulated as
in Eq (27).

Xi(t+1) = Xg(t) — |d;(t)| X F x Levy(D) (27)

where d;(t) is calculated according to Eq (20), D is the problem dimension, and Levy () denotes
the Lévy flight function used to boost the effectiveness of the AVOA. Same as that in AO, the
mathematical expression of Lévy flight is as follows:

Levy(x) = 0.01 X —,0 =
v|P

1
uxo < ra+p)xsin(L) )B 28)

F(1+B)xﬁ><2(%)

where u and v are random numbers within the interval [0,1], ['(-) is the gamma function, and f8
is a constant fixed to 1.5.
The flow chart of the basic AVOA is illustrated in Figure 3.
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2.3. Composite opposition-based learning (COBL)

Opposition-based learning (OBL) [84] is a powerful optimization tool in intelligent computing,
which has been successfully used to improve different native meta-heuristic algorithms [11,85-87].
The optimization procedure often starts with an initial stochastic solution. If this initial solution is near
the global optimal solution, the algorithm converges quickly. On the contrary, the initial solution may
be far from the optimum or just in the opposite direction, which will cause it to take quite a long time
to converge or even fall into a stagnant state [88]. The main ideology of OBL is to simultaneously
evaluate the fitness values of the current solution as well as its inverse solution, and then the fitter one
is retained to participate in the subsequent iterative calculation. Therefore, OBL can effectively
increase the probability of finding a better candidate solution. However, it has been indicated that OBL
can only generate the inverse solution at a fixed position in optimization, and it still fails to ameliorate
the defects of the algorithm when solving complex problems [1,89]. In recent years, more and more
enhanced variants of OBL have been proposed, of which lens opposition-based learning (LOBL) [90]
and random opposition-based learning (ROBL) [91] are two typical examples. Both methods are
effective in improving the ability of the algorithm to avoid falling into local optima, where LOBL can
also considerably boost the convergence speed of the algorithm, and ROBL has a unique strength in
enriching the population diversity [12]. Considering the superior performance of the two forms of
opposition-based learning, we integrate them and propose a novel search strategy: composite
opposition-based learning (COBL). As illustrated in Figure 4, the basic principles of LOBL and ROBL
will be described first below.

Initialize the parameters and
position of each search agent

L e S AU pr—
Check boundaries and calculate

|
I
I
] the fitness of all search agents }
I
l \
T }
Find the first-best and second- | |, Exploration v I
best vulture | }
| Yes No N
l } rand < P1 ° }
I
|
Determine the best vulture in | |! 1
. |
any group using Eq (12) | I ‘
I|  Update Xi Update Xi |I|| Update Xi Update Xi Update Xi Update Xi }
l {| using Eq (16) | | using Eq (18) |\!| using Eq (19) | | using Eq (21) || using Eq (24) | | using Eq (27) !
I I |
Update the control parameter /' e B Kt e B e A
| I
Yes .
es | f= 141 le Update the p051}10ns of the
population
No
Return the first-best solution
End

Figure 3. Flow chart of the basic AVOA algorithm.
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A Lens
I
P |
Ih ' — —e ° e »

. l | LOBL b Xz' )/(_R\O;i ub x-axis

Ib X; 0] : h ub x-axis
! b

(a) Lens opposition-based learning (b) Random opposition-based learning

Figure 4. Principle of lens opposition-based learning and random opposition-based learning.

Lens imaging is a common optical phenomenon that specifically refers to when an object is placed
at more than twice principal focal lengths away from the convex lens, an inverted and contracted image
will be produced on the other side of the lens. Take the one-dimensional search space in Figure 4(a)
for instance, the cardinal point O represents the midpoint of the search range [lb,ub], and the y-
axis is considered a convex lens. Besides, there is an object p with height h located at the point X;
(X; isthe i-th solution in the population), which is outside twice the lens’s focal length. Through lens
imaging, the corresponding image p with the height A can be obtained, and its projection on the
coordinate axis is Xj op; . Consequently, the geometric relationship in the figure can be formulated
as follows.

(Ib+ub)/2-X;
XLOBL_(lb +ub)/2

h
=3 (29)

Let k = h/h, the opposite solution X| op; based on the theory of lens imaging is calculated by
modifying the Eq (29):

——  (lb+ub)  (Ib+ub) X;
XioBL = + ——

2 2k k

(30)

Compared to the complex metaphors of the former, ROBL has a much simpler concept. In the
search space of Figure 4(b), the point X; on the x-axis denotes the i-th solution in the population,
and its random opposite solution Xropr can be defined by:

XropL = b + ub —rand X X; 31

From Eq (31), it can be seen that the generated inverse solution has good randomness for
exploration, which greatly helps to provide more population diversity at the later stage of the search,
thus avoiding the algorithm from falling into the local optima.

To make full use of the characteristics of LOBL and ROBL, a probability of 50% is assumed to
choose between them in the optimization process. Finally, the mathematical expression of the
developed COBL is given as follows.

Ib+ub—rand X X;,if q < 0.5

XcopL = {(lb+ub) n (lb+ub)  X;

= otherwise (32)
2 2k k

where X; is the i-th solution in the population, Xcog; is the opposite solution of X; generated by
COBL, q illustrates a random number in [0, 1], k represents the distance coefficient, ub and b
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are the upper and lower bounds of the search space.
Generally, most optimization problems are multi-dimensional, so the above Eq (32) can also be
extended into D-dimensional space as follows:

lb; + ub; —rand X X; ;,if ¢ < 0.5

XCOBL,] = Ubj+ubj) + (Ibj+ubj) . & otherwise ,j = 1,2, -, D (33)
2 2k k'’

where X;; and Xcopr; are the j-dimensional components of X; and Xcopg, respectively, lb; and

ub; are the lower and upper boundaries in the j-th dimension.
2.4. Fitness-Distance Balance (FDB)

Selection methods in the meta-heuristic algorithms are used to identify the individual to be
referenced from the whole population to guide future search directions and establish a balance
between exploration and exploitation [92]. As a new selection method developed by Kahraman et
al. [93] in 2020, the aim of FDB is to discover one or more candidate solutions that will make the
most contribution to the algorithm's search process. Since it was first proposed, FDB has been
widely applied to many algorithms to improve their exploration capability and overall search
performance, such as Symbiotic Organism Search (SOS) [93], Stochastic Fractal Search (SFS) [94],
and Coyote Optimization Algorithm (COA) [95]. What distinguishes FDB from other selection
methods is that the selection process is executed in accordance with the score of the candidate
solution, not just its fitness value. In the score calculation, two traits of candidate solutions, including
the fitness function value and their distance from the best solution (Xj,;), are taken into account
simultaneously. This guarantees that the candidate solution with the highest score value would be
chosen to guide the population search in a more effective way. The implementation steps of the FDB
selection method are as follows.

1) Suppose the dimension of the optimization problem is D, and N is the total number of
candidate solutions in the population. The i-th candidate solution can be defined as X; =

(xi1, %2, % p),i = 1,2,-,N. Thus, the Euclidean distance between each solution and the best

solution in the population X, is calculated as shown in Eq (34).

i1V X;, Dy, = /(%11 — Xpest1)? + (Xiz — Xpest2)? + -+ (Xip — Xpest,p)? (34)

i1) The distance vector Dy for each candidate solution can be expressed as in Eq (35).

dy
; ] (35)
dy

Dy =

NX1

ii1) After normalization, the fitness and distance values of candidate solutions are used for
calculating the score, shown as:

i=1VX;, Sy, =y - normFy, + (1 —y) - normDx, (36)
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where y is a constant equal to 0.5, normFy, denotes the normalized fitness values of the solution,
and normDy, denotes the normalized distance values.
iv) Finally, the score vector Sy, which stands for the FDB score values of the whole population,

is given in Eq (37).
S1
Sy = [ ] (37)

SNyxa

Once Sy 1is created, the algorithm could select more suitable candidate solutions to direct the
search process based on their FDB scores.

3. The proposed IHAOAVOA algorithm
3.1. Detailed design of the proposed IHAOAVOA algorithm

In the exploration phase of the AO algorithm, the predatory behavior of Aquila to detect the
potential fast-moving prey over a broad flight area is modeled (see Eqs (3) and (5)), which gives the
algorithm robust global search capability and fast convergence rate [12]. Nonetheless, the selected
search space cannot be searched thoroughly during the exploitation phase. As Figure 9 in the original
paper [67] shows that the convergence curve remains unchanged in the later iterations, and the weak
escape effects of the Lévy flight lead the algorithm to converge prematurely. In brief, AO has strong
exploration capability, but its exploitation stage is still not sufficient. For the AVOA algorithm, the
transition between exploration and exploitation depends on the hunger rate of vultures F. In the early
exploration phase, the poor population diversity makes the algorithm exhibit a slow convergence rate.
With the increase of iterations, the value of F gradually decreases and the algorithm proceeds to
perform the exploitation phase. A total of four different hunting strategies (see Eqs (19), (21), (24),
and (27)) are used to achieve various position updating of vultures, which allows the algorithm to
effectively exploit the solution information in the search space to approach the global optimum. As a
result, AVOA has promising exploitation capability.

In view of the above analysis, we hybridize the exploration phase of AO and the exploitation
phase of AVOA to make full use of the advantages of the two basic algorithms. First, the AVOA
algorithm is considered as the core framework, and we replace its original position updating rule in
the exploration phase with Eqs (3) and (5) from AO, as follows:

If rand < 0.5:

Xi(t+1) = Xp(t) x (1= 2) + X,u(t) — Xp(t) X rand (38)

If rand > 0.5:
X;(t+1) =Xg(t) X Levy(D) + X,.(t) + (y — x) X rand (39)

This hybrid operation preserves the algorithm's stronger global and local search capabilities, as
well as faster convergence speed. Then, to further improve the overall search performance of the
preliminary hybrid algorithm, we introduce the COBL and FDB strategies. As described in Section 2.3,
COBL is beneficial to enrich the population diversity and escape from the local optima. Hence, the
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COBL strategy is employed to find better candidate solutions before each iterative calculation.
Meanwhile, it can be seen from Eq (39) in the hybrid algorithm that the next generation position of
the i-th search agent primarily relies on the current best individual Xp and one individual X,
randomly selected from the whole population. Such reference individual obtained through the random
selection method may not properly guide the algorithm to explore and exploit. To boost the search
efficiency and maintain a better balance between the exploration and exploitation stages, we adopt the
FDB selection strategy to identify one candidate Xppp that will make the most contribution to the
search process to replace X,, as shown in Eq (40). All these strategies significantly enhance the
convergence speed, solution quality, and robustness of the hybrid algorithm. Finally, this improved
hybrid Aquila Optimizer and African Vultures Optimization Algorithm developed in this paper is
named IHAOAVOA.

X;(t+1) = Xg(t) X Levy(D) + Xppp(t) + (y — x) X rand (40)

Figure 5 depicts the flow chart of the proposed IHAOAVOA algorithm, and its pseudo-code is
summarized in Algorithm 1.

3.2. Computational complexity of IHAOAVOA

The computational complexity of the proposed IHAOAVOA is associated with three components:
initialization, fitness evaluation, and updating of positions. In the initialization phase, the positions of
all search agents are generated randomly in the search space, which needs computational complexity
O(N), where N is the population size. Then in the iteration procedure, the algorithm evaluates the
fitness value of each individual and updates the population positions sequentially, so the computational
complexityis O(2XT XN +2XT X N X D),where T denotes the maximum number of iterations
and D denotes the dimension of specific problems. Thus, the total computational complexity of
IHAOAVOA should be O(N X (1 + 2T + 2TD)). As per the references [67,68], the computational
complexity of both AO and AVOA is O(N X (1 + T + TD)). Compared with the basic algorithms,
the computational complexity of IHAOAVOA increases to some extent as a consequence of the
introduced COBL and FDB strategies. However, these extra time costs can greatly improve the search
performance of the algorithm, which is acceptable based on the NFL theorem [63].
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Figure 5. Flow chart of the proposed IHAOAVOA algorithm.

Algorithm 1 Pseudo-code of the proposed IHAOAVOA

Initialization
1. Initialize the population size N and the maximum iterations T
2. Initialize the positions of each search agent X;(i = 1,2,+--,N)
Iteration
3. While t<T
4 Check if the position goes beyond the search space boundary and then adjust it
5. Evaluate the fitness values of all search agents
6. Set Bestvulture; and Bestvulture, as the first-best solution and second-best solution respectively
7 For each search agent X; do
8 Select the best vulture X according to Eq (12)
9 Update the parameter F according to Eq (14)
10. Perform COBL to generate the opposite solution X-op; of X; using Eq (32) //COBL
11. If the fitness of the opposite solution f(Xcop) < the fitness of candidate solution f(X;) then
12. X; = XcosL f (X)) = f (XcosL)
13. End If
14. If |[F| =1 then //AO-Exploration
15. If rand < 0.5 then
16. Update the position using Eq (38)
17. Else
18. Use FDB to select one candidate solution with the highest score Xypz from the whole population /FDB
19. Update the position using Eq (40)
20. End If
21. Elseif |[F| <1 then //AVOA-Exploitation
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22. If |F| = 0.5 then

23. If rand < P, then

24. Update the position using Eq (19)
25. Else

26. Update the position using Eq (21)
27. End If

28. Else

29. If rand < P; then

30. Update the position using Eq (24)
31. Else

32. Update the position using Eq (27)
33. End If

34. End If

35. End If

36. End For

37. t=t+1
38. End While
Output

39. Return the first-best solution Bestvulture;

4. Experimental results and discussion

In this section, the effectiveness and feasibility of the proposed IHAOAVOA are thoroughly
validated on two groups of optimization functions. The classical benchmark functions are first
employed to estimate the performance of the algorithm in solving 23 simple numerical problems.
Afterward, 10 IEEE CEC2019 benchmark functions are used to assess the algorithm with respect to
addressing complex numerical problems. To illustrate the advantage of the proposed algorithm,
IHAOAVOA is compared with the native AO [67], AVOA [68], and six other state-of-the-art
algorithms, namely Sine Cosine Algorithm (SCA) [36], Whale Optimization Algorithm (WOA) [43],
Grey Wolf Optimizer (GWO) [44], Moth-Flame Optimization algorithm (MFO) [51], Tunicate Swarm
Algorithm (TSA) [53], and Arithmetic Optimization Algorithm (AOA) [38]. For consistency and
fairness of the comparison, the maximum iteration and population size are set as 500 and 30,
respectively. All the mentioned algorithms run independently 30 times to decrease random errors, and
the average fitness (Avg) and standard deviation (Std) of experimental results are adopted as two
evaluation metrics, where the average fitness represents the searchability of the algorithm, and the
closer the average fitness is to the theoretical optimum value indicates the higher convergence accuracy
of the algorithm, while the standard deviation characterizes the deviation degree of the experimental
data, and the smaller the standard deviation indicates the better robustness of the algorithm. Moreover,
the Wilcoxon rank-sum test [96], Friedman ranking test [97], and mean absolute error (MAE) test are
used to determine whether there are significant differences between IHAOAVOA and other
competitors in a statistical sense. Table 1 lists the important parameter values of each algorithm, which
are set the same as those recommended in the original literature. The proposed IHAOAVOA succeeds
the parameter settings for each stage of AO and AVOA algorithms, and the distance coefficient k for
the COBL mechanism is fixed to 12,000 according to the literature [89] as well as extensive trials.
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All the experimental series are implemented in MATLAB R2017a software (version 9.2.0) with
Microsoft Windows 10 system, and the hardware platform of the computer is configured as Intel (R)
Core (TM) i5-10300H CPU @ 2.50GHz and 16GB RAM.

Table 1. Parameter settings of different algorithms.

algorithm parameter setting

AO [67] U = 0.00565;7 = 10; w = 0.005; & = 0.1;6 = 0.1; G, € [-1,1]; G, = [2,0]
SCA [36] a=2

WOA [43] b=1a, =[20];a, =[-2,—1]

GWO [44] a = [2,0]

MFO [51] b=1t=[-11];a € [-1,-2]

TSA [53] Poin = 1; Py = 4

AOA [38] a = 5;u = 0.499; Min = 0.2; Max = 0.9

AVOA [68] L, =08;L, =02;w=25;P, =0.6;P, = 0.4;P; = 0.6

IHAOAVOA L =08;L, =0.2;,w=2.5;P, =0.4;P; =0.6;U = 0.00565;r = 10; w = 0.005; k = 12,000

4.1. Experiment 1: classical benchmark functions

In this subsection, a set of 23 classical benchmark functions selected from the reference [68] are
utilized to evaluate the performance of the proposed IHAOAVOA. The 23 benchmark functions can
be classified into three different categories on the basis of their properties: unimodal, multimodal, and
fix-dimension multimodal. The unimodal benchmark functions (¥1—F7) have only one global optimal
value and are usually applied to check the algorithm's exploitation competence. By contrast, the
multimodal benchmark functions (Fs—F13) are characterized by multiple local minima. This kind of
function is designed to examine the exploration capability and the local optima avoidance of the
algorithm. It is worth mentioning here that the dimensions of the unimodal and multimodal benchmark
functions (F1—F13) can be set as required, so they can optionally be used to see the performance of the
proposed algorithm on high-dimensional problems. The fix-dimension multimodal benchmark
functions (F14—F23) can be regarded as a combination of the first two categories of functions but with
a lower dimension. They are used to study the stability of the algorithm in the transition between
exploration and exploitation. The formula, dimension size (D), variable range, and theoretical
minimum (F,;,) of each function are outlined in Tables 2—4. Figure 6 intuitively shows the search
space of some representative benchmark functions.

In the experiments of classical benchmark functions, the impacts of two introduced strategies are
first examined. Then, IHAOAVOA, AO, AVOA, and six state-of-the-art meta-heuristic algorithms are
tested on these 23 functions concurrently. Several aspects of the obtained results are analyzed,
including exploitation capability, exploration capability, boxplot, convergence curve, average
computational time, and statistical differences. In addition, the scalability of IHAOAVOA for large-
scale optimization is also investigated.
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Table 2. Unimodal benchmark functions.

function D range Frin
Fi(x) =27, xf 30 [-100, 100] 0
Fo(x) = 3P lx | + T2, 1% 30 [-10, 10] 0
F3(x) = X2 (XF-1%)? 30 [-100, 100] 0
Fy(x) = max;{|x;],1 < i <D} 30 [-100, 100] 0
Fs(x) = 251 [100(x;41 — x2)* + (% — 1)?] 30 [-30, 30] 0
Fe(x) = X2, (lx; + 0.5])? 30 [-100, 100] 0
F,(x) = XP_, ix} + random[0,1) 30 [-1.28, 1.28] 0

Table 3. Multimodal benchmark functions.

function D range Fmin
Fg(x) = X2, —x; sin(y/]x;]) 30 [-500, 500] -418.9829 x Dim
Fo(x) = X2, [x? — 10 cos(2mx;) + 10] 30 [-5.12,5.12] 0

1
Fio(x) = =20 exp(— 0.2 |- 2P, x?) — 30 [32,32] 0

exp(%zlp=1 cos(2mx;)) +20 + e

1 i
Fi1(x) = ng:l xiz - L-D=1 COS(%) +1 30 [-600, 600] 0

Fip(x) = Z{10sin(myy) + 05" (v — D21+
10 sin?(my;+1)] + (7p — D} + ., ulx;, 10,100,4)

xi+1 k(x; —a)™ x; > a 30 [-50, 50] 0
YL=1+ L ,u(xi,a,k,m)z 0‘—a<xi<a
k(=x; —a)™x; < —a
Fi3(x) = 0.1{sin*(3mx;) + X, (x; — D?[1 + sin® Brx; +
30 [-50, 50] 0

D] + (xp — D21 + sin?2rx,)]} + X2, u(x;, 5,100,4)
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Table 4. Fix-dimension multimodal benchmark functions.

function range Frin
1 . -
Fia(0) = (o= + 32,0 + 35, (6 — )9 ™)™ [-65, 65] 0.998
b?+b;
Fis(x) = Xilsla; — %]2 [-5.5] 0.00030
2 4,1 6 2 4
Fig(x) = 4x7 — 2.1x7 + 3N + x1X, — 4x5 + 4x, [-5, 5] -1.0316
F. = 51 2+5 6)% +10(1 ! +10 [-5, 5] 0.398
17(x) = (%2 —mﬂﬁ Exl —6) ( _ﬁ) CoS X4 , .
Fig(x) = [1+ (x1 + x5 + 1)2(19 — 14x; + 3x? — 14x, + 6x,X, + 3x2)] (2.2] 3
X [30 + (2x; — 3x,)% X (18 — 32x, + 12x? + 48x, — 363, %, + 27x2)] ’
Fio(x) = = Xi ciexp(— 213'=1 a;j(x; — pij)z) [-1,2] -3.8628
Fao(x) = = Xty ¢ exp( — X9y ai;(x; — pij)?) [0, 1] -3.32
Fp1 (%) = = X34 [(X —a)(X —a)" +¢] 7" [0, 10] -10.1532
Fpp(x) = —Ea[(X —a)(X —a)" +c]™ [0, 10] -10.4028
Fp() = =% [(X —a)X —a)" +¢]7* [0, 10] -10.5363

Figure 6. 3D view of some typical benchmark functions.
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4.1.1. Impacts of components

To overcome the defects in the single algorithm, this paper proposes a novel improved hybrid
optimizer. First, the exploration phase of AO is hybridized with the exploitation phase of AVOA to
achieve better convergence performance. Then, we introduce the COBL mechanism into the
preliminary hybrid algorithm to help search agents escape from the local optima. Besides, to maintain
a good balance between exploration and exploitation, the FDB method is adopted to select one more
suitable reference individual for the population search. Hence, the proposed IHAOAVOA can be
regarded as a hybrid of AO and AVOA integrated with COBL and FDB strategies. To evaluate the
effectiveness of each component, three IHAOAVOA-derived variants are designed individually for
comparison study in this subsection, which are listed below:
¢ [HAOAVOA-1 (Hybrid of AO and AVOA only);
¢ [HAOAVOA-2 (Hybrid of AO and AVOA integrated with COBL);
¢ [HAOAVOA-3 (Hybrid of AO and AVOA integrated with FDB).

Under the same experimental setting, IHAOAVOA-1, IHAOAVOA-2, IHAOAVOA-3, and
IHAOAVOA are tested on 23 different types of benchmark functions in Tables 2—4 concurrently. The
obtained average fitness (Avg) and standard deviation (Std) results are listed in

Table 5. Based on the results, we can find that IHAOAVOA-2, IHAOAVOA-3, and IHAOAVOA
always obtain better convergence accuracy and standard deviation values than IHAOAVOA-1 on test
functions F>—Fs, Fi1>—F1s, and F20. For Fie—F19 and F21—F>3, four algorithms could obtain the same
optimal fitness, but IHAOAVOA-2, THAOAVOA-3, and THAOAVOA still slightly outperform
IHAOAVOA-1 regarding the standard deviation. These demonstrate that the introduced COBL and
FDB strategies are indeed effective in improving the search breadth and robustness of the hybrid
algorithm to some extent; in particular, the role of COBL is more important and irreplaceable.
Compared to IHAOAVOA-2 and THAOAVOA-3, which have one single strategy, it is clear that
IHAOAVOA wins on Fs5—Fs and F12—F1s. In addition, IHAOAVOA shows a higher level of stability in
solving almost all test issues. Thus, we can conclude that the reasonable combination of COBL and
FDB has a significant synergistic effect on boosting the comprehensive performance of
IHAOAVOA, enabling it to provide very excellent solutions. After validation, IHAOAVOA is
selected as the final version for further comparison and discussion.

Table 5. Comparison results of IHAOAVOA-1, IHAOAVOA-2, IHAOAVOA-3, and
IHAOAVOA on 23 benchmark functions.

THAOAVOA-1 THAOAVOA-2 THAOAVOA-3 THAOAVOA
Avg Std Avg Std Avg Std Avg Std
Fi 0.00E+00 0.00E-+00 0.00E+00  0.00E+00  0.00E+00 0.00E+00  0.00E+00  0.00E-+00
F»  151E-157  824E-157  0.00E+00  0.00E+00  0.00E+00 0.00E+00  0.00E+00  0.00E-+00
F;  228E260  431E-260  0.00E+00  0.00E+00  2.90E-272  0.00E+00  0.00E+00  0.00E-+00
Fi  1.84E-163  7.64E-163  0.00E+00  0.00E+00  1.06E-172  0.00E+00  0.00E+00  0.00E-+00

Fs 3.23E-05 4.31E-05 2.41E-06 1.17E-05 2.91E-05 3.61E-05 8.30E-07 2.43E-06
Fe 8.27E-08 7.19E-08 3.04E-08 3.42E-08 5.08E-08 4.52E-08 2.00E-08 2.52E-08
Fr 1.20E-04 1.08E-04 4.12E-05 4.16E-05 9.66E-05 9.39E-05 3.41E-05 3.28E-05
F3 -11372.005 1.85E+03 -12045.671 1.33E+03 -11455.163 1.82E+03 -12115.001 1.07E+03

Continued on next page
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IHAOAVOA-1 THAOAVOA-2 [HAOAVOA-3 [HAOAVOA

F Avg Std Avg Std Avg Std Avg Std

Foy 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Fio  8.88E-16 0.00E+00 8.88E-16 0.00E+00 8.88E-16 0.00E+00 8.88E-16 0.00E+00
Fu 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Fi,  8.17E-09 7.84E-09 3.95E-09 5.99E-09 5.27E-09 5.70E-09 3.83E-09 4.34E-09

Fis 4.10E-08 6.52E-08 5.27E-09 6.91E-09 2.31E-08 2.09E-08 3.36E-09 4.30E-09

Fis 3.05E+00 3.76E+00 1.49E+00 8.54E-01 2.79E+00 3.47E+00 1.23E+00 6.21E-01

Fis  3.17E-04 1.54E-05 3.12E-04 6.51E-06 3.15E-04 1.41E-05 3.11E-04 5.06E-06

Fie  -1.0316 4.77E-16 -1.0316 4.32E-16 -1.0316 4.59E-16 -1.0316 4.36E-16
Fi7 3.98E-01 3.24E-16 3.98E-01 0.00E+00 3.98E-01 0.00E+00 3.98E-01 0.00E+00
Fis 3.00E+00 7.45E-07 3.00E+00 2.44E-09 3.00E+00 2.86E-08 3.00E+00 3.63E-10
Fio  -3.8628 4.34E-12 -3.8628 2.01E-11 -3.8628 2.97E-12 -3.8628 1.32E-12

Fr  -3.2669 6.56E-02 -3.2784 6.62E-02 -3.2850 5.77E-02 -3.2903 5.35E-02

Fa o -10.1532 8.49E-14 -10.1532 4.20E-13 -10.1532 1.99E-13 -10.1532 6.68E-14
F»n  -10.4029 3.32E-13 -10.4029 2.93E-13 -10.4029 3.18E-13 -10.4029 1.89E-13

Frs -10.5364 6.78E-13 -10.5364 7.57E-13 -10.5364 4.53E-13 -10.5364 8.64E-14

Note: The best results obtained have been marked in bold.
4.1.2. Evaluation of exploitation and exploration capabilities

According to the previously described unimodal, multimodal, and fix-dimension multimodal
benchmark functions, in this part, we give a complete assessment of the exploitation and exploration
capabilities of the proposed algorithm. Table 6 lists the average fitness and standard deviation results
obtained by IHAOAVOA and other algorithms for each function F1—F23 in the dimension D = 30.
As can be seen from this table, the proposed IHAOAVOA outperforms its peers on the majority of
the test problems.

Specifically, for the unimodal functions (F1—F7), IHAOAVOA can effectively search for the
global optimum (0) on F1—F4, and the solution accuracy of the proposed improved hybrid algorithm is
greatly increased compared to the basic AO and AVOA. On functions F5—F7, though [HAOAVOA does
not obtain the theoretical optimal values, its solution accuracy is still marginally higher than that of
AO and AVOA by several orders of magnitude, ranking first in all comparison algorithms. As far as
the standard deviation is concerned, IHAOAVOA also provides the best performance on these
problems. The goal of unimodal functions is to evaluate the exploitation capability. From the above
results, we can confirm that IHAOAVOA has competitive local exploitation potential.

For the multimodal functions (Fs—F13), the average fitness and standard deviation of [HAOAVOA on
Fs, F12, and F13 are completely superior to other competitor algorithms. On functions F9 and Fio, the
proposed algorithm obtains the same performance as AO, AOA, and AVOA, but much better than SCA,
WOA, GWO, MFO, and TSA. On function F11, AO, AVOA, and IHAOAVOA show no difference, and all
provide the most satisfactory results. The purpose of multimodal functions is to measure the exploration
ability. Therefore, these results prove that IHAOAVOA possesses excellent global exploration capability.
This is mainly attributed to the fact that the designed COBL strategy can efficiently expand the unknown
search region and help the algorithm bypass the local optima to find higher-quality solutions.
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When solving fix-dimension multimodal functions (F14—F23), IHAOAVOA could comfortably outperform others in terms of the average
fitness and standard deviation on F14, Fis, F20, and F23. For the remaining functions, whereas some comparison algorithms can achieve the same
best average fitness values as IHAOAVOA, the standard deviation of the proposed algorithm is the smallest among them. This reveals the superior
robustness of [HAOAVOA. In light of the properties of the fix-dimension multimodal functions, these results indicate that IHAOAVOA is capable
of better balancing the exploration and exploitation, which benefits from the FDB selection method.

4.1.3. Boxplots analysis

Since the boxplot can visualize the data distribution, it is a well-suited diagram for describing the agreement between the data. Based on the
results obtained through 30 independent runs in Table 6, to better understand the algorithm’s distribution characteristics, the boxplots of
IHAOAVOA and other algorithms on 12 representative benchmark functions are depicted in Figure 7. In this figure, the center marker of each box
denotes the median value, the bottom and top fringes of the box respectively represent the first and third quartiles, and the notation "+" represents
the outliers. From Figure 7' it can be seen that the proposed IHAOAVOA shows great consistency and produces no outliers during the optimization
process for almost all test cases. At the same time, the median, maximum, and minimum values achieved by IHAOAVOA are more concentrated
compared with competitor algorithms. On function F3s, despite individual outliers, the overall distribution of [HAOAVOA remains superior to that
of others. The above demonstrates that the [HAOAVOA proposed in this paper has strong stability.

Table 6. Comparison results of different algorithms on 23 benchmark functions.

Fa criteria AO SCA WOA GWO MFO TSA AOA AVOA IHAOAVOA
Avg 1.65E-101 8.60E+00 2.21E-71 6.79E-28 3.00E+03 9.17E-21 3.44E-26 9.28E-301 0.00E+00
Fl Std 9.04E-101 1.18E+01 1.20E-70 9.42E-28 5.35E+03 4.50E-20 1.88E-25 0.00E+00 0.00E+00
£ Avg 2.30E-55 3.44E-02 1.12E-49 1.13E-16 3.38E+01 7.45E-14 0.00E+00 1.34E-149 0.00E+00
Std 1.26E-54 4.97E-02 6.06E-49 9.49E-17 1.86E+01 6.22E-14 0.00E+00 7.32E-149 0.00E+00
Avg 9.21E-106 9.04E+03 4.55E+04 8.29E-05 2.01E+04 3.38E-04 2.81E-03 9.87E-208 0.00E+00
s Std 4.03E-105 5.83E+03 1.20E+04 4.16E-04 1.01E+04 6.64E-04 7.69E-03 0.00E+00 0.00E+00
Avg 1.60E-51 3.35E+01 5.03E+01 1.03E-06 6.70E+01 3.73E-01 2.57E-02 1.53E-146 0.00E+00
s Std 8.76E-51 1.11E+01 2.63E+01 2.00E-06 9.60E+00 3.50E-01 2.07E-02 8.23E-146 0.00E+00
Avg 5.17E-03 4.92E+04 2.79E+01 2.70E+01 5.36E+06 3.12E+01 2.85E+01 4.82E-05 5.83E-07
s Std 1.82E-02 1.02E+05 4.10E-01 6.82E-01 2.03E+07 1.54E+01 2.80E-01 4.40E-05 9.72E-07

Continued on next page
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Fy criteria AO SCA WOA GWO MFO TSA AOA AVOA IHAOAVOA
Avg 9.93E-05 2.07E+01 4.33E-01 7.79E-01 2.01E+03 3.72E+00 3.20E+00 5.27E-07 2.17E-08
s Std 1.60E-04 3.48E+01 2.02E-01 3.94E-01 4.08E+03 5.83E-01 3.19E-01 5.06E-07 4.06E-08
Avg 1.31E-04 1.17E-01 3.65E-03 1.93E-03 2.99E+00 9.99E-03 6.07E-05 1.29E-04 3.22E-05
F7 Std 1.28E-04 1.14E-01 4.94E-03 8.63E-04 4.42E+00 5.40E-03 6.64E-05 8.95E-05 2.53E-05
Avg -7666.078 -3710.356 -9574.657 -6086.846 -8436.128 -6084.151 -5267.714 -12365.251 -12514.211
i Std 3.57E+03 3.60E+02 1.59E+03 7.35E+02 7.67E+02 3.51E+02 3.89E+02 4.16E+02 3.03E+02
Avg 0.00E+00 3.37E+01 5.67E+00 2.57E+00 1.59E+02 1.88E+02 0.00E+00 0.00E+00 0.00E+00
o Std 0.00E+00 2.62E+01 3.11E+01 3.49E+00 3.75E+01 3.95E+01 0.00E+00 0.00E+00 0.00E+00
Avg 8.88E-16 1.49E+01 4.80E-15 1.02E-13 1.29E+01 1.59E+00 8.88E-16 8.88E-16 8.88E-16
Fo Std 0.00E+00 8.32E+00 2.35E-15 1.86E-14 8.44E+00 1.53E+00 0.00E+00 0.00E+00 0.00E+00
Avg 0.00E+00 9.45E-01 1.64E-02 4.96E-03 2.20E+01 1.07E-02 1.50E-01 0.00E+00 0.00E+00
Fu Std 0.00E+00 3.33E-01 5.30E-02 8.06E-03 3.87E+01 1.55E-02 1.24E-01 0.00E+00 0.00E+00
Avg 3.45E-06 8.42E+04 2.87E-02 4.32E-02 1.27E+04 7.94E+00 5.15E-01 2.41E-08 3.35E-09
fe Std 5.68E-06 2.82E+05 4.43E-02 2.43E-02 5.07E+04 3.61E+00 4.35E-02 1.32E-08 2.99E-09
i Avg 2.03E-05 2.23E+05 5.36E-01 6.71E-01 1.37E+07 3.08E+00 2.81E+00 4.15E-08 8.32E-09
Std 3.39E-05 7.25E+05 2.35E-01 2.14E-01 7.49E+07 7.42E-01 9.95E-02 3.59E-08 2.30E-08
Avg 2.92E+00 1.66E+00 2.96E+00 5.14E+00 2.68E+00 8.88E+00 9.42E+00 1.36E+00 1.26E+00
Fu Std 3.76E+00 9.51E-01 3.23E+00 4.41E+00 2.01E+00 5.51E+00 4.23E+00 1.79E+00 6.86E-01
Avg 4.71E-04 1.03E-03 5.65E-04 5.05E-03 1.23E-03 3.93E-03 1.18E-02 4.08E-04 3.25E-04
s Std 1.21E-04 3.92E-04 2.15E-04 8.60E-03 1.39E-03 7.54E-03 1.41E-02 1.99E-04 6.11E-05
Avg -1.0313 -1.0316 -1.0316 -1.0316 -1.0316 -1.0253 -1.0316 -1.0316 -1.0316
s Std 3.78E-04 4.67E-05 4.89E-09 2.53E-08 6.78E-16 1.29E-02 1.18E-07 4.46E-16 4.34E-16
Avg 3.98E-01 4.00E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 4.10E-01 3.98E-01 3.98E-01
f Std 3.19E-04 1.87E-03 8.49E-05 2.96E-06 0.00E+00 5.51E-05 1.06E-02 5.42E-16 0.00E+00
Avg 3.04E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 6.60E+00 1.24E+01 3.00E+00 3.00E+00
s Std 3.90E-02 7.14E-05 9.90E-05 3.22E-05 1.55E-15 9.34E+00 1.95E+01 6.67E-06 2.81E-08
Fio Avg -3.8546 -3.8552 -3.8491 -3.8617 -3.8628 -3.8620 -3.8527 -3.8628 -3.8628

Continued on next page
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F, Criteria AO SCA WOA GWO MFO TSA AOA AVOA IHAOAVOA
Std 6.88E-03 3.23E-03 4.07E-02 2.26E-03 1.36E-11 1.96E-03 3.00E-03 7.01E-11 2.71E-15

Fy Avg -3.1375 -2.8605 -3.2402 -3.2656 -3.2266 -3.2513 -3.0903 -3.2704 -3.2824
Std 1.00E-01 3.92E-01 9.56E-02 7.69E-02 6.40E-02 6.86E-02 7.36E-02 6.00E-02 5.70E-02

Fy Avg -10.1434 -2.1289 -8.2722 -9.5607 -5.8923 -6.3812 -3.8602 -10.1532 -10.1532
Std 1.33E-02 1.77E+00 2.49E+00 1.84E+00 3.42E+00 2.94E+00 1.35E+00 7.59E-13 6.03E-13

Fx Avg -10.3894 -3.1252 -8.1968 -10.4010 -6.9732 -6.9165 -3.5839 -10.4029 -10.4029
Std 1.56E-02 1.80E+00 3.16E+00 1.47E-03 3.58E+00 3.45E+00 1.08E+00 6.78E-13 1.00E-13

Fa Avg -10.5293 -3.8926 -7.2253 -10.5345 -7.3135 -6.9438 -4.1219 -10.5360 -10.5364
Std 8.12E-03 1.69E+00 3.44E+00 9.63E-04 3.58E+00 3.71E+00 1.79E+00 4.42E-08 3.35E-13

Note: The best results obtained have been marked in bold.
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Figure 7. Boxplots of different algorithms on some benchmark functions.
4.1.4. Convergence behavior analysis

Normally, search agents tend to change dramatically in the early iterations to explore the
promising area of the search space as much as possible, then exploit it at length and converge gradually
with the number of iterations. To analyze the convergence behavior of the algorithm in the search for
the optimal solution, Figure 8 plots the convergence curves of AO, SCA, WOA, GWO, MFO, TSA,
AOA, AVOA, and THAOAVOA on 23 benchmark functions throughout the iterations.

As we can observe from this figure, the proposed IHAOAVOA has superior and competitive
convergence performance compared with other state-of-the-art algorithms. For unimodal benchmark
functions (£1—£7), the proposed IHAOAVOA can rapidly converge to the global optimum in the initial
phase of functions F1—F4, and its convergence curve displays the fastest decay rate; however, other
algorithms suffer from significant lag and are slow to search. This phenomenon is because the designed
COBL mechanism can provide better randomness and population diversity at the initial stage, thus
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deeply extending the search range of IHAOAVOA. On functions Fs and Fs, [HAOAVOA presents a
similar but better convergence trend than AO at the beginning of the iteration, and later it progressively
follows the same trend as AVOA. Eventually, IHAOAVOA obtains the highest convergence accuracy
among these algorithms with a considerable improvement over the basic AO and AVOA. These
behaviors exactly validate the general framework of the proposed algorithm. The combination of the
exploration phase of AO and the exploitation phase of AVOA contributes to effectively enhancing the
search performance and accelerating the convergence. On function F7, IHAOAVOA also obtains the
best convergence accuracy with the least number of iterations compared with its peers.

Since the multimodal benchmark functions (Fs—F13) consist of several local optima, it becomes
more challenging to solve them. Nevertheless, IHAOAVOA still maintains excellent convergence
behavior in these test cases. In particular, on functions Fo and F11, IHAOAVOA can achieve the global
optimum within ten iterations. On functions Fs and Flo, although the theoretical optimal value is not
obtained, the convergence speed and final solution accuracy of the proposed method again rank first
among all algorithms. On function F12, IHAOAVOA lags behind AO at the beginning of the search
process. Yet, during the later iterations, AO falls into the local optima, but the proposed method
commences to show its advantages and accelerate convergence to yield higher-quality results.
Furthermore, the superior local optima avoidance capability of IHAOAVOA is well demonstrated on
F13. These convergence behaviors of [HAOAVOA on multimodal functions present strong evidence
that the hybrid operation and COBL mechanism are beneficial to help get rid of the local optima. For
fix-dimension multimodal benchmark functions (F14—F23), it can be noted that IHAOAVOA quickly
shifts from exploration to exploitation phases, converges towards the global optimum in the early
stages of the iterations, and gradually determines the optimal value. Compared with the AO, AVOA,
and other competitor algorithms, the calculation accuracy and operating efficiency of the proposed
algorithm on these functions are also improved to some extent, which mainly owes to the role of the
FDB selection method in guiding the search process.

In short, the proposed IHAOAVOA can provide a better convergence pattern no matter for
unimodal or multimodal functions.

4.1.5. Computational time analysis

To investigate the computational cost of the proposed IHAOAVOA, Table 7 reports the average
computational time obtained by each algorithm on 23 benchmark functions. For a more intuitive
overview of the results, the total runtime of the nine methods has been calculated and sorted as follows:
IHAOAVOA > AO > AVOA > GWO > MFO > TSA > SCA > AOA > WOA. It can be noticed that
IHAOAVOA consumes more computational time than AO and AVOA, which ranks last among all
algorithms. One of the main reasons for this is the high time consumption of AO and AVOA themselves.
Furthermore, IHAOAVOA employs COBL to generate the opposite candidate solution to boost the
algorithm’s local optima avoidance capability and extend the unknown search space, and the FDB
selection method is used to better guide the search procedure. These introduced strategies also increase
the steps of the hybrid algorithm and extra computational time cost. However, on the whole,
considering the NFL theorem and the substantial time consumption of function evaluation in resolving
real-life optimization tasks, it is acceptable to sacrifice some runtime to achieve more reliable and
accurate solutions.

Mathematical Biosciences and Engineering Volume 19, Issue 11, 10963-11017.
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Table 7. Average computational time of different algorithms on 23 benchmark functions (unit: s).

Fa AO SCA WOA GWO MFO TSA AOA AVOA IHAOAVOA
Fi 2.42E-01 1.08E-01 7.88E-02 1.29E-01 1.08E-01 1.15E-01 9.67E-02  2.06E-01 3.23E-01
i3 2.64E-01 1.13E-01 8.63E-02 1.40E-01 1.17E-01 1.24E-01 1.01E-01 1.96E-01 3.29E-01
F3 9.72E-01 4.66E-01 4.32E-01 5.00E-01 4.73E-01 4.80E-01 4.52E-01 5.49E-01 1.40E+00
Fa 2.36E-01 1.08E-01 7.49E-02 1.26E-01 1.08E-01 1.10E-01 9.17E-02 1.84E-01 2.92E-01
Fs 2.80E-01 1.24E-01 9.37E-02 1.47E-01 1.31E-01 1.35E-01 1.13E-01 2.12E-01 3.60E-01
Fe 2.31E-01 1.06E-01 7.40E-02 1.23E-01 1.02E-01 1.07E-01 8.54E-02 1.75E-01 2.86E-01
Fr 3.55E-01 1.63E-01 1.30E-01 1.83E-01 1.65E-01 1.72E-01 1.51E-01 2.44E-01 4.68E-01
F3 2.85E-01 1.30E-01 9.53E-02 1.45E-01 1.28E-01 1.38E-01 1.13E-01 2.04E-01 3.62E-01
Fo 2.42E-01 1.13E-01 7.94E-02 1.28E-01 1.12E-01 1.18E-01 9.58E-02 1.80E-01 2.98E-01
Fio 2.70E-01 1.29E-01 9.02E-02 1.37E-01 1.26E-01 1.27E-01 1.02E-01 1.95E-01 3.39E-01
Fi 2.93E-01 1.39E-01 1.06E-01 1.48E-01 1.38E-01 1.34E-01 1.20E-01 2.13E-01 3.69E-01
Fin 6.28E-01 3.01E-01 2.70E-01 3.15E-01 3.03E-01 3.01E-01 2.88E-01 3.71E-01 8.72E-01
Fi3 6.44E-01 3.09E-01 2.72E-01 3.22E-01 3.03E-01 3.11E-01 2.81E-01 3.79E-01 8.91E-01
Fia 1.34E+00 6.22E-01 6.14E-01 6.10E-01 6.28E-01 6.16E-01 6.25E-01 7.15E-01 1.95E+00
Fis 1.96E-01 6.40E-02  6.27E-02  6.66E-02 6.87E-02  6.61E-02  6.78E-02 1.51E-01 2.64E-01
Fis  1.61E-01 4.82E-02  4.74E-02  4.94E-02 5.52E-02  4.81E-02  5.08E-02 1.36E-01 2.13E-01
Fi7 - 1.62E-01 441E-02  4.25E-02  4.47E-02 4.81E-02  4.38E-02  4.52E-02 1.30E-01 1.97E-01
Fis 1.59E-01 430E-02  4.23E-02  4.60E-02 5.05E-02  445E-02  4.32E-02 1.33E-01 1.99E-01
Fi9 2.64E-01 9.55E-02  9.03E-02  9.51E-02 9.92E-02 8.95E-02  9.55E-02 1.79E-01 3.48E-01
F  2.62E-01 9.71E-02  9.21E-02 1.03E-01 1.05E-01 9.96E-02  9.42E-02 1.84E-01 3.56E-01
F21 3.85E-01 1.55E-01 1.54E-01 1.55E-01 1.59E-01 1.57E-01 1.58E-01 2.43E-01 5.33E-01
F»n  4.68E-01 1.99E-01 1.91E-01 2.00E-01 2.04E-01 1.96E-01 1.92E-01 2.89E-01 6.52E-01
F» 5.85E-01 2.55E-01 2.48E-01 2.51E-01 2.60E-01 2.52E-01 2.54E-01 3.51E-01 8.41E-01

Note: The best results obtained have been marked in bold.
4.1.6. Statistical test

Because the results attained by each algorithm are random, it is usually not sufficient to evaluate
the relevant performance based only on the average fitness and standard deviation values. To
statistically validate whether there is a significant difference between the proposed IHAOAVOA and
the comparison algorithm, the Wilcoxon rank-sum test [96], Friedman ranking test [97], and mean
absolute error (MAE) test are conducted in this subsection.

For Wilcoxon rank-sum test, a non-parametric statistical method, the significance level is set
as 5%. Specifically, if the p-value is less than 0.05, it means that IHAOAVOA performs better
than the comparison algorithm; otherwise, IHAOAVOA performs worse than the comparison
algorithm. Additionally, NaN indicates that THAOAVOA performs consistently with the
comparison algorithm. The obtained p-values of the Wilcoxon rank-sum test on each benchmark
function are recorded in Table 9. For convenience, in the last line of this table, we use the letter
symbols (W/T/L) to denote the number of winner times, the number of tie times, and the number of
loss times for IHAOAVOA, respectively. As shown in Table 9, IHAOAVOA is able to outperform AO
on 20 functions, SCA on 23 functions, WOA on 23 functions, GWO on 23 functions, MFO on 22
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functions, TSA on 23 functions, AOA on 20 functions, and AVOA on 18 functions, which proves the
significant superiority of the proposed work.

To reveal the overall performance ranking of each algorithm on 23 benchmark functions, another
non-parametric comparison method: the Friedman ranking test, is used to assess the average fitness
data “Avg” obtained in Table 6. As presented in Figure 9, the proposed IHAOAVOA achieves the best
Friedman mean ranking value of 1.6522 among these algorithms. Thus, based on the theories of
statistical analysis, we can consider that IHAOAVOA has a noticeable improvement over the basic AO
and AVOA, and it can provide the best performance in all comparative algorithms.

At last, each algorithm's mean absolute error (MAE) on these classical test functions is also
evaluated and ranked. The statistical MAE is a measure to reveal the gap between estimates and the
theoretical values, which is formulated as follows:

1 *
MAE = 32 If, - £ @41)

where NF is the number of test functions, f; denotes the optimization result of the i-th function
obtained by the algorithm, and f;* denotes the global optimum of the i-th function.

Table 8. Mean absolute error of different algorithms on 23 benchmark functions.

algorithms MAE rank
AO 2.13E+02 3
SCA 1.63E+04 8
WOA 2.11E+03 7
GWO 2.83E+02 4
MFO 8.31E+05 9
TSA 2.93E+02 5
AOA 3.21E+02 6
AVOA 8.90E+00 2
IHAOAVOA 2.42E+00 1

Note: The best results obtained have been marked in bold.

Table 8 records the MAE and ranking of all algorithms. From this table, IHAOAVOA has the
smallest MAE value with a reduction of 98.87 and 72.84% compared to AO and AVOA respectively,
and it ranks first among all algorithms. These results once again prove the superiority of the proposed
method statistically.
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Figure 8. Convergence curves of different algorithms on 23 benchmark functions.
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Table 9. Statistical results of the Wilcoxon rank-sum test between IHAOAVOA and other
algorithms on 23 benchmark functions.

IHAOAVOA VS.

F AO SCA WOA GWO MFO TSA AOA AVOA
Fi 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 8.87E-07
F 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 NaN 1.21E-12
3 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12
Fy 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12
Fs 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.34E-11
Fe 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 6.07E-11
7 8.84E-07 3.02E-11 2.37E-10 3.02E-11 3.02E-11 3.02E-11 1.15E-02 7.74E-06
F3 7.39E-11 3.02E-11 6.70E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 7.30E-04
Fo NaN 1.21E-12 1.61E-11 1.17E-12 1.21E-12 1.21E-12 NaN NaN

Fio NaN 1.21E-12 3.32E-10 1.15E-12 1.21E-12 1.21E-12 NaN NaN

Fu NaN 1.21E-12 4.19E-02 1.37E-03 1.21E-12 5.37E-06 1.21E-12 NaN

Fi2 4.98E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 1.21E-10
Fi3 6.72E-10 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.82E-09
Fus 1.20E-07 3.16E-08 1.12E-08 8.71E-10 6.35E-05 8.53E-11 5.73E-11 7.83E-03
Fis 6.12E-10  4.98E-11 5.09E-08 2.53E-04 3.67E-11 7.74E-06 9.92E-11 2.25E-04
Fis 3.15E-12 3.15E-12 3.15E-12 3.15E-12 6.78E-16 3.15E-12 3.15E-12 8.12E-01
Fi7 1.21E-12 1.21E-12 1.21E-12 1.21E-12 NaN 1.21E-12 1.21E-12 5.14E-06
Fig 3.02E-11 3.34E-11 7.39E-11 3.02E-11 2.48E-11 3.02E-11 3.35E-08 6.72E-10
Fio 2.99E-11 2.99E-11 2.99E-11 2.99E-11 1.20E-12 2.99E-11 2.99E-11 9.88E-01
Fao 8.48E-09 3.02E-11 6.77E-05 6.77E-05 7.69E-08 4.74E-06 8.15E-11 3.92E-02
F 3.01E-11 3.01E-11 3.01E-11 3.01E-11 7.17E-10 3.01E-11 3.01E-11 6.52E-05
F2 3.00E-11 3.00E-11 3.00E-11 3.00E-11 3.00E-11 3.00E-11 3.00E-11 4.18E-03
Fa3 2.98E-11 2.98E-11 2.98E-11 2.98E-11 2.98E-11 2.98E-11 2.98E-11 1.22E-07
(W|TIL)  20/3/0 23/0/0 23/0/0 23/0/0 22/1/0 23/0/0 20/3/0 18/3/2

Note: The obtained p-values greater than 0.5 have been marked in bold.
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Figure 9. Friedman mean rank of different algorithms on 23 benchmark functions.
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4.1.7. Scalability analysis

Scalability is a critical metric that represents the impact of dimension expansion on performance fluctuations of the algorithm. From the
above experimental results, it can be seen that IHAOAVOA achieves good convergence on low-dimensional benchmark functions. However,
complex high-dimensional optimization problems prevail in practical applications, and many algorithms are prone to failure when dealing
with such problems. To further verify the effectiveness of the proposed method for high-dimensional optimization, IHAOAVOA is applied
to solve 13 benchmark functions F1—F13 in different dimensions D = {100,500,1000}. The parameter settings remain the same as in the
previous experiments, and the obtained results of the nine algorithms after 30 independent runs are reported in Table 10.

From the data comparison in Table 10, it can be seen that IHAOAVOA also performs well in the condition of high dimensions. For functions
F1—F4, Fo, and F11, IHAOAVOA always finds the global optimal solution to the problem, regardless of whether the dimensions change. For
functions Fs—Fs, F12, and F13, like its peers, the optimization accuracy of IHAOAVOA decreases as the number of dimensions increases. The main
reason for this is that the larger the dimension of the data, the more complex the search space and the more elements that need to be optimized.
However, the performance of IHAOAVOA does not deteriorate significantly. Compared with AO, AVOA, and other optimizers, the proposed
method still provides superior outcomes. For function Fio, the scalable results of IHAOAVOA are consistent with those of AO and AVOA.
Meanwhile, it is worth noting from Table 10 that these comparison algorithms (SCA, WOA, GWO, MFO, TSA, and AOA) show poor search
capability for some issues, especially in higher dimensions. In order to better illustrate the overall performance of IHAOAVOA on scalable test
functions, a Friedman ranking test based on the average fitness values is carried out and presented in Figure 10. It is clear from this figure that the
proposed IHAOAVOA ranks first among all algorithms independent of dimensionality.

These results prove that IHAOAVOA doesn't suffer from the so-called “curse of dimension.” It can not only easily resolve low-dimensional
problems, but also high-dimensional problems stably.

Table 10. Comparison results of IHAOAVOA and other algorithms on 13 benchmark functions in different dimensions (D =

100/500/1000).
Fa dimension criteria AO SCA WOA GWO MFO TSA AOA AVOA IHAOAVOA
Avg 3.65E-109 1.14E+04 8.16E-73 2.23E-12 6.02E+04 4.57E-10 2.46E-02 1.24E-286 0.00E+00
100 Std 1.96E-108 8.83E+03 2.92E-72 2.08E-12 1.32E+04 5.31E-10 7.55E-03 0.00E+00 0.00E+00
Fi Avg 2.02E-98 2.10E+05 4.83E-68 1.75E-03 1.16E+06 3.15E-02 6.31E-01 4.82E-291 0.00E+00
200 Std 1.10E-97 8.92E+04 2.65E-67 7.17E-04 4.14E+04 2.74E-02 4.73E-02 0.00E+00 0.00E+00
1000 Avg 2.01E-98 4.28E+05 6.52E-70 2.62E-01 2.74E+06 5.49E+00 1.72E+00 7.28E-275 0.00E+00

Continued on next page
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Fa dimension criteria AO SCA WOA GWO MFO TSA AOA AVOA IHAOAVOA
Std 1.10E-97 1.33E+05 2.59E-69 5.37E-02 6.28E+04 5.29E+00 7.99E-02 0.00E+00 0.00E+00
Avg 3.15E-52 8.44E+00 4.10E-50 4.64E-08 2.50E+02 1.86E-07 2.37E-47 2.71E-151 0.00E+00
100 Std 1.70E-51 6.84E+00 1.61E-49 1.89E-08 3.84E+01 1.89E-07 1.30E-46 1.46E-150 0.00E+00
Avg 9.17E-54 1.15E+02 1.39E-48 1.12E-02 1.39E+131 8.00E-03 1.17E-03 2.68E-149 0.00E+00
= 200 Std 5.02E-53 5.59E+01 4.89E-48 1.86E-03 7.61E+131 4.27E-03 1.42E-03 1.47E-148 0.00E+00
Avg 3.62E-56 Inf 1.13E-47 6.64E-01 Inf 2.78E-02 1.37E-02 2.15E-167 0.00E+00
1000 Std 1.98E-55 NaN 5.75E-47 3.48E-01 NaN 1.81E-02 4.73E-03 0.00E+00 0.00E+00
Avg 1.10E-100 2.39E+05 1.02E+06 7.84E+02 2.33E+05 1.39E+04 8.92E-01 7.42E-190 0.00E+00
100 Std 5.21E-100 7.24E+04 3.34E+05 1.04E+03 5.44E+04 5.82E+03 5.54E-01 0.00E+00 0.00E+00
s 500 Avg 8.08E-98 6.86E+06 3.08E+07 3.10E+05 5.15E+06 1.40E+06 2.89E+01 1.76E-141 0.00E+00
Std 4.43E-97 1.48E+06 9.14E+06 7.34E+04 1.07E+06 2.08E+05 1.46E+01 9.66E-141 0.00E+00
Avg 7.08E-99 3.00E+07 1.24E+08 1.54E+06 1.81E+07 6.00E+06 1.33E+02 6.26E-137 0.00E+00
1000 Std 3.88E-98 5.35E+06 3.97E+07 2.78E+05 3.51E+06 8.85E+05 6.30E+01 3.43E-136 0.00E+00
Avg 2.32E-55 9.05E+01 7.68E+01 1.19E+00 9.29E+01 5.39E+01 9.23E-02 2.79E-145 0.00E+00
100 Std 1.04E-54 2.87E+00 2.18E+01 1.54E+00 1.81E+00 1.17E+01 1.12E-02 1.53E-144 0.00E+00
Avg 5.78E-66 9.91E+01 8.14E+01 6.58E+01 9.88E+01 9.92E+01 1.76E-01 3.17E-135 0.00E+00
s 200 Std 3.08E-65 2.26E-01 2.16E+01 5.56E+00 4.27E-01 1.95E-01 1.17E-02 1.74E-134 0.00E+00
1000 Avg 2.11E-52 9.96E+01 8.07E+01 7.95E+01 9.95E+01 9.96E+01 2.11E-01 1.73E-142 0.00E+00
Std 1.14E-51 1.07E-01 2.13E+01 3.10E+00 1.35E-01 1.06E-01 1.24E-02 5.85E-142 0.00E+00
Avg 1.55E-02 1.26E+08 9.81E+01 9.78E+01 1.64E+08 9.79E+01 9.89E+01 4.40E-04 9.38E-06
100 Std 2.97E-02 5.75E+07 2.92E-01 7.70E-01 6.41E+07 7.90E-01 6.46E-02 4.35E-04 2.26E-05
Avg 1.96E-01 1.92E+09 4.96E+02 4.98E+02 5.02E+09 1.68E+05 4.99E+02 9.13E-03 5.02E-03
s 200 Std 5.22E-01 4.07E+08 3.87E-01 3.50E-01 2.17E+08 2.93E+05 9.35E-02 2.40E-02 3.41E-03
Avg 1.76E-01 4.68E+09 9.94E+02 1.05E+03 1.25E+10 4.31E+07 9.99E+02 2.25E-02 2.34E-03
1000 Std 3.39E-01 8.24E+08 8.99E-01 1.64E+01 2.21E+08 2.80E+07 1.36E-01 3.21E-02 4.73E-03
i 100 Avg 4.75E-04 1.08E+04 4.31E+00 1.02E+01 6.12E+04 1.45E+01 1.81E+01 1.11E-03 7.11E-06
Std 1.29E-03 5.64E+03 8.66E-01 1.09E+00 1.47E+04 1.09E+00 4.87E-01 4.33E-03 1.03E-05
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Fa dimension criteria AO SCA WOA GWO MFO TSA AOA AVOA IHAOAVOA
500 Avg 9.26E-04 1.84E+05 3.08E+01 9.14E+01 1.16E+06 1.03E+02 1.16E+02 6.68E-02 9.07E-05
Std 1.88E-03 8.36E+04 9.20E+00 1.92E+00 3.36E+04 1.89E+00 1.04E+00 1.66E-01 1.67E-04
Avg 9.62E-03 4.58E+05 6.47E+01 2.04E+02 2.72E+06 2.33E+02 2.42E+02 1.96E-01 7.29E-05
1000 Std 4.81E-02 1.72E+05 1.55E+01 2.66E+00 5.21E+04 4.54E+00 1.42E+00 3.90E-01 1.38E-04
Avg 1.04E-04 1.73E+02 3.86E-03 7.35E-03 2.55E+02 4.92E-02 6.81E-05 1.45E-04 3.93E-05
100 Std 1.11E-04 1.04E+02 3.61E-03 2.74E-03 1.09E+02 1.99E-02 8.37E-05 1.60E-04 3.02E-05
Avg 6.38E-05 1.59E+04 4.32E-03 4.72E-02 3.84E+04 2.74E+00 6.75E-05 2.15E-04 3.60E-05
F7 200 Std 6.13E-05 3.40E+03 5.14E-03 1.66E-02 1.97E+03 1.03E+00 3.76E-05 2.50E-04 3.32E-05
Avg 1.04E-04 6.92E+04 5.33E-03 1.53E-01 1.97E+05 3.00E+02 9.35E-05 2.00E-04 4.50E-05
1000 Std 8.32E-05 1.11E+04 6.57E-03 3.13E-02 7.79E+03 1.53E+02 6.11E-05 2.07E-04 5.80E-05
Avg -9328.482 -7056.794 -34621.557 -15216.923 -23112.332 -12933.983 -10052.935 -40933.164 -41793.696
100 Std 1.86E+03 7.12E+02 6.31E+03 3.35E+03 1.92E+03 1.07E+03 7.33E+02 1.81E+03 4.30E+02
Avg -41534.395 -15465.639 -185802.018 -55265.276 -61273.898 -31127.517 -22505.588 -200569.062 -203821.173
s 200 Std 1.29E+04 1.28E+03 2.68E+04 1.27E+04 4.38E+03 2.30E+03 1.63E+03 1.39E+04 1.99E+04
Avg -60526.163 -22031.394 -354116.605 -84858.638 -89734.384 -45407.853 -32295.698 -403963.628 -409246.624
1000 Std 1.13E+04 1.50E+03 5.61E+04 1.81E+04 5.97E+03 3.24E+03 2.22E+03 2.19E+04 4.02E+04
Avg 0.00E+00 2.96E+02 3.79E-15 1.10E+01 8.55E+02 9.59E+02 0.00E+00 0.00E+00 0.00E+00
100 Std 0.00E+00 1.09E+02 2.08E-14 7.55E+00 6.78E+01 1.25E+02 0.00E+00 0.00E+00 0.00E+00
Avg 0.00E+00 1.13E+03 3.03E-14 7.78E+01 6.96E+03 5.84E+03 6.08E-06 0.00E+00 0.00E+00
F9 200 Std 0.00E+00 5.21E+02 1.66E-13 2.20E+01 1.75E+02 6.14E+02 5.47E-06 0.00E+00 0.00E+00
Avg 6.06E-14 1.87E+03 6.06E-14 1.88E+02 1.55E+04 9.86E+03 6.05E-05 0.00E+00 0.00E+00
1000 Std 3.32E-13 6.87E+02 3.32E-13 4.00E+01 2.02E+02 1.81E+03 1.52E-05 0.00E+00 0.00E+00
Avg 8.88E-16 1.84E+01 3.97E-15 1.28E-07 1.98E+01 1.00E-01 5.51E-04 8.88E-16 8.88E-16
100 Std 0F.00E+00 4.10E+00 2.59E-15 5.39E-08 1.98E-01 5.50E-01 9.61E-04 0.00E+00 0.00E+00
Fio Avg 8.88E-16 1.97E+01 3.85E-15 1.99E-03 2.03E+01 1.22E-02 7.92E-03 8.88E-16 8.88E-16
200 Std 0.00E+00 2.79E+00 2.10E-15 3.92E-04 1.64E-01 6.72E-03 3.73E-04 0.00E+00 0.00E+00
1000 Avg 8.88E-16 1.84E+01 4.32E-15 1.78E-02 2.04E+01 9.91E-02 9.26E-03 8.88E-16 8.88E-16
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Fa dimension criteria AO SCA WOA GWO MFO TSA AOA AVOA IHAOAVOA
Std 0.00E+00 4.62E+00 2.18E-15 2.54E-03 2.02E-01 4.31E-02 2.76E-04 0.00E+00 0.00E+00
Fu 100 Avg 0.00E+00 1.05E+02 1.05E-02 431E-03 5.50E+02 1.16E-02 6.17E+02 0.00E+00 0.00E+00
Std 0.00E+00 5.66E+01 5.74E-02 1.01E-02 1.87E-02 1.87E-02 1.94E+02 0.00E+00 0.00E+00
Avg 0.00E+00 1.76E+03 0.00E+00 1.04E-02 1.02E+04 3.18E-02 1.09E+04 0.00E+00 0.00E+00
200 Std 0.00E+00 6.34E+02 0.00E+00 2.73E-02 2.76E+02 7.30E-02 2.71E+03 0.00E+00 0.00E+00
Avg 0.00E+00 3.92E+03 0.00E+00 4.35E-02 2.46E+04 3.33E-01 2.82E+04 0.00E+00 0.00E+00
1000 Std 0.00E+00 1.37E+03 0.00E+00 6.94E-02 3.99E+02 2.20E-01 2.97E+02 0.00E+00 0.00E+00
Avg 1.87E-06 3.30E+08 4.86E-02 2.97E-01 2.61E+08 1.22E+01 9.06E-01 9.92E-07 5.66E-08
100 Std 3.02E-06 1.71E+08 2.88E-02 6.58E-02 1.57E+08 4.24E+00 2.21E-02 2.35E-06 7.68E-08
Avg 7.58E-07 6.06E+09 9.05E-02 7.39E-01 1.21E+10 3.34E+06 1.09E+00 7.86E-06 9.84E-08
Fa 300 Std 1.50E-06 1.13E+09 4.06E-02 5.92E-02 7.34E+08 3.63E+06 1.14E-02 3.58E-05 1.47E-07
Avg 1.25E-06 1.29E+10 9.69E-02 1.24E+00 3.02E+10 5.25E+08 1.11E+00 9.31E-06 8.78E-08
1000 Std 2.49E-06 2.33E+09 3.70E-02 2.99E-01 1.44E+09 2.37E+08 5.40E-03 2.15E-05 1.65E-07
100 Avg 4.67E-05 4.96E+08 3.00E+00 7.00E+00 6.68E+08 1.28E+01 9.98E+00 1.46E-07 4.88E-08
Std 7.09E-05 2.77E+08 1.01E+00 3.94E-01 3.66E+08 1.59E+00 4.17E-02 1.65E-07 8.26E-08
Fi 500 Avg 2.79E-04 9.65E+09 1.96E+01 5.09E+01 2.19E+10 1.15E+06 5.02E+01 8.40E-07 6.80E-07
Std 4.18E-04 2.02E+09 6.16E+00 1.38E+00 1.36E+09 1.24E+06 3.62E-02 1.60E-06 1.26E-06
Avg 5.17E-04 2.21E+10 3.81E+01 1.23E+02 5.60E+10 3.07E+08 1.01E+02 5.04E-03 3.41E-06
1000 Std 8.71E-04 4.63E+09 1.17E+01 8.57E+00 1.89E+09 2.23E+08 5.93E-02 2.01E-02 6.58E-06

Note: The best results obtained have been marked in bold.

Mathematical Biosciences and Engineering Volume 19, Issue 11, 10963—-11017.



(=] — %) o ES N (=) ~ »® -]
0 ——
R

£761°8

7 N 0 )

> > N >
B O & & A K ~ R
v o
100D =500D = 1000D &

Figure 10. Friedman mean rank of different algorithms in 100/500/1000 dimensions.
4.2. Experiment 2: IEEE CEC2019 test suite

Classical benchmark function experiments have proven the prominent performance of
IHAOAVOA with respect to solving simple optimization problems. To further emphasize the
superiority of the improved algorithm in this paper, this subsection uses the IEEE CEC2019 test
suite [98], also known as 100-Digit Challenge, to estimate the performance of IHAOAVOA in
solving complex numerical problems. This test suite comprises ten complicated and latest
benchmark functions, the profiles of which are listed in Table 11. As stated in the previous
subsection, the proposed IHAOAVOA and other eight comparison algorithms run independently 30
times on each function with the maximum iteration and population size fixed to 500 and 30,
respectively. The obtained average value and standard deviation results of this test are presented in
Table 12. Meanwhile, the Friedman mean rank values used for statistical analysis of algorithms are
included in the last line of this table.

Table 11. Details of IEEE CEC2019 test suite.

function name D range Fmin
CEC-01 Storn’s Chebyshev Polynomial Fitting Problem 9 [-8192, 8192] 1
CEC-02 Inverse Hilbert Matrix Problem 16 [-16384, 16384] 1
CEC-03 Lennard-Jones Minimum Energy Cluster 18 [-4, 4] 1
CEC-04 Rastrigin’s Function 10 [-100, 100] 1
CEC-05 Griewangk’s Function 10 [-100, 100] 1
CEC-06 Weierstrass Function 10 [-100, 100] 1
CEC-07 Modified Schwefel’s Function 10 [-100, 100] 1
CEC-08 Expanded Schaffer’s F6 Function 10 [-100, 100] 1
CEC-09 Happy Cat Function 10 [-100, 100] 1

CEC-10 Ackley Function 10 [-100, 100] 1




From Table 12, it is clear that IHAOAVOA outperforms the other eight algorithms on 6 out of 10 test functions. For CEC-2, although GWO
and MFO achieve the same average fitness as IHAOAVOA, the proposed algorithm has a smaller standard deviation, which demonstrates the
better stability of IHAOAVOA. For CEC-5 and CEC-9, the performance of IHAOAVOA is slightly worse than that of MFO, but it still ranks
second among all algorithms. For CEC-7, AOA provides the most satisfactory solutions, whereas IHAOAVOA also performs quite competitively.
Besides, compared with its peers, IHAOAVOA obtains the best Friedman mean ranking value of 1.8000 followed by the MFO algorithm. These
findings demonstrate that the proposed IHAOVAOA is capable of tackling various challenging optimization problems as well.

To summarize, the effectiveness and superiority of the proposed method are thoroughly verified in this section through a series of experiments
on classical benchmark functions and the IEEE CEC2019 test suite. Whether solving simple or complex numerical problems, [HAOAVOA can
give satisfactory results in most cases. [HAOAVOA inherits the merits of the basic AO and AVOA and makes use of the COBL and FDB strategies
to compensate for the defects of poor population diversity, the tendency to fall into local optima, and the imbalance between exploration and
exploitation. Of course, a good algorithm needs to be applied in practice to show its value. In the next section, [HAOAVOA will be used to address
five constrained industrial engineering problems.

Table 12. Comparison results of different algorithms on IEEE CEC2019 test suite.

Fy criteria AO SCA WOA GWO MFO TSA AOA AVOA IHAOAVOA
Avg 5.58E+04 3.76E+09 3.77E+10 1.75E+08 1.96E+10 2.03E+08 7.86E+09 4.50E+04 4.14E+04
CEC Std 8.33E+03 4.69E+09 4.58E+10 3.03E+08 2.96E+10 3.54E+08 2.74E+10 3.35E+03 2.60E+03
Avg 1.74E+01 1.75E+01 1.74E+01 1.73E+01 1.73E+01 1.85E+01 1.93E+01 1.74E+01 1.73E+01
CEC2 Std 1.13E-02 5.17E-02 1.55E-02 3.06E-04 7.14E-12 6.14E-01 4.85E-01 6.10E-02 9.47E-14
Avg 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01
CEC3 Std 6.95E-06 1.05E-04 1.54E-06 8.00E-06 2.77E-04 9.66E-04 1.23E-03 5.21E-09 1.26E-09
Avg 7.15E+02 1.48E+03 3.66E+02 1.38E+02 1.82E+02 4.14E+03 1.31E+04 1.56E+02 1.28E+02
CEC4 Std 4.63E+02 6.40E+02 1.18E+02 4.30E+02 1.91E+02 2.76E+03 5.83E+03 6.60E+01 4.03E+01
Avg 1.59E+00 2.19E+00 1.86E+00 1.39E+00 1.28E+00 2.79E+00 4.22E+00 1.52E+00 1.36E+00
CECS Std 2.74E-01 4.15E-01 3.64E-01 2.21E-01 1.38E-01 7.72E-01 1.00E+00 3.45E-01 2.15E-01
Avg 1.07E+01 1.09E+01 9.70E+00 1.10E+01 6.21E+00 1.12E+01 8.97E+00 6.23E+00 5.77E+00
CEC-o Std 7.52E-01 7.05E-01 1.26E+00 6.08E-01 2.21E+00 6.12E-01 2.00E+00 1.87E+00 1.79E+00
Avg 4.32E+02 8.03E+02 4.92E+02 4.22E+02 3.52E+02 6.96E+02 2.03E+02 3.60E+02 3.07E+02
CECT Std 2.10E+02 1.78E+02 2.35E+02 2.95E+02 1.91E+02 1.88E+02 1.15E+02 2.01E+02 1.67E+02

Continued on next page
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Fa criteria AO SCA WOA GWO MFO TSA AOA AVOA IHAOAVOA
Avg 5.45E+00 5.97E+00 6.09E+00 5.41E+00 5.67E+00 6.20E+00 5.47E+00 5.55E+00 5.32E+00
CECS Std 5.66E-01 4.66E-01 5.10E-01 9.01E-01 6.79E-01 6.03E-01 5.28E-01 5.77E-01 5.03E-01
Avg 5.00E+00 9.82E+01 5.09E+00 4.76E+00 2.87E+00 6.03E+02 7.66E+02 3.62E+00 3.54E+00
CECo Std 7.93E-01 6.64E+01 9.13E-01 9.75E-01 3.89E-01 6.71E+02 4.36E+02 7.50E-01 6.52E-01
CEC-10 Avg 2.04E+01 2.05E+01 2.03E+01 2.02E+01 2.02E+01 2.05E+01 2.01E+01 2.03E+01 2.00E+01
Std 1.16E-01 7.95E-02 1.19E-01 1.48E+00 1.51E-01 8.28E-02 6.61E-02 6.71E-02 5.41E-02
Friedman mean ranking ~ 5.1000 7.0500 6.1500 3.8500 3.5500 7.6500 5.9000 3.9500 1.8000

Note: The best results obtained have been marked in bold.
5. IHAOAVOA for solving engineering design problems

In this section, five common engineering design problems from the structural field are utilized to highlight the applicability and black-box
nature of the proposed IHAOAVOA in real-world constrained optimization, which are tension/compression spring design problem, welded beam
design problem, cantilever beam design problem, speed reducer design problem, and rolling element bearing design problem. For convenience,
the death penalty function [99] is introduced here to handle those infeasible candidate solutions subject to equality and inequality constraints. In
the same way, we set the maximum number of iterations and population size as 500 and 30, respectively. The detailed comparison results of
IHAOAVOA and other algorithms after 30 times of independent runs on each project are presented and discussed below.

5.1. Tension/compression spring design problem

As shown in Figure 11, the goal of this optimization problem is to find three optimal design variables, namely diameter of the wire (d),
average coil diameter (D), and active coils number (N), to reduce the weight of a tension/compression spring as much as possible. Meanwhile, the
constraints of shear stress, surge frequency, and minimum deflection should be satisfied in the minimization process. The mathematical model of
this design is formulated as follows.

Consider

Z= [21'Z2'Z3] = [d'D'N]

Mathematical Biosciences and Engineering Volume 19, Issue 11, 10963—-11017.



Minimize

f(@) = (23 + 2)z,2¢

Subject to
_ 4 2z _ 4z2-zy7, 1 _ 4 _ 14045z _ 7147
9:1(@) =1 71785z% <0,9:(2) = 12566(z,23—2%) + 510822 <0, g5 =1 222, <0,04(2) = 15 1=0
Variable range
0.05 <z, £2,025<2z,<1.30,2.00 < z; <15.00

'Y
D—P>
Y

Figure 11. Schematic view of tension/compression spring design problem.

Table 13. Comparison results of different algorithms for tension/compression spring design problem.

optimal values for variables

algorithm minimum weight
d(zy) D(z3) N(z3)
AO 0.0505978 0.330908 13.1244 0.012708
SCA 0.0500431 0.318378 13.7796 0.012757
WOA 0.0500000 0.310414 15.0000 0.013193
GWO 0.0545730 0.430150 8.1728 0.012811
MFO 0.0571830 0.503870 6.2155 0.013181
TSA 0.0536750 0.405150 9.4851 0.012840
AOA 0.0526750 0.380910 9.8629 0.012683
AVOA 0.0500150 0.317762 14.3427 0.012718
THAOAVOA 0.0518973 0.361749 10.5783 0.012666

Note: The best results obtained have been marked in bold.

The performance evaluation of the optimal solution obtained by the proposed IHAOAVOA on
this application is compared with those of AO, SCA, WOA, GWO, MFO, TSA, AOA, and AVOA, as
listed in Table 13. It can be observed from this table that [HAOAVOA outperforms all other comparison
algorithms and reveals the minimum weight f,,,;,(Z) = 0.012666 corresponding to the best solution

Z =[0.0518973,0.361749,10.5783], which demonstrates the merits of IHAOAVOA in resolving
the tension/compression spring design problem.

5.2. Welded beam design problem

Just as its name implies, this well-known engineering case first proposed by Coello [99] aims at
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minimizing the overall fabrication cost of a welded beam under the constraints on shear stress, bending
stress in the beam, buckling load, and end deflection. As illustrated in Figure 12, there are four decision
parameters that need to be considered in this problem such as the weld thickness (h), the length of the
joint beam (l), the height of the beam (t), and the thickness of the beam (b). The mathematical
representation of this optimization is described as follows.

Consider
Z = [24,24,25,24] = [, 1, t, b]
Minimize
f(Z) = 1.104712%2, + 0.04811232,(14 + z,)
Subject to

gl(Z) = T(Z)) — Tmax = 0'92(2) =0 = Opax = 0'93(2) =0~ Omax <0,
gu(Z)=2,—2,<0,95(Z) =P —P.(2) <0,94(Z) = 0.125 — z; <0,
g,(Z) = 110471z + 0.04811232,(14 + z,) —5< 0
Variable range

01<2,2,<201<2,5,23 510

where

> ~2 o nZy o o P ©_ MR _ ( z_z) _ 75 Z1+2347
(Z) \/(’[) + 217 2R+(’L’),’L’ T2z " 7 ,M =P L+2 ,R 4+(—2 )2,

2,6
4013|2324
L §(7) = 22 p(2) = —“(1 - i),P = 6000lb,

6
Ez2z, Ez2z, L2 2L 4G

J = 2{VZnz 2 + 27)},0(2) =

L = 14in,E = 30 X 10°psi, G = 12 X 10°psi,0ax = 0.25in, Tpyax = 13600psi, 0y, = 30000psi.

< > e

Figure 12. Schematic view of welded beam design problem.

This problem has been figured out using IHAOAVOA and the remaining eight methods. The
optimal solutions are summarized in Table 14. It can be seen that the minimum manufacturing cost of
IHAOAVOA is 1.7249 when the four variables h, [, t, and b are set as 0.20573, 3.4705, 9.0366,
and 0.20573, respectively. In this comparison, IHAOAVOA attains a superior outcome to all the other
optimization techniques, which suggests that the proposed hybrid algorithm in this paper can be
regarded as a promising tool to deal with the welded beam design problem.

Mathematical Biosciences and Engineering Volume 19, Issue 11, 10963-11017.
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Table 14. Comparison results of different algorithms for welded beam design problem.

optimal values for variables

algorithm minimum cost
h(z) l(z1) t(z3) b(z,)
AO 0.20355 3.5170 9.0392 0.20572 1.7281
SCA 0.19979 3.6142 9.0393 0.20572 1.7352
WOA 0.20241 3.5518 9.0302 0.20609 1.7322
GWO 0.20476 3.4958 9.0409 0.20576 1.7277
MFO 0.20288 3.5332 9.0359 0.20576 1.7290
TSA 0.19894 3.6141 9.0584 0.20562 1.7364
AOA 0.20628 3.4652 9.0199 0.20649 1.7279
AVOA 0.20638 3.4721 9.0212 0.20661 1.7301
THAOAVOA 0.20573 3.4705 9.0366 0.20573 1.7249

Note: The best results obtained have been marked in bold.

5.3. Cantilever beam design problem

The design of the cantilever beam is also a popular research concern in real-life engineering
optimization. Its main intention is to locate five optimal structural variables to dwindle the total weight
of a cantilever beam when meeting the load capacity requirements. Figure 13 illustrates the architecture
of the cantilever beam, which is made up of several hollow square-shaped sections. Mathematically,
this problem is stated as follows.

Consider
Z = (24,23, 23, 24, Z5]
Minimize
f(2) = 0.6224(zy + 2z, + 23 + 24 + 25)
Subject to
61 27 19 7 1
9(2) =§+§+E+E+§_ 1<0

Variable range

0.01 < 24,25, 23,74,25 < 100

/

—

1
Aa ’ 0 ?

constant

Figure 13. Schematic view of cantilever beam design problem.

Mathematical Biosciences and Engineering Volume 19, Issue 11, 10963-11017.
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The best results obtained by all algorithms for the cantilever beam design problem are recorded
in Table 15. As can be seen from this table, the proposed IHAOAVOA has achieved the best design
assurance with the lowest weight compared with the other optimizers. Besides, the basic AO and
AVOA come in the second and seventh ranks, respectively. Therefore, it is reasonable to believe that
IHAOAVOA has good potential for solving such a problem.

Table 15. Comparison results of different algorithms for cantilever beam design problem.

optimal values for variables

algorithm minimum weight
Z Z Z3 Z4 Zs
AO 6.3708 5.0687 4.5731 3.4451 2.0924 1.3447
SCA 59121 5.0872 4.9220 3.4056 2.2583 1.3469
WOA 6.3667 5.2580 3.8672 4.0987 2.3313 1.3679
GWO 5.7371 5.5770 4.4891 3.5928 2.1354 1.3436
MFO 5.8949 5.4072 4.5087 3.4724 2.2016 1.3407
TSA 5.8791 5.2745 4.5557 3.5769 2.2081 1.3412
AOA 5.7563 5.3133 4.4690 3.7889 2.2155 1.3443
AVOA 5.9292 5.3891 4.4645 3.5405 2.1566 1.3403
THAOAVOA 6.0108 5.3170 4.4678 3.5324 2.1466 1.3400

Note: The best results obtained have been marked in bold.

5.4. Speed reducer design problem

The purpose of this speed reducer design problem is to minimize the mass of a reducer by
optimizing seven decision variables, which are the face width (z;), module of teeth (z;), the number
of teeth in the pinion (z3), length of the shafts between bearings (z4, zs), and diameter of the shafts
(zg, z7). In addition, the design is subject to the limitations of the gear teeth’ bending stress, the
transverse deflection of the shafts, surface stress, and stresses in the shafts. The structure of this
problem is depicted in Figure 14, and the related mathematical description can be specified as follows.

Consider

Z= [Zl' Z2,23,2Z4,Z5, Zg, Z7]
Minimize

F(Z) = 0.7854z,22(3.333322 + 14.9334z; — 43.0934) — 1.508z, (22 + z2) + 7.4777(z2 + z3)

Subject to
397.5 1.93 1.93
9:() = - = 71500 = ;‘*—1<0 94(2) = Zj5—1s0,95(2)=
(74524) +16.9x106
P -1<0,
110.0z¢
7452,\°
(522) +157.5 x 10
243
96(2) = 85.072 -1<0,9,(2) = _40 —-1=<0,
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1.1z,+1.9
Zs

1.5z¢+1.9
z

5
9e(D) =72-150,95(D) = ;-— 150, g1(2) = -1<0,9,(@ = 1<0

2

Variable range

26<2z <3607<2,<0817 <z, <2873<z,<8378<2z<8329<2<3950<z, <55

Z6
Figure 14. Schematic view of speed reducer design problem.

Table 16 shows the comparison results between different algorithms when solving the speed
reducer design problem. Compared to AO, SCA, WOA, GWO, MFO, TSA, AOA, and AVOA, the
proposed ITHAOAVOA effectively provides higher-quality results. The optimal solution of
IHAOAVOA is attained at Z = [3.5,0.7,17,7.30000,7.71532,3.35021,5.28665] with the minimum
weight  f,in(Z) = 2994.4711 . This example again showcases the excellent performance of
IHAOAVOA at the practical application level.

Table 16. Comparison results of different algorithms for speed reducer design problem.

optimal values for variables

algorithm minimum weight
Z ) z3 Zy Zs Zg Z7
AO 3.5 07 17 7.30091 7.82289 3.35022 5.28669 2996.8676
SCA 3.52991 0.7 17 7.64007 7.73596 3.38152 5.28666 3017.7743
WOA 3.5 07 17 8.27222 7.99218 3.35215 5.28675 3009.6826
GWO 3.50242 0.7 17.0123 7.46923 7.86195 3.35336 5.28693 3003.2403
MFO 3.5 0.7 17 7.53278 7.73890 3.35066 5.28666 2997.1598
TSA 3.50693 0.7 17 8.00463 8.11691 3.35393 5.28683 3013.2930
AOA 3.5 07 17 7.35758 7.78101 3.35032 5.28668 2996.4624
AVOA 3.5 0.7 17.0002 7.36821 7.72042 3.35034 5.28666 2995.2443
THAOAVOA 3.5 07 17 7.30000 7.71532 3.35021 5.28665 2994.4711

Note: The best results obtained have been marked in bold.
5.5. Rolling element bearing design problem

The last constrained engineering problem is the design of the rolling element bearing, as

Mathematical Biosciences and Engineering Volume 19, Issue 11, 10963-11017.
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illustrated in Figure 15. In contrast to the optimization tasks mentioned above, the final objective of
this test case is to maximize the dynamic loading carrying capacity of rolling element bearings. In this
optimum design, a total of ten geometric parameters need to be taken into account, including pitch
diameter (D,,), ball diameter (D} ), the number of balls (Z), the inner and outer raceway curvature
radius coefficient (f; and f,), Kgmin> Kamax> 0> €, and C. The problem has nine constraints and its
mathematical formula is as follows.

Maximize
_ (f.z*Dy® if D, < 25.4mm
a- 3.647f.Z%/*D}*, otherwise
Subject to
91(2) = L_Z +1< 0'.92(2) = 2Db - Kdmin(D - d) >0, 93(2) = Kdmax(D - d) - 2Db =

2sin~1(Dy /D)

0,94(2) = (B, — Dy < 0, gs(2) = Dy — 0.5(D +d) = 0,gs(2) = (0.5 + €)(D + d) — Dy = 0, g5 (Z) =
0.5(D — D,, — D)) — 8D}, > 0, gg(Z) = f; = 0.515, go(Z) = f, = 0.515

where

/31703
3 1=\L72 (5 2f, 1)) 041 10 PO3A-PO T 2F; 1940
fe =3791 [1 + {104 (m) (m) X RESRE ] [Zfi—l] X = [{(D -d)/2 -

3(T/9)Y +{D/2 =T/4—Dp}* —{d/2 +T/4}*]y = 2{(D — d)/2 = 3(T/H}D/2 = T /4 — Dy}, po = 2[] -
cos—l(g),y = [’f—bf = ;—",fo = D—T =D—d-2D, D=160,d =90,B, = 30,1; =1, = 11.033,0.5(D +
m b b
d) <D, <0.6(D+d) 015(D —d) <D, <0.45(D —d),4 < Z <50,0515 < f;and f, < 0.6 0.4 < Kgpin <
0.5,0.6 < Kgmax < 0.7,0.3 <8 < 0.4,0.02 < e < 0.1,0.6 < { < 0.85.

Figure 15. Schematic view of rolling element bearing design problem.

The detailed results of the optimum variables and cost for this problem are presented in Table 17.
By examining the data in this table, it is evident that the proposed IHAOAVOA is capable of detecting
a much better cost than its competitors, which is 85549.1628. And the results of MFO and AVOA are
also very competitive.

In summary, the findings of this section strongly demonstrate that IHAOAVOA is equally

Mathematical Biosciences and Engineering Volume 19, Issue 11, 10963-11017.



effective and feasible for practical engineering design applications. Attributed to the hybrid operation, COBL, and FDB, the exploration and
exploitation capabilities of the algorithm developed in this paper have been dramatically improved. It is highly hopeful to apply IHAOAVOA to
solve more real-life problems in various scenarios.

Table 17. Comparison results of different algorithms for rolling element bearing design problem.

algorithm AO SCA WOA GWO MFO TSA AOA AVOA IHAOAVOA
Dy, 125.5912 125 126.3104 125.6319 125.7191 125.3916 125 125.7186 125.7191
Dy, 21.39605 21.15739 21.03404 21.39261 21.42559 21.28729 21.27301 21.42548 21.42559
Z 11.13631 10.90745 10.95836 11.03602 11.0039 10.78929 11.36323 10.7434 10.62575
fi 0.515 0.515 0.515 0.515 0.515 0.515 0.515 0.515 0.515

fo 0.5240512 0.5359205 0.515 0.58441 0.5343591 0.5628563 0.515 0.5200027 0.5154035
Kamin 0.4096218 0.4 0.4064247 0.4138138 0.4223729 0.4159249 0.4997957 0.4766428 0.4129783
Kamax 0.657841 0.6423859 0.6011677 0.6946858 0.6512409 0.6156199 0.6964319 0.6598702 0.6282836
o 0.301808 0.3 0.3008351 0.3021904 0.3 0.3 0.3 0.3000088 0.3

e 0.05709046 0.02251181 0.02775154 0.09110937 0.02285913 0.04570604 0.08114373 0.02112543 0.02000012
4 0.6169172 0.6 0.6 0.6154725 0.6001039 0.6 0.6 0.6041762 0.6507823
Maximum cost 85336.3471 83645.9245 82812.5215 85298.9012 85545.3137 84558.2474 84459.7849 85547.5187 85549.1628

Note: The best results obtained have been marked in bold.

6. Conclusions and future work

Considering the characteristics of Aquila Optimizer and African Vultures Optimization Algorithm, this paper proposed a novel improved hybrid
meta-heuristic algorithm, namely IHAOAVOA, for solving global optimization problems. First, the exploration phase of AO and the exploitation phase
of AVOA were integrated to accomplish superior overall search performance and alleviate the weaknesses existing in the single algorithm. Second, we
designed a new composite opposition-based learning mechanism to enhance population diversity and increase the probability of obtaining the global
optimal solution. Meanwhile, the fitness-distance balance selection method was used to choose one candidate solution that contributes most to the search
process to replace the original random individual in the position update rules, which helps to better balance the exploration and development capabilities
of the hybrid algorithm. To fully evaluate the function optimization performance, the proposed IHAOAVOA was compared with the basic AO, AVOA,
and six advanced metaheuristics based on 23 classical benchmark functions and the IEEE CEC2019 test suite. The significance of obtained results was



verified through the Wilcoxon rank-sum test, Friedman test, and mean absolute error test. Numerical and
statistical results indicate that IHAOAVOA significantly outperforms the other algorithms in terms of
accuracy, convergence speed, stability, and local optima avoidance. Moreover, the proposed algorithm also
shows stable performance in high-dimensional cases (D = 100/500/1000). To demonstrate the
applicability of IHAOAVOA in practice, five engineering design problems were employed. It has been
found that the proposed IHAOAVOA can effectively provide very competitive solutions in solving such
real-life optimization issues as well.

Even though the proposed IHAOAVOA has remarkable improvements over the AO and AVOA
algorithms, its computational cost is a potential limitation, and the performance on partial CEC2019
benchmark functions still has room to be further enhanced. In the subsequent research works, we will: 1)
introduce some parallel strategies in IHAOAVOA, such as the co-evolutionary mechanism or cell model
to reduce the time consumption under the guarantee of ensuring performance; 2) strengthen the exploration
and exploitation capabilities of IHAOAVOA through other hybrid and general modification techniques to
remove barriers on the IEEE CEC2019 test suite; 3) evaluate the performance differences between
IHAOAVOA and some improved variants of AO on more challenging engineering application
problems; 4) integrate the designed composite opposition-based learning mechanism into more MAs
to enhance their search capabilities; 5) apply IHAOAVOA to solve different optimization problems in
a wider range of disciplines, like feature selection, path planning, PID parameters self-tuning, forecast
modeling, and image segmentation. Meanwhile, the identification of optimal process parameters for
selective laser sintering (SLS) would also be a meaningful research topic.
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