Research article Special Issues

Power-series solution of compartmental epidemiological models


  • In this work, power-series solutions of compartmental epidemiological models are used to provide alternate methods to solve the corresponding systems of nonlinear differential equations. A simple and classical SIR compartmental model is considered to reveal clearly the idea of our approach. Moreover, a SAIRP compartmental model is also analyzed by using the same methodology, previously applied to the COVID-19 pandemic. Numerical experiments are performed to show the accuracy of this approach.

    Citation: H. M. Srivastava, I. Area, J. J. Nieto. Power-series solution of compartmental epidemiological models[J]. Mathematical Biosciences and Engineering, 2021, 18(4): 3274-3290. doi: 10.3934/mbe.2021163

    Related Papers:

    [1] Sunarno Sunarno, Nelly Puspandari, Fitriana Fitriana, Uly Alfi Nikmah, Hasta Handayani Idrus, Novaria Sari Dewi Panjaitan . Extended spectrum beta lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae in Indonesia and South East Asian countries: GLASS Data 2018. AIMS Microbiology, 2023, 9(2): 218-227. doi: 10.3934/microbiol.2023013
    [2] Maureen U. Okwu, Mitsan Olley, Augustine O. Akpoka, Osazee E. Izevbuwa . Methicillin-resistant Staphylococcus aureus (MRSA) and anti-MRSA activities of extracts of some medicinal plants: A brief review. AIMS Microbiology, 2019, 5(2): 117-137. doi: 10.3934/microbiol.2019.2.117
    [3] Manjusha Lekshmi, Parvathi Ammini, Jones Adjei, Leslie M. Sanford, Ugina Shrestha, Sanath Kumar, Manuel F. Varela . Modulation of antimicrobial efflux pumps of the major facilitator superfamily in Staphylococcus aureus. AIMS Microbiology, 2018, 4(1): 1-18. doi: 10.3934/microbiol.2018.1.1
    [4] Noah T Thompson, David A Kitzenberg, Daniel J Kao . Persister-mediated emergence of antimicrobial resistance in agriculture due to antibiotic growth promoters. AIMS Microbiology, 2023, 9(4): 738-756. doi: 10.3934/microbiol.2023038
    [5] Rosette Mansour, Mohammad H. El-Dakdouki, Sara Mina . Phylogenetic group distribution and antibiotic resistance of Escherichia coli isolates in aquatic environments of a highly populated area. AIMS Microbiology, 2024, 10(2): 340-362. doi: 10.3934/microbiol.2024018
    [6] Ana M. Castañeda-Meléndrez, José A. Magaña-Lizárraga, Marcela Martínez-Valenzuela, Aldo F. Clemente-Soto, Patricia C. García-Cervantes, Francisco Delgado-Vargas, Rodolfo Bernal-Reynaga . Genomic characterization of a multidrug-resistant uropathogenic Escherichia coli and evaluation of Echeveria plant extracts as antibacterials. AIMS Microbiology, 2024, 10(1): 41-61. doi: 10.3934/microbiol.2024003
    [7] Le Thanh Dong, Helen V. Espinoza, J. Luis Espinoza . Emerging superbugs: The threat of Carbapenem Resistant Enterobacteriaceae. AIMS Microbiology, 2020, 6(3): 176-182. doi: 10.3934/microbiol.2020012
    [8] Saboura Haghighi, Hamid Reza Goli . High prevalence of blaVEB, blaGES and blaPER genes in beta-lactam resistant clinical isolates of Pseudomonas aeruginosa. AIMS Microbiology, 2022, 8(2): 153-166. doi: 10.3934/microbiol.2022013
    [9] Matthew Johnston, Michael McBride, Divakar Dahiya, Richard Owusu-Apenten, Poonam Singh Nigam . Antibacterial activity of Manuka honey and its components: An overview. AIMS Microbiology, 2018, 4(4): 655-664. doi: 10.3934/microbiol.2018.4.655
    [10] Manuela Oliveira, Eva Cunha, Luís Tavares, Isa Serrano . P. aeruginosa interactions with other microbes in biofilms during co-infection. AIMS Microbiology, 2023, 9(4): 612-646. doi: 10.3934/microbiol.2023032
  • In this work, power-series solutions of compartmental epidemiological models are used to provide alternate methods to solve the corresponding systems of nonlinear differential equations. A simple and classical SIR compartmental model is considered to reveal clearly the idea of our approach. Moreover, a SAIRP compartmental model is also analyzed by using the same methodology, previously applied to the COVID-19 pandemic. Numerical experiments are performed to show the accuracy of this approach.



    Cardiac arrhythmias represent a major health issue that affects the normal electrophysiology of cardiac cells and leads to sudden cardiac death [1][3]. Several pathological causes and risk factors are implicated in the development of various electrical abnormalities in the heart, including ischemic heart disease, cardiomyopathy, inherited channelopathies, myocarditis, electrolyte disturbances and drug-induced disturbances [4][9]. These cardiac arrhythmias include atrial flutter, atrial fibrillation, paroxysmal supraventricular tachycardia, ventricular tachycardia and ventricular fibrillation, which all frequently occur in critical care unit patients. Three major pathophysiological processes are involved in the pathogenesis of cardiac arrhythmias. These include increased automaticity, triggered activity due to afterdepolarization and the formation of a reentry circuit [10],[11]. Enhanced automaticity abnormally develops in the atrial and ventricular cardiac cells when a depolarization of the membrane potential occurs, in the range of −70 mV to −30 mV above the normal potential of −90 mV of cardiac cells [10],[11]. In this case, the ventricles and atria are now capable of inducing spontaneous action potentials, and, as the membrane potential becomes depolarized, the rate of spontaneous activity increases [10],[11]. Triggered activity is associated with afterdepolarizations, which are classified as early afterdepolarization (EAD) or late afterdepolarization (DAD) [10],[11]. EADs develop during the phase of the repolarization of an action potential, while DADs develop after the full repolarization phase has occurred [10],[11]. EADs occur when the inward cationic current predominates over the outward cationic current, and this includes a decrease in the potassium current and an increase in the sodium and calcium currents [10],[11]. The reentry circuit is formed when two adjacent fibers, which are connected anatomically proximally and distally, have different values of conduction velocity and refractory periods [10],[11]. When a fiber with slow conduction and a short refractory period initiates an impulse at the proximal connection, the impulse will be conducted back to the original site via the other fiber that has fast conduction and a long refractory period [10],[11]. This will form a pathological reentry circuit that results in cardiac tachyarrhythmia [10],[11]. The reentry circuit will form two types of conduction i.e., anterograde and retrograde conduction, which contribute to the persistence of tachyarrhythmia. All of these pathological mechanisms occur much more frequently in the presence of hypoxia, acidosis, ischemia, infarction, channelopathies, inflammation and/or mechanical stretch, which are commonly found in critical care unit patients [4][9],[12][15]. All of these risk factors can decrease the energy barrier of the closed gate of voltage-gated channels, and this can facilitate the passage of ions [16][18]. The decrease in the energy barrier is represented by a decrease in the half-activation voltage, which results in a left-shift in the activation curve, and an increase in the half-inactivation voltage, which results in a right-shift in the inactivation curve [16][18].

    Despite the advances in cardiac electrophysiology and cardiac pharmacology, there is no universal consensus on the pathophysiological mechanisms behind cardiac arrhythmias, nor a definitive and obvious cure for them. Furthermore, the classical antiarrhythmic drugs can cause arrhythmias, which is a paradoxical undesirable effect [19][22]. All of these problematic issues represent a reasonable motivation to revisit our classical understanding of the basic mechanisms of cardiac arrhythmias. The fields of cardiology and electrophysiology are mostly based on classical physics. Hence, in the present paper, we plan to conceptualize the three major mechanisms of cardiac arrhythmias by using the principles of quantum mechanics that are applied to ions within their channels. This may help to fill the gaps in our comprehension of how these arrhythmias develop and, hopefully, to find more efficacious antiarrhythmic pharmacological agents that do not cause any paradoxical arrhythmic effect and decrease the overall mortality among patients who receive these medications.

    Exploring the cellular and biological processes from the quantum mechanical perspective has garnered more attention in recent years [23][25]. This approach falls under the umbrella of quantum biology, or even quantum medicine. Quantum biology is the scientific field that addresses the intersection between biology and quantum mechanics. It focuses on describing the behavior of particles, including electrons, protons, ions and molecules, by using the principles of quantum mechanics, which include quantum coherence, quantum tunneling, quantum entanglement and quantum spin interactions. This quantum behavior can be used to explain certain biological processes and actions [23][25]. This approach is purposed to complement the classical approach and provide a comprehensive understanding of the physiological and pathological processes occurring in the biological environment [23][25]. Examples of such processes include proton tunneling in DNA mutations and enzymes [26],[27]. Thus, our study adopts such an approach to augment our knowledge regarding cardiac arrhythmias and their pathogenesis. In the present paper, we will show how the quantum approach can explain the three pathological mechanisms, as well as show its distinctive features that make it unique from the classical approach. To this end, a model of the quantum tunneling of ions through the gates of channels [28] has been utilized. Quantum tunneling is a quantum phenomenon in which a particle has a non-zero probability of passing through a barrier that has an energy that is higher than the energy of the particle [29]. Hence, when this idea is applied to ions, they can be viewed as a quantum particle whose wavefunction can tunnel through a closed gate that is classically impenetrable [29]. This model will help us to explore the quantum transport of ions and its association with the pathogenesis of cardiac arrhythmias.

    The quantum tunneling model in the present study is applied to the voltage-gated channels, particularly, the closed gate. The closed gate seals off the permeation of ions by forming an energy barrier that blocks their passage [30][32]. Previous studies have determined the shapes of the barrier by using the potential mean forces (PMFs) of the closed gate while experimentally focusing on the hydrophobic gating mechanism in which dewetting increases the barrier energy and wetting decreases it [30],[33],[34]. (De)wetting is the process of (de)hydration, which is related to the strength of the hydrophobic interactions and, thus, with the value of the energy barrier of the closed gate. The higher the hydration in the pore, the lower the energy barrier that can block the permeation of ions, and vice versa. The shape of the barrier obtained in the previous studies can be approximated by using the symmetric Eckart potential barrier [35],[36].

    The Wentzel–Kramers–Brillouin approximation of the one-dimensional quantum tunneling probability of a particle hitting a potential barrier can be mathematically represented by the following equation [29],[37]:

    TQ=e8mX2X1U(x)KEdx,

    where TQ is the tunneling probability of ions, ħ is the reduced Planck's constant (1.05×10−34 Js), m is the mass of an ion (mNa = 3.8×10−26 Kg and mK = 6.5×10−26 Kg), x is the ion's position in the gate, U(x) is the function of the barrier's potential energy and KE is the kinetic energy of the ion.

    In the present study, we adopt two possible shapes for the potential energy profile of the closed gate based on the previous studies. These shapes are the aforementioned symmetric Eckart barrier and the rectangular barrier. See Figure 1. Choosing another barrier shape, which is the rectangular barrier, enables comparison and the ability to assess the influence of changing the shape of the barrier on the quantum tunneling process and, thus, on the overall pathogenesis of cardiac arrhythmias. The symmetric Eckart potential can be mathematically represented by the following equation [35],[36],[38]:

    U(x)=Gcosh2(xL),

    where G is the barrier height of the closed gate and L is the length of the gate at which U(L) = 0.42G.

    On the other hand, the potential of the rectangular barrier can be mathematically represented by the following equation [35],[36]:

    U(x)=G,

    Figure 1.  A schematic diagram of two possible energy barriers of the closed gate. The symmetric Eckart barrier (shown in blue) and the rectangular barrier (shown in red).
    Figure 2.  A schematic diagram that illustrates the effect of the kinetic energy of the ion on the area under the curve, which is inversely proportional to the tunneling probability, as indicated in Equation (1). It is clear that, as the level of the kinetic energy increases, the surface area between the curve and the constant line of kinetic energy decreases; thus, the tunneling probability increases. If the line of the kinetic energy is below the level of the intersection between the Eckart barrier and the rectangular barrier, then the rectangular barrier will have less surface area and, thus, higher tunneling probability, as represented in (a) and (b), and vice versa in (c) and (d).

    By a close observation of Equation (1), we can see that the integral part is proportional to the surface area enclosed between the function U(x) and the constant line of kinetic energy KE. See Figure 2. This means that a larger surface area indicates lower tunneling probability, and vice versa. This concept will be useful in facilitating a comparison between the two barriers and predicting the differences between them according to the values of barrier height G and the kinetic energy KE.

    According to Figure 2, when the constant line of kinetic energy is far below the intersection of the two barriers, as in Figure 2a and 2b, the area under the curve for the rectangular barrier is less than that for the Eckart barrier. Hence, it is expected that the tunneling probability will be higher for the rectangular barrier. On the other hand, when the line of kinetic energy is above the intersection, the area under the curve for the Eckart barrier is less than that for the rectangular barrier, as in Figure 2c and 2d, hence, the tunneling probability will be higher for the Eckart barrier.

    If the tunneling probability of a particle through the Eckart potential is considered, the tunneling probability can be calculated by using the following equation [35],[38]:

    TQ=cosh(2π(2α))1cosh(2π(2α))+cosh(2πδ),

    where α=L22mKE, δ=12(16π2L2h2)2Gm1 (the −1 under the square root will be neglected in the following calculations because it does not significantly affect the results), L is the length of the gate (at which U(L) = 0.42 G), m is the mass of the ion, KE is the kinetic energy of the ion, G is the barrier height of the gate, h is the Planck constant (6.6×10−34 Js) and ħ is the reduced Planck constant (1.05×10−34 Js). To reduce the complexity of the mathematics in Equation (4) while maintaining the consistency and reasonability of the numerical results, the following approximation can be used [35],[38]: coshx12ex for any x ≥ 3. This can be easily checked by substituting the following values: L = 1×10−10 m, mNa = 3.8×10−26 kg, KE = 1×10−20 J and G = 1×10−20 J in α and δ. These values will become reasonable in the following sections. Consequently, Equation (4) can be rewritten as follows [35],[38]:

    TQe2π.2αe2π.2α+e2πδ1e2π.2α+e2πδe2π.2α11+e2π(δ2α)e2π(δ2α).

    The “−1” in the numerator of Equation (4) and the “1” in the denominator in Equation (5) can be neglected.

    Eventually, by substituting the values of α and δ in Equation (5), the quantum tunneling of ions through the Eckart potential can be calculated by using the following equation [35],[38]:

    TQEckart=eλL(GKE),

    where λ=8π2m and L is the length of the gate at which U(L) = 0.42G.

    The equation to describe the tunneling through the rectangular barrier can be obtained by substituting the energy profile U(x) = G in Equation (1) and solving the integral as follows: [36],[37]:

    TQ=e8mX2X1GKEdx=e8mGKE(x2x1)=e8mLGKE.

    Accordingly, the quantum tunneling of ions through the rectangular barrier can be calculated by using the following equation:

    TQRectangular=eωLGKE,

    where ω=8m and L is the length of the gate, which is the width of the rectangular barrier.

    Equation (6) and Equation (8) will be considered in further investigation to compare between these barrier shapes. When some studies examined the hydrophobic gating experimentally [39][41], the barrier shapes could not be represented by a concrete mathematical function due to the irregularities and asymmetries that deviate from the symmetric Eckart potential. However, if it is compared with the shapes used in this study in terms of the area under the curve, it becomes more feasible to estimate how such shapes can affect the quantum tunneling of ions based on the idea of the area under the curve. See Figure 3.

    Figure 3.  A schematic diagram of three possible shapes of the potential energy profile of the closed gate. These shapes are the symmetric Eckart barrier (in blue), the rectangular barrier (in red) and the asymmetric shape (in black) that may be obtained experimentally.

    Using the idea of area under the curve and applying it to the contents of Figure 3, one can estimate that the area under the curve of the asymmetric shape is less than that for the Eckart barrier, but larger than that for the rectangular. Thus, the tunneling probability for the asymmetric barrier is higher than that for the Eckart barrier, but less than that for the rectangular barrier. The presence of such dips in the asymmetric shape is due to the drops in the energy barrier that result from hydration or wetting [39][41]. The symmetry of the barrier shape is determined by the orientation and the arrangement of the hydrophobic substances or materials. As the hydrophobic composition of the barrier is homogeneous with minimal or no hydrophilic composition, the shape of the barrier will be more symmetrical with minimal hydration and, thus, minimal deviations from symmetry [42][45]. Therefore, choosing the shape of the barrier depends on the hydrophobic homogeneity of the physical barrier, which can be manipulated experimentally to show the influence of the shape on the quantum tunneling of ions, as we are going to explain in the next sections. Hence, this can be an experimental approach to provide evidence of the existence of the quantum behavior of ions.

    The quantum unitary conductance of ion channels can be calculated by using the following equation [35][37],[46]:

    CQ=q2hTQ,

    where q is the charge of the ion (1.6×10−19 C), h is the Planck constant (6.6×10−34 Js) and TQ is the quantum tunneling probability.

    The quantum membrane conductance MCQ can be calculated by using the following equation [47]:

    MCQ=CQ×D,

    where D is the number of ion channels per surface area unit or the density of ion channels (channels/cm2).

    The quantum conductance is crucial in the assessment of the influence of the quantum tunneling of sodium and potassium ions on the membrane potential, excitability and the pathogenesis of cardiac arrhythmias.

    The closed gate is located at the intracellular end of the cellular membrane and it is sealed off by four hydrophobic residues from the four S6 alpha helices [30][32]. Therefore, the extracellular cations go through the membrane potential Vm, acquiring a kinetic energy of qVm until hitting the intracellular gate. On the other hand, the intracellular cations hit the closed gate before going through the membrane. See Figure 4.

    Accordingly, the kinetic energy of the extracellular and intracellular cations can be calculated by using the following equations, respectively:

    KEo=qVm+12KBT,

    KEi=12KBT.

    Thus, it is clear that extracellular ions have higher kinetic energy and, thus, higher tunneling probability. See Figure 4.

    Figure 4.  A schematic diagram of the voltage-gated channel. Two of the four alpha S6 helices are shown for simplicity. The intracellular gate is represented by two hydrophobic residues (shown by black dots) sealing off the permeation of ions. (a): The extracellular ion has higher kinetic energy, which is represented by the higher frequency of quantum waves, and thus higher tunneling probability, which is represented by a higher wave amplitude after tunneling through the gate. (b): The intracellular ion has lower kinetic energy, which is represented by the lower frequency of quantum waves, and thus lower tunneling probability, which is represented by lower wave amplitude after tunneling through the gate.

    In the present study, we will rely on the quantum version of the Goldman-Hodgkin-Katz (GHK) equation to evaluate the effect of quantum tunneling on the membrane potential [47].

    The quantum version of the GHK equation is mathematically represented by the following expression [47]:

    MCNa[Na]o+MCK[K]o+MCQiono[ion]o=eqVmKBT(MCNa[Na]i+MCK[K]i+MCQioni[ion]i),

    where the parameter definitions are as follows:

    MCQion–o is the quantum membrane conductance of an extracellular ion, MCQion–i is the quantum membrane conductance of an intracellular ion, [ion]o is the extracellular concentration of the ion, [ion]i is the intracellular concentration of the ion, MCNa is the classical leaky membrane conductance of sodium ions (0.005 mS/cm2), MCK is the classical leaky membrane conductance of potassium ions (0.5 mS/cm2), [Na]o is the extracellular concentration of sodium ions (142 mmol/L), [K]o is the extracellular concentration of potassium ions (4 mmol/L), [Na]i is the intracellular concentration of sodium ions (14 mmol/L), [K]i is the intracellular concentration of potassium ions (140 mmol/L), KB is the Boltzmann constant (1.38×10−23 J/K), T is the absolute temperature of human body (310 K), q is the charge of the ion and Vm is the membrane potential.

    Based on aforementioned values of concentration and conductance, the resting membrane potential is 0.087 V without considering the quantum conductance or under the condition that the quantum tunneling is too weak to affect the membrane potential. This initial value of membrane potential will be used for cardiac cells to perform further analysis in the next sections.

    The thermal energy within the biological environment can aid in augmenting the quantum tunneling probability by providing extra energy to decrease the energy barrier of the gate. See Figure 5.

    Figure 5.  A schematic diagram that shows the process through which the thermal energy can contribute to enhancing the quantum tunneling probability of ions by lowering the energy barrier of the gate. (a): A cation projects toward a closed gate with a higher barrier height (G), as indicated by the shorter distance between the residues. This results in the lower tunneling probability being represented by the lower wave amplitude after passing through the gate. (b): A cation projects toward a closed gate with a lower barrier height (G), as indicated by the longer distance between the residues mediated by the thermal energy. This results in a higher tunneling probability being represented by the higher wave amplitude after passing through the gate.

    The mathematical representation of the thermally augmented tunneling probability can be given by the following equation:

    TQthermal=EGKE01βeEβe8mX2X1U(x)EKEdx.

    Equation (14) calculates the average quantum tunneling probability when the thermal energy E is exploited to decrease the energy barrier of the gate. This is achieved by finding the sum of multiplying the probability of finding the thermal energy E with the corresponding tunneling probability. However, since the values of E are continuous and not discrete, we use the integral form as in the following equation:

    TQthermal=1βEGKE0eEβe8mX2X1U(x)EKEdxdE,

    where β = KBT and E is the tunneling-assistive thermal energy. Hence, the thermally assisted quantum membrane conductance can be calculated by using the following equation:

    MCQthermal=σEGKE0eEβe8mX2X1U(x)EKEdxdE,

    where σ=Dq2hβ, which is derived based on Equation (9) and Equation (10).

    Therefore, the thermally assisted quantum membrane conductance for the Eckart barrier and the rectangular barrier can be calculated by using the following equations, respectively:

    MCQthermal(Eckart)=σEGKE0eEβeλL(GKE)dE,

    MCQthermal(rectangular)=σEGKE0eEβeωLGKEdE.

    Integrating Equations (17) and (18) and incorporating the results into the GHK equation, the thermally assisted quantum version of the GHK equation can be represented by the following equation:

    MCNa[Na]o+MCK[K]o+MCQthermal(o)[ion]o=eqVmKBT(MCNa[Na]i+MCK[K]i+MCQthermal(i)[ion]i),

    Classically, voltage-gated channels operate by dilating the narrowed pore of the closed gate. This dilation will separate the hydrophobic residues, and the radius of the pore increases. This will increase the probability of hydration, thus lowering the barrier height of the gate so that the ions are now more likely to have an energy that is equivalent to or higher than the barrier height [30],[33],[34].

    The membrane conductance due to the classical opening of voltage-gated channels can be calculated by using the following equation:

    MCclassical=PopenCopenD,

    where Popen=11+eGβ is the probability of opening closed channels, Copen is the conductance of open channels and D is the number of channels per surface area unit.

    Thus, we can use the GHK equation to assess the influence of the classical opening of voltage-gated channels on the membrane potential:

    MCNa[Na]o+MCK[K]o+[ion]oDCopen(mS)1+eGβ=eqVmKBT(MCNa[Na]i+MCK[K]i+[ion]iDCopen(mS)1+eGβ),

    where Copen(mS) is the conductance of the voltage-gated channel when the gate is classically open. The unit will be mS, so the membrane conductance will be in the unit of mS/cm2. This equation is used for the purpose of comparison between the classical model and the quantum model of cardiac membrane depolarization.

    When a conducting cardiac fiber fires, there will be a slight increase in the extracellular concentration of potassium ions. These potassium ions can get the opportunity to tunnel through the closed gates of channels within the membrane of adjacent unstimulated conducting fibers. The probability of inducing an action potential in adjacent fibers can be calculated. The increase in the extracellular potassium concentration [K]AP per surface area unit from the propagation of a single action potential can be calculated by using the following equation:

    [K]AP=NAPNAVE,

    where NAP is the number of potassium ions that exit to the extracellular compartment per surface area unit and per action potential, NA is Avogadro's number (6.02×1023 mol−1) and VE is the extracellular volume taken up by potassium ions as a result of diffusion during an action potential.

    Another parameter that is considered in this context is the number of potassium ions hitting a single channel NK, which can be calculated by using the following equation:

    NK=NAPD,

    where D* is the number of ion channels per square micrometer of surface area.

    Furthermore, to determine the relationship between the value of tunneling probability required to induce an ectopic action potential in an adjacent unstimulated cardiac fiber and the number of potassium ions hitting a single channel, the following equation can be used:

    MCNa[Na]o+MCK[K]o+MCQK(o)[K]AP=eqVm(Thr)KBT(MCNa[Na]i+MCK[K]i),

    where Vm(Thr) is the value of membrane potential required to induce an action potential, which is assumed to be 0.055 V.

    Based on Equations (22)(24), the relationship between the threshold value for quantum tunneling and the number of potassium ions hitting a single potassium channel can be calculated by using the following equation after considering substituting the values in Equation (24):

    2.71+3.88×102×108NKDNAVETQ(Thr)=8.9,

    where 3.88×102=q2h, with a unit of mS ,and 108 is the number of ion channels per square centimeter corresponding to 1 channel/μm2 ( i.e., the minimum D value) to get a conductance by the unit of mS/cm2.

    Eventually, the threshold quantum tunneling probability can be calculated by using the following equation:

    TQ(Thr)=1.6×106NAVENKD.

    If we assume that NAP = 1×104 potassium ions/μm2 per single action potential, VE = 1μm3 and D* = 100 channels/μm2. Then, the corresponding increase in the extracellular potassium concentration surrounding 1 μm2 surface area of cardiac fiber will be [K]AP = 0.0166 mmol/L. There are NK = 102 potassium ions per single channel, and the value of quantum tunneling required to depolarize the membrane potential to threshold value of 0.055 V is TQ(Thr) = 9.63×10−5. This means that a minimum fraction of 9.63×10−5 of the total number of potassium ions hitting a channel is required to depolarize the membrane potential to the threshold value and induce an ectopic action potential. Accordingly, if at least one of the 100 potassium ions hitting the channel tunneled through the closed gate, then the fraction will be 0.01, which is higher than the threshold value for quantum tunneling. This means that the fraction of 0.01 (i.e., the tunneling of one potassium ion) is enough to induce an ectopic action potential via the process of quantum tunneling.

    The task now is to calculate the probability of achieving the fraction of 0.01 based on the actual tunneling probability of potassium ions.

    The Bernoulli trial equation can be employed to calculate the probability of action potential induction:

    P(Z)=N!PZ(1P)NZ(NZ)!Z!,

    where N is the number of trials available, Z is the number of successful trials desired from the total number, P is the probability of a successful trial and P(Z) is the probability of achieving a Z number of successful trials.

    When Z = 0, Equation (27) becomes

    P(0)=(1P)N.

    Accordingly, the probability of obtaining at least one successful trial, Z ≥ 1, is calculated by solving P(Z ≥ 1) = 1−(1−P)N.

    The probability that at least one potassium ion can tunnel through the closed gate and induce an action potential through a single channel in a surface area of 1 μm2 can be calculated by using the following equation:

    P1=1(1TQK)NK.

    where TQK is the quantum tunneling probability of potassium ions.

    Assuming that at least one ion channel from the total number D is sufficient to depolarize the membrane potential to the threshold value, then the probability to induce an action potential in a surface area of 1 μm2 can be calculated:

    P2=1(1P1)D.

    Eventually, the probability of action potential induction in at least 1 μm2 area from the total number of 1 μm2 surface area units available for quantum tunneling of potassium ions can be calculated:

    P3=1(1P2)Nμm2,

    where Nμm2 is the total number of 1 μm2 surface area units of the membrane of cardiac cells available for the quantum tunneling of potassium ions.

    In this section, we present simulations of the quantum tunneling phenomenon, the quantum conductance and the quantum tunneling-induced membrane depolarization for a barrier height G of 10−20 J and varying gate length L values up to 5×10−10 m, which is around the length of three hydrophobic residues. These values are consistent with those observed particularly, the experimental energy values were within the range of 10−20 J, which are kJ/mol = 0.17×10−20 J or kcal/mol = 0.69×10−20 J [30][32].

    Based on Equations (6) and (8), the quantum tunneling probability of potassium and sodium ions for the two potential barriers can be simulated. See Figure 6.

    Based on Equation (9), the quantum unitary conductance for sodium and potassium channels for the two potential barriers can be simulated. See Figure 7.

    Figure 6.  The relationship between the logarithm of the quantum tunneling probability and the barrier height of the closed gate G for different values of gate length L (the unit is ×10−10 m) and a kinetic energy KE = 1×10−20 J. Simulations of the quantum tunneling of sodium and potassium ions through the Eckart barrier are represented in (a) and (b), and through the rectangular barrier in (c) and (d).
    Figure 7.  The relationship between the logarithm of the quantum unitary conductance and the barrier height of the closed gate G for different values of gate length L (the unit is ×10−10 m) and a kinetic energy KE = 1×10−20 J. The unit of quantum unitary conductance is (S). Simulations of the quantum unitary conductance of sodium and potassium ions through the Eckart barrier are represented in (a) and (b), and through the rectangular barrier in (c) and (d).

    Based on Equation (10), the quantum membrane conductance of sodium and potassium ions for the two potential barriers can be simulated. See Figure 8.

    Figure 8.  The relationship between the logarithm of the quantum membrane conductance and the barrier height of the closed gate G for different values of gate length L (the unit is ×10−10 m), a kinetic energy KE = 1×10−20 J and a density of channels D = 1010 channels/cm2. The unit of quantum membrane conductance is mS/cm2. Simulations of the quantum membrane conductance of sodium and potassium ions through the Eckart barrier are represented in (a) and (b), and through the rectangular barrier in (c) and (d).

    As a result of the quantum tunneling of cations, it is expected that tunneling can generate an electric flow that can change the membrane potential according to the net direction of the tunneling flow. Based on Figure (6), it is clear that the tunneling probability for extracellular ions exceeds that for the intracellular ions. Therefore, a net inward current of positive ions will be generated and a depolarization is expected to occur. It is predicted that, as the barrier height G decreases, the tunneling probability is augmented and a depolarization occurs. Based on Equation (13), the influence of the drop in the barrier height on the membrane potential can be simulated. See Figure 9.

    Figure 9.  (a,b): The relationship between the membrane potential and the barrier height of the closed gate G of the Eckart barrier for sodium and potassium ions is represented, respectively. (c,d): The relationship between the membrane potential and the barrier height of the closed gate G of the rectangular barrier for sodium and potassium ions is represented, respectively. The relationship is simulated for different values of gate length L (the unit is ×10−10 m) and D = 1010 channels/cm2.

    The biological environment can provide the channel's gate with thermal energy, which can lower the energy barrier of the gate, thus enhancing the tunneling probability and predisposing the membrane potential for depolarization at higher values of barrier height G.

    Based on Equations (17)(19), extent to which the thermal energy influences quantum tunneling-induced membrane depolarization can be simulated. See Figures (10) and (11). In this investigation, the membrane potential, as a contributor to the kinetic energy of the ion, is assumed to be a variable. In other words, we assume that the process of tunneling, thermal energy transfer and process of partially dilating the pore to decrease the barrier height are slow enough to allow ions to be affected by the changes in the membrane potential. Accordingly, the membrane potential Vm that is present in the mathematical expression of kinetic energy KE and the expression eqVmKBT are both held as a variable to plot the Figures 10 and 11.

    Figure 10.  (a,b): The slow influence of the tunneling-assistive thermal energy on the membrane potential, as mediated by the quantum tunneling of sodium ions through the Eckart barrier is shown for L = 1×10−10 m and L = 5×10−10 m, respectively. (c,d): The slow influence of the tunneling-assistive thermal energy on the membrane potential, as mediated by the quantum tunneling of potassium ions through the Eckart barrier, shown for at L = 1×10−10 m and L = 5×10−10 m, respectively. The simulations were conducted by using D =1010 channels/cm2 and three different values of G (G =5, G = 4, G = 3) note that the values of G are presented for ×10−20 J.
    Figure 11.  (a,b): The slow influence of the tunneling-assistive thermal energy on the membrane potential, as mediated by the quantum tunneling of sodium ions through the rectangular barrier, is shown for L = 1×10−10 m and L = 5×10−10 m, respectively. (c,d): The slow influence of the tunneling-assistive thermal energy on the membrane potential, as mediated by the quantum tunneling of potassium ions through the rectangular barrier, is shown for L = 1×10−10 m and L = 5×10−10 m, respectively. The simulations were conducted by using D =1010 channels/cm2 and three different values of G (G =5, G = 4, G = 3) note that the values of G are presented for ×10−20 J.

    On the other hand, if the process of tunneling, thermal energy transfer and process of lowering the energy barrier height are fast enough to prevent ions from being affected by the changes in membrane potential, the initial membrane potential, which is 0.087 V in our study, will serve as the source of kinetic energy, and it can be assumed to be constant. In this case, the rapid depolarization to the threshold and thus inducing an action potential is faster than the process of ions being affected by the pre-action potential depolarization. Accordingly, the membrane potential Vm that is present in the mathematical expression of kinetic energy KE will be a constant, i.e., 0.087 V ,and the membrane potential Vm in the expression eqVmKBT is a variable plotted in Figures 12 and 13.

    Figure 12.  (a,b): The fast influence of the tunneling-assistive thermal energy on the membrane potential, as mediated by the quantum tunneling of sodium ions through the Eckart barrier , is shown for L = 1×10−10 m and L = 5×10−10 m, respectively. (c,d): The fast influence of the tunneling-assistive thermal energy on the membrane potential , as mediated by the quantum tunneling of potassium ions through the Eckart barrier, is shown for L = 1×10−10 m and L = 5×10−10 m, respectively. The simulations were conducted by using D = 108 channels/cm2, Vm(initial) = 0.087 V and three different values of G (G =5, G = 4, G = 3), note that the values of G are presented for ×10−20 J.
    Figure 13.  (a,b): The fast influence of the tunneling-assistive thermal energy on the membrane potential for potassium ions through the rectangular barrier, is shown for L = 1×10−10 m and L = 5×10−10 m, respectively. (c,d): The fast influence of the tunneling-assistive thermal energy on the membrane potential for potassium ions through the rectangular barrier, is shown for L = 1×10−10 m and L = 5×10−10 m, respectively. The simulations were conducted by using D = 108 channels/cm2, Vm(initial) = 0.087 V and three different values of G (G =5, G = 4, G = 3) note that the values of G are presented for ×10−20 J.

    We performed the previous analysis by using D = 108 channels/cm2, which is the minimum value for D used in this study, to exhibit the low sensitivity of the tunneling-induced depolarization to the number of channels, especially if it is compared with the classical model, as will be shown in the next section.

    To show the ability of the quantum tunneling model to change the membrane potential, we simulated the influence of the classical opening of sodium and potassium channels on the membrane potential by using Equation (21). See Figure 14.

    Figure 14.  (a,b): The relationship between the barrier height of the closed gate G and the membrane potential due to the opening of sodium and potassium channels is represented, respectively. The simulations were conducted by using different values of single channel conductance and D = 1010 channels/cm2. (c,d): The relationship between the barrier height of the closed gate G and the membrane potential due to the opening of sodium and potassium channels is represented, respectively. The simulations were conducted by using different values of single channel conductance and D = 108 channels/cm2. The unit of Copen is 10−9 mS.

    According to Equations (29)(31), the probability of inducing an ectopic action potential along the surface area of unstimulated cardiac fibers when an adjacent stimulated fiber fires can be evaluated. See Figure 15. The analysis was performed with the following values: the initial membrane potential Vm = 0.087 V, the number of potassium ions hitting a single channel NK = 100, the density of channels D = 102 channels/μm2 and the number of 1 μm2 area Nμm2=100. This type of communication between cardiac fibers will be coined in this paper to be a ‘quantum synapse’, in which two fibers can communicate without any anatomical connection or an electrical connection like a gap junction.

    Figure 15.  (a,b): The relationship between the barrier height of the closed gate G and the probability of inducing an ectopic action potential at different values of gate length for the Eckart barrier and rectangular barrier is represented, respectively. The relationship is plotted according to the values above each figure.

    Three major pathological mechanisms contribute to the pathogenesis of cardiac arrhythmias. These include depolarization-induced automaticity, triggered activity due to afterdepolarization and the formation of a reentry circuit. To the best of the authors' knowledge, all of these mechanisms were investigated from a classical perspective by using classical mechanics. However, the role of the quantum behavior of ions in the pathogenesis of cardiac arrhythmias has not yet been investigated adequately. This study is a continuation of previous studies [48],[49] that focused on the quantum behavior of ions in the context of cardiac arrhythmias. The function of tunneling is to allow particles to pass through classically impermeable barriers via their quantum wave behavior. In the context of ion channels, it allows ions to pass through the closed gates. Hence, quantum conductance can be calculated and the influence of quantum tunneling on the excitability of cells can be investigated.

    The necessity of quantum tunneling stems from the ability of this phenomenon to explain the transport of particles, such as ions, through barriers that have higher energy than the particles themselves. In the context of ion channels, their closed gates represent barriers that classically block the permeation of ions. Hence, utilizing the mathematics of quantum tunneling allows researchers to investigate and explore the characteristics of transport that is not allowed classically. Moreover, the quantum behavior of particles within biological systems, including electrons, protons, ions and even large organic molecules has been shown to be necessary to explain and understand several physiological and pathological conditions, such as photosynthesis, enzymatic reactions and DNA point mutations [23],[24]. Accordingly, exploring the quantum behavior of ions is as necessary as the classical behavior. This will help researchers to obtain additional insights into the pathophysiological mechanisms related to the function of ion channels, as associated with cardiac arrhythmias.

    The quantum tunneling of ions implies that they have a non-zero probability of passing through a gate that is classically closed since its energy barrier height is higher than the energy of the ions. The quantum tunneling process is affected by the shape of the barrier; hence, we chose two possible shapes to explore how they can influence the tunneling probability. The closed gate of voltage-gated channels is composed of hydrophobic residues that form a narrow pore, which forms a potential energy barrier. This has been experimentally proved by using the PMFs for hydrophobic residues, materials and membranes [30],[33],[34],[39][41]. The quantum tunneling is affected by the barrier height of the closed gate, the length of the gate, the kinetic energy and the mass of the ion. The secondary outcomes of the quantum tunneling are the quantum unitary conductance and the quantum membrane conductance. These are the quantities that determine the effects of the quantum tunneling on the membrane potential and the excitability of cardiac cells.

    Based on our results represented in Figures (6)(8), the quantum tunneling probability and quantum conductance stay within a range of insignificant values until the barrier height decreases to a critical value, at which they become significant and comparable to the values that can affect the membrane potential. Generally, they become significant once the barrier height value drops to less than 2×10−20 J. However, this critical value varies according to the length of the gate, the mass and kinetic energy of the ion and the shape of the barrier. As the length of the gate and the mass of the ion increase, the critical value of G at which tunneling becomes significant decreases. This means that a larger drop in the barrier height is required to enhance the quantum tunneling of ions. Hence, the values of G at which the tunneling of sodium becomes significant are higher than those associated with the tunneling of potassium. On the other hand, as the kinetic energy of the ions increases, the critical value of G at which tunneling becomes significant increases, and vice versa.

    In healthy cardiomyocytes, an energy barrier higher than 2×10−20 J will guarantee a lower tunneling probability and, thus, a low quantum conductance that cannot affect the membrane potential. This can be observed in Figure 9, in which no change in membrane potential at higher energy barrier values can be noticed, and it is indicated by the plateau at the original resting membrane potential of 0.087 V. According to the results, it is clear that the quantum tunneling probability for extracellular ions is higher than the probability for intracellular ions due to the higher kinetic energy of extracellular ions. Thus, a net inward quantum current is expected to occur. Consequently, a membrane depolarization can be induced.

    Membrane depolarization is the pathological trigger for automaticity and activity triggered by afterdepolarization. Based on the overview of the model of the quantum tunneling of ions, it was predicted that the net inward tunneling flow of cations would depolarize the membrane potential. According to Figure 9, both sodium and potassium ions can depolarize the membrane potential via quantum tunneling under the conditions of both barrier shapes. However, the degree of depolarization by sodium ions is higher than that by potassium ions, mainly due to the mass difference, whereas the higher extracellular sodium concentration contributes minimally to such discrepancy. In addition, the quantum tunneling-induced membrane depolarization occurs at higher values of gate length i.e., up to 5×10−10 m in our study. Furthermore, as the length of the gate increases, the difference in the degree of membrane depolarization with respect to the barrier height decreases as shown in Figure 9. This observation is clearer in the case of the quantum tunneling of potassium ions due to their larger mass.

    Generally, the membrane depolarization starts when the barrier height G decreases below 2×10−20 J for both ions and both barriers. Otherwise, the quantum tunneling of ions has no influence on the membrane potential because, in this case, the quantum conductance is not significant or comparable to the classical conductance. Besides, Figure 9 shows that, as the barrier height G decreases to below 2×10−20 J, the quantum tunneling of both types of ions through the Eckart barrier becomes more likely to induce a higher degree of membrane depolarization than the rectangular barrier.

    Figure 16.  A schematic diagram which represents that quantum tunneling is too weak to influence the membrane potential when the barrier height of the gate is high, this is represented as occluded pores, or by a black dot, as illustrated in the fiber (A). In the state (B), there is quantum tunneling-induced membrane depolarization when there is a decrease in the barrier height of the closed gate, which is represented as a partially opened pore via two black dots that are separated from each other. The curve of the two cardiac fibers is purposed to indicate a pathology that affects the integrity of the membrane.

    The quantum tunneling-induced membrane depolarization is schematically represented in Figure 16.

    The critical condition that should be present for the quantum tunneling-induced depolarization to be apparent is the drop in the barrier height of the closed gate. This drop is associated with the same factors that predispose cardiac cells to arrhythmias. These include hypoxia, ischemia, infarction, acidosis, channelopathies, mechanical stretch or dilation or any cause that harms the integrity of the cellular membrane or ion channels themselves [16][18]. These risk factors are clearly found in the patients of intensive care units. The percentages of sodium and potassium ions necessary to find an abnormality in ion channels depends on the degree of the disruption of the hydrophobic interactions between the residues that form the gates of channels. This disruption increases as the presence of the pathological factors increases [30][34]. These pathological factors affect the integrity of the cellular membrane and the molecular structure of the channels themselves. Therefore, as the disruption in the hydrophobic interactions increases, the likelihood of finding an abnormality increases. Hence, the percentage may range from zero to 100% according to the degree of the hydrophobic disruption.

    The induced depolarization due to these factors can be understood from the perspective of the classical and quantum models. The drop in the barrier energy increases the inward cationic flow. However, there are distinctive features of the quantum model that make it more advantageous than the classical model in terms of the voltage-gated channels. These features are thus described. 1) The quantum tunneling implies continuous and persistent flow of cations through the gate, while the classical model operates in the on-off or the open-closed system, which means that channels are not always available for the permeation of ions, and this depends on the probability of opening according to the Boltzmann distribution. Therefore, the quantum tunneling model ensures that membrane depolarization is present for a longer duration than the classical model, in which depolarization is canceled once open channels are inactivated or the activation gate becomes closed. 2) According to the quantum tunneling model, when there is a reduction in the barrier height, the sodium and potassium ions will be boosted to flow to the inside of the cell, but according to the classical model, the flow of sodium ions will be augmented to the inside and the flow of potassium ions to the outside. Therefore, the degree of depolarization will be higher in the case of the quantum tunneling model. As a result, the quantum behavior of ions contributes to the depolarization-induced automaticity more significantly than the classical behavior in terms of the degree and the duration of depolarization.

    Furthermore, even at barrier height G values higher than 2×10−20 J, the quantum tunneling of ions can depolarize the membrane potential if the thermal energy of the biological environment is included as according to Equations (17)(19). In this case, and according to the Boltzmann distribution, ion channels can be provided by an energy from the thermal biological system in a probabilistic manner. Thus, the provided thermal energy can lower the barrier height and, hence, the quantum tunneling of ions will be enhanced. As a consequence, it is expected that depolarization can occur at higher values than 2×10−20 J, which is represented in Figures 10 and 11. According to these figures, quantum tunneling-induced membrane depolarization can occur at G values of 3×10−20 J, 4×10−20 J and 5×10−20 J for both barriers and gate lengths of 1×10−10 m and 5×10−10 m. Interestingly, the results show that the thermal energy does not need to be equivalent to or higher than the barrier height G for the quantum tunneling to change the membrane potential. However, the classical model requires that the thermal energy provided should be equivalent to or higher than the barrier height for the classical transport to be influential enough to affect the membrane potential. This is another distinction between the two models, which implies that the depolarization by the quantum tunneling is more energetically favorable than the classical transport of ions. Additionally, the thermal energy requirement for potassium ions to induce depolarization is higher than that for sodium ions at the same values of barrier height G and gate length L. Moreover, as the gate length increases, the thermal energy requirement to depolarize the membrane potential increases.

    The membrane depolarization reduces the barrier height of the closed gate according to the following equation [50]:

    G=qgate(VmV1/2),

    where qgate is the gating charge, Vm is the membrane potential and V1/2 is the half-activation voltage at which half of the channels are open.

    Figure 17.  A schematic diagram showing that the quantum tunneling of cations in a conducting fiber (A) can induce a spontaneous ectopic action potential (SEAP) from which retrograde (RAP) and anterograde (AAP) action potentials are generated in the cardiac fiber (B). The curve of the two cardiac fibers is purposed to indicate a pathology that affects the integrity of the membrane.

    The reduction in the barrier height as a result of membrane depolarization is due to the decrease in the difference between the resting membrane potential and the half-activation voltage; thus, a lower energy barrier is required for the ion channel to open. As a result, the cardiac cells are more readily stimulated by an external stimulus such as mechanical stretch, sympathetic stimulation, pressure, shear force, drugs and others. However, another mechanism that contributes to the pathogenesis of arrhythmias is the spontaneous firing of cardiac cells in the absence of any stimulus or trigger apart from the biological thermal environment. According to Figures 12 and 13, the quantum model predicts that the quantum tunneling of ions can induce a spontaneous ectopic action potential (SEAP) in the absence of any external stimulus, except for the thermal energy as a part of the biological system. See Figure 17.

    According to Figures 12 and 13 and under the condition of an initial membrane potential of 0.087 V, the thermally assisted quantum tunneling can induce sharp and acute changes in the membrane potential requiring lower cost of the thermal energy. This indicates that a small amount of thermal energy compared to the barrier height can depolarize the membrane potential to the threshold to induce a spontaneous action potential. According to the quantum model, cardiac cells have the potential to trigger a spontaneous action potential at every value of barrier height G, unlike the classical model, which is restricted by certain values of barrier height G and the number of ion channels D, as represented in Figure 14. In addition, the quantum model mandates that the thermal energy cost increases as the length of the gate increases, but without exceeding or even reaching the barrier height G. Moreover, according to the classical model, the depolarization to the threshold and subsequent induction of spontaneous action potential is not energetically favorable, because a thermal energy equivalent to or higher than the barrier height is required to reach the threshold, as represented in Figure 14. A numerical example will be given to elucidate such a difference between the two models. In Figure 12a, the quantum tunneling of sodium ions can depolarize the membrane potential to the threshold by acquiring a thermal energy of around E = 1.5×10−20 J for G = 4×10−20 J, L = 1×10−10 m and D = 108 channels/cm2. This means that only 38% of the barrier height value G is required to trigger a spontaneous action potential. On the other hand, in Figure 14a, for G = 4×10−20 J, the classical opening of sodium channels cannot depolarize the membrane potential to the threshold for all of the different values of single-channel conductance and D = 1010 channels/cm2. Furthermore, the depolarization will be much weaker when the value of D drops to 108 channels/cm2, as in Figure 14c. However, the classical opening of sodium channels can trigger a spontaneous action potential when the barrier height G decreases to 3×10−20 J or less for D = 1010 channels/cm2 ,and around 1.5×10−20 J or less for D = 108 channels/cm2.This implies that channels must have a thermal energy that is that is equivalent to or higher than the barrier height for the channels to open and the spontaneous action potential to be triggered. However, this means that 100% of the G value or higher is required to depolarize the membrane potential to the threshold via the classical opening of channels. This emphasizes the difference between the two models, which was mentioned earlier, i.e., that the quantum tunneling is more energetically favorable than the classical transport and thus better equipped to depolarize the membrane potential and induce an action potential.

    Besides, in Figure 14b, it is clear that the classical opening of potassium channels results in membrane hyperpolarization above 0.087 V, which is what is expected according to the classical model. However, if this figure is compared with Figures 12 and 13, it is obvious that potassium ions induce membrane depolarization instead of hyperpolarization. This is another major distinction between the two models, as we mentioned earlier. In this case, the quantum tunneling of both the sodium and potassium ions contributes to the depolarization and the spontaneous firing instead of only sodium ions, which are opposed by potassium ions in the case of the classical model.

    Afterdepolarization, especially the EAD, occurs when there is a shift in the cationic current toward the inward direction [10],[11], and .as it was explained earlier, the quantum tunneling of ions enhances the inward cationic current quantitatively and qualitatively. The quantitative enhancement is mediated by the tunneling inflow of both sodium and potassium ions, and the qualitative enhancement is mediated by the low energy cost required to increase the tunneling passage of ions. Moreover, the higher tendency of membrane depolarization, as mediated by the quantum tunneling of ions, can explain the higher proneness of the critical patients to cardiac arrest, where most of the sodium channels are inactivated due to a high degree of depolarization. According to the thermally assisted quantum tunneling, even healthy cardiomyocytes with higher values of energy barrier can trigger a membrane depolarization, but this is expected to occur with a low frequency, as thermal energy cost will be higher than the energy cost for unhealthy cardiomyocytes with lower energy barrier values.

    According to the quantum tunneling model, the firing of one cardiac fiber can trigger an action potential in an adjacent unstimulated cardiac fiber via the quantum tunneling of potassium ions that exit to the extracellular fluid during the firing of the stimulated fiber. The unique aspect in this communication is that the interaction is not mediated by any anatomical connection or, even an electrical one, such as a gap junction. Thus, we coin this type of synapse to be a quantum synapse. See Figure 18.

    Figure 18.  A schematic diagram of the quantum synapse formation. (a): When fiber (A) initiates an action potential, there will be an increase in the extracellular potassium concentration. These potassium ions will get the chance to tunnel through the closed channels in the membrane of the adjacent unstimulated fiber (B). (b): Eventually, an ectopic action potential (EAP) will be elicited at some point along the fiber (B). The EAP will generate a retrograde action potential (RAP) and an anterograde action potential (AAP). The curve of the two cardiac fibers is purposed to indicate a pathology that affects the integrity of the membrane.

    The firing of a cardiac fiber will result in the outflow of potassium ions. This will increase the extracellular potassium concentration around the adjacent unstimulated cardiac fibers. These potassium ions will get the opportunity to tunnel through the closed channels in the membranes of neighboring fibers. As we explained earlier, potassium ions can depolarize the membrane potential. Hence, there is a probability that they can depolarize the membrane potential to the threshold at some point along the surface area of the unstimulated fibers. This will result in ectopic action potential induction, and retrograde and anterograde action potentials will be generated.

    The probability of inducing an ectopic action potential via a quantum synapse is represented in Figure 15 for both barriers and at different values of gate length. This probability increases as the barrier height G value decreases, and as the length of the gate decreases. As we mentioned earlier, the drop in the barrier height of the gate occurs under the same pathological conditions that predispose the cardiac tissue to tachyarrhythmias. The probability of ectopic action potential induction is higher when the quantum tunneling of potassium ions occurs through the Eckart barrier. This is due to the small values of G at which the quantum synapse is formed. The small values of G ensures that the area under the curve for the Eckart barrier is smaller than that for the rectangular barrier; thus, there is higher tunneling probability for the Eckart barrier.

    The classical model of a reentry circuit mandates that the two fibers must be connected proximally and distally for the circuit to be formed. However, the quantum tunneling model can explain the reentry without the requirement of the proximal and distal anatomical connection. It can explain the reentry because, once an ectopic action potential is formed at some point on an unstimulated fiber, retrograde and anterograde action potentials will be formed. The retrograde action potential will be transmitted in the opposite direction of the usual action potential, and it will stimulate the cardiac tissue above to reach the original site, which sends more impulses anterogradely, and the anterograde action potential will be transmitted to the cardiac tissue below to augment the anterograde impulses. Thus, tachyarrhythmias are expected to be triggered. Additionally, even the spontaneous ectopic action potentials induced by the quantum tunneling can form a ‘half-reentry circuit’ in which the ectopic action potential can transmit anterograde and retrograde action potentials, resulting in the reentry of impulses retrogradely to the site of origin, however, we coin the term as half-circuit because, in this case, one fiber alone generates anterograde and retrograde action potentials, instead of two fibers. See Figure 18.

    Another feature that distinguishes both models is that the quantum model is less dependent on the refractory period duration and the conduction velocity. In other words, according to the classical model, if the impulse reaches the fiber while it is in the refractory period, the reentry circuit will be blocked, while the quantum model deals with the success of the reentry in a probabilistic way, as it is represented mathematically in Equations (29)(31). and, graphically, in Figure 15. This adds another distinction between the two models, which is the likelihood of the reentry to be formed. The likelihood of success in the quantum model is higher than that for classical model since the success rate is a spectrum from 0 to 1, while it is either 0 or 1 according to the classical model. Additionally, during the relative refractory period, the voltage-gated potassium channels open in response to the depolarized membrane potential to repolarize it back to normal. This membrane depolarization decreases the barrier height of the closed gate of potassium channels thus, augmenting the tunneling probability and increasing the probability of an ectopic action potential, even when the fiber is in the refractory period.

    In summary, the classical model mediates the reentry circuit when there is anatomical connection proximally and distally, while the quantum model predicts the formation of the reentry circuit either by quantum synapse or spontaneous ectopic action potential formation. See Figure 19.

    Figure 19.  A schematic representation that compares the two models in terms of the reentry circuit formation. (a): The classical model states that the reentry circuit is formed when there is anatomical connection at the proximal and the distal ends. (b): The circuit is formed via the quantum synapse mediated by the quantum tunneling of potassium ions. (c): The spontaneous firing in each fiber can form a half-circuit in which each fiber generates retrograde and anterograde action potentials that are independent from each other.

    Our present model has several improvements and features that distinguish it from those of previous studies that focused on cardiac arrhythmias from a quantum mechanical perspective [48],[49]. These features are as follows 1) The present study involved both sodium and potassium ions in the simulations and compared them in terms of the quantum conductance and membrane depolarization of cardiac cells. 2) The present study focused on the influence of changing the barrier shape on the quantum tunneling probability of ions. 3) The present study revisited the underlying mechanism of a reentry circuit by applying the idea of the quantum synapse that is mediated by the quantum tunneling of potassium ions. 4) The present study introduced two ways in which the thermal biological environment can influence the membrane potential of cardiac cells. These are referred to as slow and fast influences; the slow influence can serve to explain the depolarization-induced automaticity and afterdepolarization, and the fast influence can serve to explain the spontaneous action potential and the formation of anterograde and retrograde action potentials. 5) The present study has shown mathematically that the arrhythmogenic process mediated by the quantum tunneling of ions is more energetically favorable than the classical transport of ions.

    Ion channels have received considerable attention from quantum biologists in recent years. They focused on applying the mathematics of quantum mechanics to ions within the selectivity filter (SF), which is the part that is responsible for determining the discrimination between ions and makes the ion channel selective for a specific ion [51][53]. These works [51][53] set the theoretical basis for the quantum behavior of ions in the SF, and they explained the two major characteristics of an SF via the quantum coherence and quantum non-locality principle. These two characteristics are the high conduction rate of ions and the high selectivity toward specific ions. Interestingly, an experimental model called the terahertz (THz) trapped ion model, was used recently to validate and prove the existence of the quantum tunneling of potassium ions through the potential energy barriers of the SF [54]. Briefly, this model uses THz-level electromagnetic radiation to trap ions at the zero-point energy, which means that the quantum number of the energy level equals zero. This allows researchers to investigate the tunneling effect on the ion permeation and the kinetic energy requirement to cross the barrier. Interestingly, the authors of the same paper extended their work for future experiments, proposing, theoretically, two experimental approaches including THz resonance fluorescence and the intense field non-resonant effect to detect the rapid quantum transport. These methods are expected to sustain the quantum coherence of ions without collapsing the wave function or eliminating the quantum tunneling effect. Therefore, the classical methods, including patch-clamp measurements, ion-sensitive electrodes and fluorescence-based assays, are more likely to collapse the quantum behavior of ions, and are thus less reliable methods for the detection of the rapid quantum transport. Hence, one is less likely to notice obvious quantum effects by using the classical methods.

    To the best of the authors' knowledge, quantum biologists have not studied the quantum behavior of ions. neither theoretically nor experimentally within the intracellular hydrophobic gate, except in our previous work, which addressed the mathematical modeling of tunneling ions [28]. Therefore, there are no experimental studies until now that have proved the quantum tunneling effect within the intracellular gate. However, the THz trapped ion model was applied to ions within the SF [54]; hence, it can be applied to the hydrophobic gate, because both of them (the hydrophobic gate and the SF) form a potential energy barrier that resists the passage of ions. Moreover, we expect that applying the THz model to the closed gate will be easier since it forms one potential barrier instead of four consecutive barriers as with the SF [54]. Therefore, the experimental results obtained for SF [54] can be extrapolated and applied to the hydrophobic gate. Here, we will mention how our theoretical results are consistent with the experimental observations that were obtained for the SF. This will provide a huge motivation to apply the THz trapped ion model to validate our mathematical model of the quantum tunneling of ions through the closed gate. According to the THz trapped ion model, the tunneling effect will increase the rate of permeation and decrease the kinetic energy requirement of potassium ions to cross the barrier [54]. These are the same conclusions inferred from the present work. As the barrier height of the closed gate decreases below 2×10−20 J, the quantum unitary conductance approaches of its maximum value of q2h=3.88×105 S, which is graphically represented in Figure 7. On the other hand, the classical opening of ion channels results in conductance values within the magnitude of 10−12 S. This discrepancy in the values of conduction between the two models is consistent with the observation of increasing the permeation rates via the quantum tunneling effect, according to the THz trapped ion model. Furthermore, the quantum conductance values ranging between 10−5−10−12 S can be achieved by a kinetic energy KE = 1×10−20 J, which is less than the energy barrier values ranging between (1−2)×10−20 J, as represented in Figure 7. This is consistent with the observation of the decrease in the kinetic energy requirement to cross the barrier according to the THz trapped ion model. Hence, this experimental model is a promising tool to validate the quantum tunneling of ions through the closed gate, and it will get more verification if THz resonance fluorescence and the intense field non-resonant effect, which have been proposed theoretically [54], are applied to detect the quantum tunneling. Additionally, a well-known experimental method called the kinetic isotope effect (KIE) has been used to verify the mass-dependent quantum tunneling at the rate of an enzymatic reaction [55][57]. This effect states that isotopes with different masses can yield different and significant rates that are mediated by quantum tunneling and cannot be observed if the process is mediated classically. Here, we will choose two stable potassium isotopes K39 (mK39 = 6.5×10−26 kg) and K41 (mK41 = 6.8×10−26 kg) to show that a minute difference in the mass can influence the quantum tunneling probability. See Figure 20. We did not choose sodium isotopes because sodium does not have stable isotopes.

    Figure 20.  (a): The difference between the two stable potassium isotopes in terms of tunneling probability for the Eckart barrier. (b): The difference between the two stable potassium isotopes in terms of tunneling probability for the rectangular barrier.

    Figure 20 shows the kinetic isotope effect of potassium ions, which becomes more obvious at lower values of kinetic energy and higher values of gate length. Also, changing the barrier's shape affects the degree of the difference between the two isotopes. For example, the Eckart barrier is associated with a larger difference between the two isotopes especially, at lower kinetic energy values. These observations can be used to validate the quantum tunneling model particularly, if the THz trapped ion model has been applied.

    In addition, the most intriguing experimental observation made for the classical methods that can be related to our model is the paradoxical hyperexcitability caused by the gain-of-function (GOF) mutations [58],[59]. Several explanations have been proposed to understand this unexpected effect, including the following.1) These GOF mutations occur in inhibitory neurons and thus disinhibition results in hyper-excitability [60]. 2) These mutations increase the rate of the repolarization phase for action potentials; thus, their frequency will increase and hyperexcitability is expected [61]. 3) These mutations trigger hyperpolarization-activated non-selective cationic current that depolarizes the membrane potential; thus, increases excitability [62]. Here, our model can provide another method, based on the quantum tunneling of potassium ions, that can depolarize the membrane potential directly without the event of hyperpolarization. Accordingly, if the THz trapped ion model is applied to potassium ions and proves the inward quantum tunneling of potassium ions, an electrophysiological study can be conducted to observe the membrane depolarization mediated by the quantum tunneling effect.

    The present study showed that the quantum model exhibited several predictions that can contribute significantly to the pathogenesis of cardiac arrhythmias. The quantum model can achieve higher maximum single-channel conductance than the classical conductance of open channels. The quantum model requires the assumption that membrane depolarization can be induced by both sodium and potassium ions, while the classical model assumes that depolarization is induced only by sodium ions. Also, the degree of depolarization mediated by the quantum tunneling, especially if it is assisted by thermal energy, is expected to be higher when the barrier height decreases in response to pathological conditions. Furthermore, the quantum tunneling-induced depolarization is expected to be maintained for a longer duration because the quantum tunneling occurs through the different states of the closed gates, with different values of G, while the classical depolarization occurs only when the channels open. In addition, the thermal energy cost for the quantum depolarization is lower than that for the classical depolarization. Moreover, the success rate of reentry formation is higher for the quantum tunneling model due to the probabilistic nature of the quantum tunneling of ions. Finally, the quantum model predicts the formation of the anterograde and retrograde action potentials, without the requirement of the anatomical connections. See Table 1.

    Table 1.  Comparison between the quantum model and the classical model in terms of the mechanisms of cardiac arrhythmias.
    Criteria The quantum model The classical model
    Maximum single-channel conductance Higher Lower
    Depolarization by ions Sodium and potassium Only sodium
    Degree of depolarization High Low
    Maintenance of depolarization High Low
    Thermal energy cost Low High
    The likelihood of reentry formation High Low
    Requirement of anatomical connection No Yes

     | Show Table
    DownLoad: CSV

    The overall pathogenesis of cardiac arrhythmias, from a quantum mechanical perspective, is summarized in Figure 21.

    Figure 21.  The figure represents a diagram that summarizes the pathogenesis of cardiac arrhythmias from a quantum mechanical perspective.

    The authors declare that they have not used artificial antelligence tools in the creation of this article.

    The authors declare no conflict of interest.

    Conceptualization, A.B.Q and M.I.A.I; methodology, A.B.Q; software, A.B.Q; validation, M.I.A.I. A.B.Q, M.B.A, A.H, A.A, M.H, D.I, M.N.A, I.M, K.A, E.J, M.A, M.B, M.A.M.A, A.D,N.A, A.A, I.M.I.I, L.A-H.; formal analysis, A.B.Q; investigation, M.I.A.I. A.B.Q, M.B.A, A.H, A.A, M.H, D.I, M.N.A, I.M, K.A, E.J, M.A, M.B, M.A.M.A, A.D,N.A, A.A, I.M.I.I, L.A-H.; resources, M.I.A.I. A.B.Q, M.B.A, A.H, A.A, M.H, D.I, M.N.A, I.M, K.A, E.J, M.A, M.B, M.A.M.A, A.D,N.A, A.A, I.M.I.I, L.A-H.; data curation, A.B.Q; writing—original draft preparation, A.B.Q; writing—review and editing, M.I.A.I. A.B.Q, M.B.A, A.H, A.A, M.H, D.I, M.N.A, I.M, K.A, E.J, M.A, M.B, M.A.M.A, A.D,N.A, A.A, I.M.I.I, L.A-H.; visualization, A.B.Q; supervision, L.A-H; project administration, M.I.A.I and L.A-H.

    This research received no external funding.

    Not applicable.

    Not applicable.

    The data are available upon a reasonable request from the corresponding author.



    [1] F. Brauer, C. Castillo-Chavez, Z. Feng, Mathematical Models in Epidemiology, Springer-Verlag, New York, 2019.
    [2] W. O. Kermack, A. G. McKendrick. Contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond A, 115 (1927), 700–721.
    [3] T. Harko, F. S. N. Lobo, M. K. Mak, Exact analytical solutions of the Susceptible-Infected-Recovered (SIR) epidemic model and of the SIR model with equal death and birth rates, Appl. Math. Comput., 236 (2014), 184–194.
    [4] K. Heng, C. L. Althaus, The approximately universal shapes of epidemic curves in the Susceptible-Exposed-Infectious-Recovered (SEIR) model, Sci. Rep., 10 (2020), 19365.
    [5] I. Area, X. H. Vidal, J. J. Nieto, M. J. P. Hermida, Determination in Galicia of the required beds at Intensive Care Units, Alexandria Eng. J., 60 (2021), 559–564.
    [6] F. Ndaïrou, I. Area, J. J. Nieto, D. F. M. Torres, Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan, Chaos Solitons Fractals, 135 (2020), 109846.
    [7] F. Ndaïrou, I. Area, J. J. Nieto, C. Silva, D. F. M. Torres, Fractional model of COVID-19 applied to Galicia, Spain and Portugal, Chaos Solitons Fractals, 144 (2021), 110652.
    [8] H. M. Srivastava, Diabetes and its resulting complications: Mathematical modeling via fractional calculus, Public Health Open Access, 4 (2020), 1–5.
    [9] H. M. Srivastava, H. Günerhan, Analytical and approximate solutions of fractional-order susceptible-infected-recovered epidemic model of childhood disease, Math. Methods Appl. Sci., 42 (2019), 935–941.
    [10] H. M. Srivastava, K. M. Saad, J. F. Gómez-Aguilar, A. A. Almadiy, Some new mathematical models of the fractional-order system of human immune against IAV infection, Math. Biosci. Eng., 17 (2020), 4942–4969.
    [11] H. Singh, H. M. Srivastava, Z. Hammouch, K. S. Nisar, Numerical simulation and stability analysis for the fractional-order dynamics of COVID-19, Results Phys., 20 (2021), 103722.
    [12] Z. Liao, P. Lan, Z. Liao, Y. Zhang, S. Liu, TW-SIR: time-window based SIR for COVID-19 forecasts, Sci. Rep., 10 (2020), 22454.
    [13] G. D. Barmparis, G. Tsironis, Estimating the infection horizon of COVID-19 in eight countries with a data-driven approach, Chaos Solitons Fractals, 135 (2020), 09842.
    [14] E. B. Postnikov, Estimation of COVID-19 dynamics "on a back-of-envelope": Does the simplest SIR model provide quantitative parameters and predictions?, Chaos Solitons Fractals, 135 (2020), 109841.
    [15] J. Grauer, H. Löwen, B. Liebchen, Strategic spatiotemporal vaccine distribution increases the survival rate in an infectious disease like Covid-19, Sci. Rep., 10 (2020), 21594.
    [16] C. Hou, J. Chen, Y. Zhou, L. Hua, J. Yuan, S. He, et al., The effectiveness of quarantine of Wuhan city against the Corona Virus Disease 2019 (COVID-19): A well-mixed SEIR model analysis, J. Med. Virol., 92 (2020), 841–848.
    [17] Y. Zhang, X. Yu, H. Sun, G. R. Tick, W. Wei, B. Jin, Applicability of time fractional derivative models for simulating the dynamics and mitigation scenarios of COVID-19, Chaos Solitons Fractals, 138 (2020), 109959.
    [18] A. J. Kucharski, T. W. Russell, C. Diamond, Y. Liu, J. Edmunds, S. Funk, et al., Early dynamics of transmission and control of COVID-19: a mathematical modelling study, Lancet Infect. Dis., 20 (2020), 553–558.
    [19] T. Kuniya, Prediction of the Epidemic Peak of Coronavirus Disease in Japan, 2020, J. Clin. Med., 9 (2020), 789.
    [20] R. O. Stutt, R. Retkute, M. Bradley, G. A. Gilligan, J. Colvin, A modelling framework to assess the likely effectiveness of facemasks in combination with lock-down in managing the COVID-19 pandemic, Proc. R. Soc. A, 476 (2020), 20200376.
    [21] L. Zhong, L. Mu, J. Li, J. Wang, Z. Yin, D. Liu, Early Prediction of the 2019 Novel Coronavirus Outbreak in the Mainland China based on Simple Mathematical Model, IEEE Access, 2020 (2020), 19464191.
    [22] P. Agarwal, R. Singh, A.U. Rehman, Numerical solution of hybrid mathematical model of dengue transmission with relapse and memory via Adam-Bashforth-Moulton predictor-corrector scheme, Chaos Solitons Fractals, 143 (2021), 110564.
    [23] Wolfram Research, Inc., Mathematica, Version 12.2, Champaign, IL (2020).
    [24] C. J. Silva, C. Cruz, D. F. M. Torres, A. P. Muñuzuri, A. Carballosa, I. Area, et al., Optimal control of the COVID-19 pandemic: controlled sanitary deconfinement in Portugal, Sci. Rep., 11 (2021), 3451.
  • This article has been cited by:

    1. Liwei Hui, Jun Chen, Parmila Kafley, Haitao Liu, Capture and Kill: Selective Eradication of Target Bacteria by a Flexible Bacteria-Imprinted Chip, 2021, 7, 2373-9878, 90, 10.1021/acsbiomaterials.0c01568
    2. Alice Checcucci, Paolo Trevisi, Diana Luise, Monica Modesto, Sonia Blasioli, Ilaria Braschi, Paola Mattarelli, Exploring the Animal Waste Resistome: The Spread of Antimicrobial Resistance Genes Through the Use of Livestock Manure, 2020, 11, 1664-302X, 10.3389/fmicb.2020.01416
    3. Ahlam Alsaadi, Beatriz Beamud, Maheswaran Easwaran, Fatma Abdelrahman, Ayman El-Shibiny, Majed F. Alghoribi, Pilar Domingo-Calap, Learning From Mistakes: The Role of Phages in Pandemics, 2021, 12, 1664-302X, 10.3389/fmicb.2021.653107
    4. Hannah K. Gray, Keith K. Arora-Williams, Charles Young, Edward Bouwer, Meghan F. Davis, Sarah P. Preheim, Contribution of Time, Taxonomy, and Selective Antimicrobials to Antibiotic and Multidrug Resistance in Wastewater Bacteria, 2020, 54, 0013-936X, 15946, 10.1021/acs.est.0c03803
    5. Márta Nové, Annamária Kincses, Beatrix Szalontai, Bálint Rácz, Jessica M. A. Blair, Ana González-Prádena, Miguel Benito-Lama, Enrique Domínguez-Álvarez, Gabriella Spengler, Biofilm Eradication by Symmetrical Selenoesters for Food-Borne Pathogens, 2020, 8, 2076-2607, 566, 10.3390/microorganisms8040566
    6. Bruno Casciaro, Andrea Calcaterra, Floriana Cappiello, Mattia Mori, Maria Loffredo, Francesca Ghirga, Maria Mangoni, Bruno Botta, Deborah Quaglio, Nigritanine as a New Potential Antimicrobial Alkaloid for the Treatment of Staphylococcus aureus-Induced Infections, 2019, 11, 2072-6651, 511, 10.3390/toxins11090511
    7. Sybil Obuobi, Nataša Škalko-Basnet, Nucleic Acid Hybrids as Advanced Antibacterial Nanocarriers, 2020, 12, 1999-4923, 643, 10.3390/pharmaceutics12070643
    8. Moorthy Maruthapandi, Arumugam Saravanan, John H. T. Luong, Aharon Gedanken, Antimicrobial Properties of the Polyaniline Composites against Pseudomonas aeruginosa and Klebsiella pneumoniae, 2020, 11, 2079-4983, 59, 10.3390/jfb11030059
    9. Rachael Nkechi Eboma, Clement Olusola Ogidi, Bamidele Juliet Akinyele, Bioactive compounds and antimicrobial activity of extracts from fermented African locust bean (Parkia biglobosa ) against pathogenic microorganisms, 2021, 4, 2588-1582, 343, 10.51745/najfnr.4.08.343-350
    10. Sergey V. Gudkov, Dmitriy E. Burmistrov, Dmitriy A. Serov, Maxim B. Rebezov, Anastasia A. Semenova, Andrey B. Lisitsyn, A Mini Review of Antibacterial Properties of ZnO Nanoparticles, 2021, 9, 2296-424X, 10.3389/fphy.2021.641481
    11. Hayden D. Hedman, Karla A. Vasco, Lixin Zhang, A Review of Antimicrobial Resistance in Poultry Farming within Low-Resource Settings, 2020, 10, 2076-2615, 1264, 10.3390/ani10081264
    12. Fazlurrahman Khan, Dung Thuy Nguyen Pham, Nazia Tabassum, Sandra Folarin Oloketuyi, Young-Mog Kim, Treatment strategies targeting persister cell formation in bacterial pathogens, 2020, 46, 1040-841X, 665, 10.1080/1040841X.2020.1822278
    13. Buthaina Jubeh, Zeinab Breijyeh, Rafik Karaman, Resistance of Gram-Positive Bacteria to Current Antibacterial Agents and Overcoming Approaches, 2020, 25, 1420-3049, 2888, 10.3390/molecules25122888
    14. Floriana Cappiello, Maria Rosa Loffredo, Cristina Del Plato, Silvia Cammarone, Bruno Casciaro, Deborah Quaglio, Maria Luisa Mangoni, Bruno Botta, Francesca Ghirga, The Revaluation of Plant-Derived Terpenes to Fight Antibiotic-Resistant Infections, 2020, 9, 2079-6382, 325, 10.3390/antibiotics9060325
    15. Patrick Mäder, Lars Kattner, Sulfoximines as Rising Stars in Modern Drug Discovery? Current Status and Perspective on an Emerging Functional Group in Medicinal Chemistry, 2020, 63, 0022-2623, 14243, 10.1021/acs.jmedchem.0c00960
    16. Namratha Turuvekere Vittala Murthy, Vibhuti Agrahari, Harsh Chauhan, Polyphenols against infectious diseases: Controlled release nano-formulations, 2021, 161, 09396411, 66, 10.1016/j.ejpb.2021.02.003
    17. Simona Bungau, Delia Mirela Tit, Tapan Behl, Lotfi Aleya, Dana Carmen Zaha, Aspects of excessive antibiotic consumption and environmental influences correlated with the occurrence of resistance to antimicrobial agents, 2021, 19, 24685844, 100224, 10.1016/j.coesh.2020.10.012
    18. Kaitlind C. Howard, Octavio A. Gonzalez, Sylvie Garneau-Tsodikova, Porphyromonas gingivalis: where do we stand in our battle against this oral pathogen?, 2021, 2632-8682, 10.1039/D0MD00424C
    19. Lauren R. Heinzinger, Angus Johnson, Jenna I. Wurster, Rachael Nilson, Swathi Penumutchu, Peter Belenky, Oxygen and Metabolism: Digesting Determinants of Antibiotic Susceptibility in the Gut, 2020, 23, 25890042, 101875, 10.1016/j.isci.2020.101875
    20. Taja Železnik Ramuta, Larisa Tratnjek, Aleksandar Janev, Katja Seme, Marjanca Starčič Erjavec, Mateja Erdani Kreft, The Antibacterial Activity of Human Amniotic Membrane against Multidrug-Resistant Bacteria Associated with Urinary Tract Infections: New Insights from Normal and Cancerous Urothelial Models, 2021, 9, 2227-9059, 218, 10.3390/biomedicines9020218
    21. Luping Pang, Stephen D. Weeks, Arthur Van Aerschot, Aminoacyl-tRNA Synthetases as Valuable Targets for Antimicrobial Drug Discovery, 2021, 22, 1422-0067, 1750, 10.3390/ijms22041750
    22. Dinkar Choudhari, Sunita Salunke-Gawali, Debamitra Chakravarty, Samir R. Shaikh, Dipali N. Lande, Shridhar P. Gejji, Pradeep Kumar Rao, Surekha Satpute, Vedavati G. Puranik, Rajesh Gonnade, Synthesis and biological activity of imidazole based 1,4-naphthoquinones, 2020, 44, 1144-0546, 6889, 10.1039/C9NJ04339J
    23. Fatemeh Salehian, Hamid Nadri, Leili Jalili-Baleh, Leila Youseftabar-Miri, Syed Nasir Abbas Bukhari, Alireza Foroumadi, Tuba Tüylü Küçükkilinç, Mohammad Sharifzadeh, Mehdi Khoobi, A review: Biologically active 3,4-heterocycle-fused coumarins, 2021, 212, 02235234, 113034, 10.1016/j.ejmech.2020.113034
    24. Nikola Puvača, Rosa de Llanos Frutos, Antimicrobial Resistance in Escherichia coli Strains Isolated from Humans and Pet Animals, 2021, 10, 2079-6382, 69, 10.3390/antibiotics10010069
    25. Saif Ali, Sandeep Singh, Rajesh Singh, Manjusha Tyagi, R.P. Pandey, Influence of multidrug resistance bacteria in river Ganges in the stretch of Rishikesh to Haridwar, 2021, 3, 26670100, 100068, 10.1016/j.envc.2021.100068
    26. Tuomo Laitinen, Ilia V. Baranovsky, Lidia S. Konstantinova, Antti Poso, Oleg A. Rakitin, Christopher R. M. Asquith, Antimicrobial and Antifungal Activity of Rare Substituted 1,2,3-Thiaselenazoles and Corresponding Matched Pair 1,2,3-Dithiazoles, 2020, 9, 2079-6382, 369, 10.3390/antibiotics9070369
    27. Shahneaz Ali Khan, Mohammed Ashif Imtiaz, Md. Abu Sayeed, Amir Hossan Shaikat, Mohammad Mahmudul Hassan, Antimicrobial resistance pattern in domestic animal - wildlife - environmental niche via the food chain to humans with a Bangladesh perspective; a systematic review, 2020, 16, 1746-6148, 10.1186/s12917-020-02519-9
    28. Ilinca A. Dutescu, The Antimicrobial Resistance Crisis: How Neoliberalism Helps Microbes Dodge Our Drugs, 2020, 0020-7314, 002073142094982, 10.1177/0020731420949823
    29. Mara Baldry, Martin S. Bojer, Zahra Najarzadeh, Martin Vestergaard, Rikke Louise Meyer, Daniel Erik Otzen, Hanne Ingmer, Phenol-Soluble Modulins Modulate Persister Cell Formation in Staphylococcus aureus, 2020, 11, 1664-302X, 10.3389/fmicb.2020.573253
    30. Kushal Vanamala, Katyayani Tatiparti, Ketki Bhise, Samaresh Sau, Marc H. Scheetz, Michael J. Rybak, David Andes, Arun K. Iyer, Novel approaches for the treatment of methicillin-resistant Staphylococcus aureus: Using nanoparticles to overcome multidrug resistance, 2021, 26, 13596446, 31, 10.1016/j.drudis.2020.10.011
    31. Tanushree Tunstall, Stephanie Portelli, Jody Phelan, Taane G. Clark, David B. Ascher, Nicholas Furnham, Combining structure and genomics to understand antimicrobial resistance, 2020, 18, 20010370, 3377, 10.1016/j.csbj.2020.10.017
    32. Craig Miller, Jordon Gilmore, Detection of Quorum-Sensing Molecules for Pathogenic Molecules Using Cell-Based and Cell-Free Biosensors, 2020, 9, 2079-6382, 259, 10.3390/antibiotics9050259
    33. John Jairo Aguilera-Correa, Jaime Esteban, María Vallet-Regí, Inorganic and Polymeric Nanoparticles for Human Viral and Bacterial Infections Prevention and Treatment, 2021, 11, 2079-4991, 137, 10.3390/nano11010137
    34. Mark Estabrook, Krystyna M. Kazmierczak, Mark Wise, Francis F. Arhin, Gregory G. Stone, Daniel F. Sahm, Molecular characterization of clinical isolates of Enterobacterales with elevated MIC values for aztreonam-avibactam from the INFORM global surveillance study, 2012–2017, 2021, 24, 22137165, 316, 10.1016/j.jgar.2021.01.010
    35. Ahmad Y. Hassan, Janet T. Lin, Nicole Ricker, Hany Anany, The Age of Phage: Friend or Foe in the New Dawn of Therapeutic and Biocontrol Applications?, 2021, 14, 1424-8247, 199, 10.3390/ph14030199
    36. Laurent Gavara, Laurent Sevaille, Filomena De Luca, Paola Mercuri, Carine Bebrone, Georges Feller, Alice Legru, Giulia Cerboni, Silvia Tanfoni, Damien Baud, Giuliano Cutolo, Benoît Bestgen, Giulia Chelini, Federica Verdirosa, Filomena Sannio, Cecilia Pozzi, Manuela Benvenuti, Karolina Kwapien, Marina Fischer, Katja Becker, Jean-Marie Frère, Stefano Mangani, Nohad Gresh, Dorothée Berthomieu, Moreno Galleni, Jean-Denis Docquier, Jean-François Hernandez, 4-Amino-1,2,4-triazole-3-thione-derived Schiff bases as metallo-β-lactamase inhibitors, 2020, 208, 02235234, 112720, 10.1016/j.ejmech.2020.112720
    37. Reham Samir Hamida, Mohamed Abdelaal Ali, Doaa A Goda, Mayasar Ibrahim Al-Zaban, Lethal Mechanisms of Nostoc-Synthesized Silver Nanoparticles Against Different Pathogenic Bacteria, 2020, Volume 15, 1178-2013, 10499, 10.2147/IJN.S289243
    38. Subhasree Roy, Sharmi Naha, Ankur Rao, Sulagna Basu, 2021, 178, 9780128215906, 123, 10.1016/bs.pmbts.2020.12.005
    39. David Banner, Emre Firlar, Justas Jakubonis, Yusuf Baggia, Jodi Finlay, Reza Shahbazian Yassar, Constantine Megaridis, Tolou Shokuhfar,

    Correlative ex situ and Liquid-Cell TEM Observation of Bacterial Cell Membrane Damage Induced by Rough Surface Topology

    , 2020, Volume 15, 1178-2013, 1929, 10.2147/IJN.S232230
    40. R. Moutafchieva, D. Mladenov, Antimicrobial resistance: review, 2020, 18, 1313-3551, 401, 10.15547/tjs.2020.04.015
    41. Sameer Dhingra, Nor Azlina A. Rahman, Ed Peile, Motiur Rahman, Massimo Sartelli, Mohamed Azmi Hassali, Tariqul Islam, Salequl Islam, Mainul Haque, Microbial Resistance Movements: An Overview of Global Public Health Threats Posed by Antimicrobial Resistance, and How Best to Counter, 2020, 8, 2296-2565, 10.3389/fpubh.2020.535668
    42. Jiale Li, Samiul Islam, Pengfei Guo, Xiaoqing Hu, Wubei Dong, Isolation of Antimicrobial Genes from Oryza rufipogon Griff by Using a Bacillus subtilis Expression System with Potential Antimicrobial Activities, 2020, 21, 1422-0067, 8722, 10.3390/ijms21228722
    43. Milena Milaković, Stela Križanović, Ines Petrić, Ana Šimatović, Juan J. González-Plaza, Marija Gužvinec, Arjana Tambić Andrašević, Lucia Pole, Mirna Mrkonjić Fuka, Nikolina Udiković-Kolić, Characterization of macrolide resistance in bacteria isolated from macrolide-polluted and unpolluted river sediments and clinical sources in Croatia, 2020, 749, 00489697, 142357, 10.1016/j.scitotenv.2020.142357
    44. Octavio Mesa-Varona, Heike Kaspar, Mirjam Grobbel, Bernd-Alois Tenhagen, Iddya Karunasagar, Phenotypical antimicrobial resistance data of clinical and non-clinical Escherichia coli from poultry in Germany between 2014 and 2017, 2020, 15, 1932-6203, e0243772, 10.1371/journal.pone.0243772
    45. Joana A. Santos, Meindert H. Lamers, Novel Antibiotics Targeting Bacterial Replicative DNA Polymerases, 2020, 9, 2079-6382, 776, 10.3390/antibiotics9110776
    46. Arya . Mohan, Nisha A. R., V. Keerthika, A Review on Plant Derived Efflux Pump Inhibitors Targeting nor An Efflux Pump in Staphylococcus Aureus, 2020, 2395-602X, 24, 10.32628/IJSRST20754
    47. Sanjoy Das, Malay K. Das, Trinayan Deka, L. Ronibala Singha, Punamjyoti Das, 2020, Chapter 6, 978-981-15-6254-9, 99, 10.1007/978-981-15-6255-6_6
    48. Hana Mohammed Al AlSheikh, Insha Sultan, Vijay Kumar, Irfan A. Rather, Hashem Al-Sheikh, Arif Tasleem Jan, Qazi Mohd Rizwanul Haq, Plant-Based Phytochemicals as Possible Alternative to Antibiotics in Combating Bacterial Drug Resistance, 2020, 9, 2079-6382, 480, 10.3390/antibiotics9080480
    49. Annamária Kincses, Stefánia Szabó, Bálint Rácz, Nikoletta Szemerédi, Genki Watanabe, Ryosuke Saijo, Hiroshi Sekiya, Eiji Tamai, Joseph Molnár, Masami Kawase, Gabriella Spengler, Benzoxazole-Based Metal Complexes to Reverse Multidrug Resistance in Bacteria, 2020, 9, 2079-6382, 649, 10.3390/antibiotics9100649
    50. Henni-Karoliina Ropponen, Robert Richter, Anna K.H. Hirsch, Claus-Michael Lehr, Mastering the Gram-Negative Bacterial Barrier – Chemical Approaches to Increase Bacterial Bioavailability of Antibiotics, 2021, 0169409X, 10.1016/j.addr.2021.02.014
    51. Christian Kranjec, Kirill V. Ovchinnikov, Torstein Grønseth, Kumar Ebineshan, Aparna Srikantam, Dzung B. Diep, A bacteriocin-based antimicrobial formulation to effectively disrupt the cell viability of methicillin-resistant Staphylococcus aureus (MRSA) biofilms, 2020, 6, 2055-5008, 10.1038/s41522-020-00166-4
    52. Francesco Triggiano, Carla Calia, Giusy Diella, Maria Teresa Montagna, Osvalda De Giglio, Giuseppina Caggiano, The Role of Urban Wastewater in the Environmental Transmission of Antimicrobial Resistance: The Current Situation in Italy (2010–2019), 2020, 8, 2076-2607, 1567, 10.3390/microorganisms8101567
    53. João B. Cota, Ana C. Carvalho, Inês Dias, Ana Reisinho, Fernando Bernardo, Manuela Oliveira, Salmonella spp. in Pet Reptiles in Portugal: Prevalence and Chlorhexidine Gluconate Antimicrobial Efficacy, 2021, 10, 2079-6382, 324, 10.3390/antibiotics10030324
    54. Lavious Tapiwa Matereke, Anthony Ifeanyi Okoh, Listeria monocytogenes Virulence, Antimicrobial Resistance and Environmental Persistence: A Review, 2020, 9, 2076-0817, 528, 10.3390/pathogens9070528
    55. Thomas J. Hall, Victor M. Villapún, Owen Addison, Mark A. Webber, Morgan Lowther, Sophie E. T. Louth, Sophie E. Mountcastle, Mathieu Y. Brunet, Sophie C. Cox, A call for action to the biomaterial community to tackle antimicrobial resistance, 2020, 8, 2047-4830, 4951, 10.1039/D0BM01160F
    56. Hélder Oliveira, Patrícia Correia, Lucinda J. Bessa, Marta Guimarães, Paula Gameiro, Victor de Freitas, Nuno Mateus, Luís Cruz, Iva Fernandes, Cyanidin-3-glucoside Lipophilic Conjugates for Topical Application: Tuning the Antimicrobial Activities with Fatty Acid Chain Length, 2021, 9, 2227-9717, 340, 10.3390/pr9020340
    57. Felipe López-Saucedo, Noé Zúñiga-Villarreal, Guadalupe G. Flores-Rojas, Diego Martínez-Otero, Beatriz Magariños, Emilio Bucio, Zinc heterocyclic vinyl complexes and their gamma-irradiated derivatives: From the metal to antimicrobial materials, 2020, 146, 13815148, 104410, 10.1016/j.reactfunctpolym.2019.104410
    58. K. B. Arun, Aravind Madhavan, Billu Abraham, M. Balaji, K. C. Sivakumar, P. Nisha, R. Ajay Kumar, Acetylation of Isoniazid Is a Novel Mechanism of Isoniazid Resistance in Mycobacterium tuberculosis, 2020, 65, 0066-4804, e00456-20, 10.1128/AAC.00456-20
    59. Juan Bueno, 2020, Chapter 6, 978-3-030-43854-8, 75, 10.1007/978-3-030-43855-5_6
    60. Joshua Hadi, Shuyan Wu, Gale Brightwell, Antimicrobial Blue Light versus Pathogenic Bacteria: Mechanism, Application in the Food Industry, Hurdle Technologies and Potential Resistance, 2020, 9, 2304-8158, 1895, 10.3390/foods9121895
    61. Lan Yu, Jisheng Zhang, Yanjun Fu, Yongxin Zhao, Yong Wang, Jing Zhao, Yuhang Guo, Chunjiang Li, Xiaoli Zhang, Synergetic Effects of Combined Treatment of Colistin With Meropenem or Amikacin on Carbapenem-Resistant Klebsiella pneumoniae in vitro, 2019, 9, 2235-2988, 10.3389/fcimb.2019.00422
    62. NITU KUMAR, KRISHNA MOHAN, KARLA GEORGES, FRANCIS DZIVA, ABIODUN A. ADESIYUN, Occurrence of Virulence and Resistance Genes in Salmonella in Cloacae of Slaughtered Chickens and Ducks at Pluck Shops in Trinidad, 2021, 84, 0362-028X, 39, 10.4315/JFP-20-203
    63. Amit Katiyar, Priyanka Sharma, Sushila Dahiya, Harpreet Singh, Arti Kapil, Punit Kaur, Genomic profiling of antimicrobial resistance genes in clinical isolates of Salmonella Typhi from patients infected with Typhoid fever in India, 2020, 10, 2045-2322, 10.1038/s41598-020-64934-0
    64. Syeda Fatima Nadeem, Umar Farooq Gohar, Syed Fahad Tahir, Hamid Mukhtar, Soisuda Pornpukdeewattana, Pikunthong Nukthamna, Ali Muhammed Moula Ali, Sri Charan Bindu Bavisetty, Salvatore Massa, Antimicrobial resistance: more than 70 years of war between humans and bacteria, 2020, 46, 1040-841X, 578, 10.1080/1040841X.2020.1813687
    65. Ayushi Jain, Abhinav Kapur, Shweta Wadhawan, Mayank Garg, Satish Kumar Pandey, Suman Singh, Surinder Kumar Mehta, Hematite dysprosium oxide nanocomposites biosynthesized via greener route for ciprofloxacin removal and antimicrobial activity, 2021, 2008-9244, 10.1007/s40097-020-00379-1
    66. Sumitra N. Mangasuli, Synthesis of novel coumarin-thiazolidine-2,4-dione derivatives: An approach to computational studies and biological evaluation, 2021, 3, 22117156, 100105, 10.1016/j.rechem.2021.100105
    67. Cinthia Alves-Barroco, Lorenzo Rivas-García, Alexandra R. Fernandes, Pedro Viana Baptista, Tackling Multidrug Resistance in Streptococci – From Novel Biotherapeutic Strategies to Nanomedicines, 2020, 11, 1664-302X, 10.3389/fmicb.2020.579916
    68. Juan Bueno, 2020, Chapter 7, 978-3-030-43854-8, 89, 10.1007/978-3-030-43855-5_7
    69. Alejandra Matamoros-Recio, Juan Felipe Franco-Gonzalez, Rosa Ester Forgione, Angel Torres-Mozas, Alba Silipo, Sonsoles Martín-Santamaría, Understanding the Antibacterial Resistance: Computational Explorations in Bacterial Membranes, 2021, 6, 2470-1343, 6041, 10.1021/acsomega.0c05590
    70. Miguel Ángel Ortega, Alberto Guzmán Merino, Oscar Fraile-Martínez, Judith Recio-Ruiz, Leonel Pekarek, Luis G. Guijarro, Natalio García-Honduvilla, Melchor Álvarez-Mon, Julia Buján, Sandra García-Gallego, Dendrimers and Dendritic Materials: From Laboratory to Medical Practice in Infectious Diseases, 2020, 12, 1999-4923, 874, 10.3390/pharmaceutics12090874
    71. Ying Huang, Yufan Chen, Lian-hui Zhang, The Roles of Microbial Cell-Cell Chemical Communication Systems in the Modulation of Antimicrobial Resistance, 2020, 9, 2079-6382, 779, 10.3390/antibiotics9110779
    72. Tracey Luu, Wenyi Li, Neil M. O'Brien‐Simpson, Yuning Hong, Recent Applications of Aggregation Induced Emission Probes for Antimicrobial Peptide Studies, 2021, 1861-4728, 10.1002/asia.202100102
    73. Riya Mukherjee, Anjali Priyadarshini, Ramendra Pati Pandey, Vethakkani Samuel Raj, 2021, 10.5772/intechopen.96888
    74. Celien Bollen, Liselot Dewachter, Jan Michiels, Protein Aggregation as a Bacterial Strategy to Survive Antibiotic Treatment, 2021, 8, 2296-889X, 10.3389/fmolb.2021.669664
    75. Aashaq Hussain Bhat, Bacterial zoonoses transmitted by household pets and as reservoirs of antimicrobial resistant bacteria, 2021, 155, 08824010, 104891, 10.1016/j.micpath.2021.104891
    76. Meyrem Vehapi, Didem Özçimen, Antimicrobial and bacteriostatic activity of surfactants against B. subtilis for microbial cleaner formulation, 2021, 0302-8933, 10.1007/s00203-021-02328-0
    77. Manjari Advani, Rajmohan Seetharaman, Sudhir Pawar, Smita Mali, Jaisen Lokhande, Past, present and future perspectives of therapeutic drug monitoring in India, 2021, 1368-5031, 10.1111/ijcp.14189
    78. Yori Turu Toja, Eddy Suprayitno, Aulanni’am -, Uun Yanuhar, In Vitro and FTIR Spectroscopy: Local Black Fruit Seed Extract as Antibacterial Aeromonas Hydrophila, 2021, 15, 1998-4510, 92, 10.46300/91011.2021.15.12
    79. Vera Alexandra Spirescu, Cristina Chircov, Alexandru Mihai Grumezescu, Bogdan Ștefan Vasile, Ecaterina Andronescu, Inorganic Nanoparticles and Composite Films for Antimicrobial Therapies, 2021, 22, 1422-0067, 4595, 10.3390/ijms22094595
    80. Zeleke Digafie, Yadessa Melaku, Zerihun Belay, Rajalakshmanan Eswaramoorthy, Marcelino Maneiro, Synthesis, Antibacterial, Antioxidant, and Molecular Modeling Studies of Novel [2,3′-Biquinoline]-4-Carboxylic Acid and Quinoline-3-Carbaldehyde Analogs, 2021, 2021, 2090-9071, 1, 10.1155/2021/9939506
    81. Wivyan Castro Lage, Daniela Sachs, Tainara Aparecida Nunes Ribeiro, Marli Luiza Tebaldi, Yanka dos Reis Soares de Moura, Stephanie Calazans Domingues, Daniel Cristian Ferreira Soares, Mesoporous iron oxide nanoparticles loaded with ciprofloxacin as a potential biocompatible antibacterial system, 2021, 321, 13871811, 111127, 10.1016/j.micromeso.2021.111127
    82. Salma Waheed Sheikh, Ahmad Ali, Asma Ahsan, Sidra Shakoor, Fei Shang, Ting Xue, Insights into Emergence of Antibiotic Resistance in Acid-Adapted Enterohaemorrhagic Escherichia coli, 2021, 10, 2079-6382, 522, 10.3390/antibiotics10050522
    83. Irene Galani, Ilias Karaskos, Helen Giamarellou, Multidrug-resistant Klebsiella pneumoniae: mechanisms of resistance including updated data for novel β-lactam-β-lactamase inhibitor combinations, 2021, 1478-7210, 10.1080/14787210.2021.1924674
    84. Zimam Mahmud, Syeda Antara Shabnam, Israt Dilruba Mishu, Fatema-Tuz Johura, Shahnewaj Bin Mannan, Abdus Sadique, Laila N. Islam, Munirul Alam, Virotyping, genotyping, and molecular characterization of multidrug resistant Escherichia coli isolated from diarrheal patients of Bangladesh, 2021, 24520144, 101182, 10.1016/j.genrep.2021.101182
    85. Syed Mohd Danish Rizvi, Amr Selim Abu Lila, Afrasim Moin, Talib Hussain, Mohammad Amjad Kamal, Hana Sonbol, El-Sayed Khafagy, Antibiotic-Loaded Gold Nanoparticles: A Nano-Arsenal against ESBL Producer-Resistant Pathogens, 2023, 15, 1999-4923, 430, 10.3390/pharmaceutics15020430
    86. S. Thirbika, H. Karthi, R. Premila, M. Ramesh Prabhu, Investigations on biosynthesized nickel oxide nanoparticles using Cymbopogon citratus leaf extract for antibacterial activity, 2022, 68, 22147853, 276, 10.1016/j.matpr.2022.05.168
    87. Junhwan Kim, Juhee Ahn, Emergence and spread of antibiotic-resistant foodborne pathogens from farm to table, 2022, 31, 1226-7708, 1481, 10.1007/s10068-022-01157-1
    88. Moses B. Ayoola, Nisha Pillai, Bindu Nanduri, Michael J. Rothrock, Mahalingam Ramkumar, Preharvest Environmental and Management Drivers of Multidrug Resistance in Major Bacterial Zoonotic Pathogens in Pastured Poultry Flocks, 2022, 10, 2076-2607, 1703, 10.3390/microorganisms10091703
    89. Fan Luo, Zhihuan Fu, Yanli Ren, Wenxiong Wang, Yunmao Huang, Xugang Shu, Self-assembly CuO-loaded nanocomposite involving functionalized DNA with dihydromyricetin for water-based efficient and controllable antibacterial action, 2022, 137, 27729508, 212847, 10.1016/j.bioadv.2022.212847
    90. Xiaoxuan Zheng, Huizhen Chao, Yunling Wu, Xinwei Wang, Mingming Sun, Feng Hu, Contrasted effects of Metaphire guillelmi on tetracycline diffusion and dissipation in soil, 2022, 310, 03014797, 114776, 10.1016/j.jenvman.2022.114776
    91. Ruba Y. Mahmoud, Elena Y. Trizna, Rand K. Sulaiman, Roman S. Pavelyev, Ilmir R. Gilfanov, Svetlana A. Lisovskaya, Olga V. Ostolopovskaya, Larisa L. Frolova, Alexander V. Kutchin, Galina B. Guseva, Elena V. Antina, Mikhail B. Berezin, Liliya E. Nikitina, Airat R. Kayumov, Increasing the Efficacy of Treatment of Staphylococcus aureus–Candida albicans Mixed Infections with Myrtenol, 2022, 11, 2079-6382, 1743, 10.3390/antibiotics11121743
    92. Yangheng Zhang, Rixin Chen, Yuxian Wang, Peng Wang, Jiajie Pu, Xiaoqiang Xu, Faming Chen, Ling Jiang, Qing Jiang, Fuhua Yan, Antibiofilm activity of ultra-small gold nanoclusters against Fusobacterium nucleatum in dental plaque biofilms, 2022, 20, 1477-3155, 10.1186/s12951-022-01672-7
    93. Ali Abdulkareem, Hayder Abdulbaqi, Sarhang Gul, Mike Milward, Nibras Chasib, Raghad Alhashimi, Classic vs. Novel Antibacterial Approaches for Eradicating Dental Biofilm as Adjunct to Periodontal Debridement: An Evidence-Based Overview, 2021, 11, 2079-6382, 9, 10.3390/antibiotics11010009
    94. Mohammed M. Aljeldah, Antimicrobial Resistance and Its Spread Is a Global Threat, 2022, 11, 2079-6382, 1082, 10.3390/antibiotics11081082
    95. Daniel Jesuwenu Ajose, Tesleem Olatunde Abolarinwa, Bukola Opeyemi Oluwarinde, Peter Kotsoana Montso, Omolola Esther Fayemi, Adeyemi Oladapo Aremu, Collins Njie Ateba, Application of Plant-Derived Nanoparticles (PDNP) in Food-Producing Animals as a Bio-Control Agent against Antimicrobial-Resistant Pathogens, 2022, 10, 2227-9059, 2426, 10.3390/biomedicines10102426
    96. Ebenezer Tunde Olayinka, Toluwalase Oreofe Oni, Abosede Temitope Olajide, Babajide Oluwaseun Ajayi, Samuel Abiodun Kehinde, Hesperetin attenuates teicoplanin-induced acute kidney injury by mitigating oxidative stress and inflammation in Wistar rats, 2022, 2022, 2755-158X, 8, 10.1530/REM-22-0018
    97. Willis Gwenzi, Zahra Shamsizadeh, Sahar Gholipour, Mahnaz Nikaeen, The air-borne antibiotic resistome: Occurrence, health risks, and future directions, 2022, 804, 00489697, 150154, 10.1016/j.scitotenv.2021.150154
    98. Ewelina Maślak, Wojciech Kupczyk, Viorica Railean, Paweł Pomastowski, Marek Jackowski, Bogusław Buszewski, Viability study of clinical bacterial strains by capillary electrophoresis and flow cytometry approaches, 2022, 43, 0173-0835, 2005, 10.1002/elps.202200096
    99. Hani Mohammed Ali, In-silico investigation of a novel inhibitors against the antibiotic-resistant Neisseria gonorrhoeae bacteria, 2022, 29, 1319562X, 103424, 10.1016/j.sjbs.2022.103424
    100. Rama Alkhawaldeh, Rana Abu Farha, Khawla Abu Hammour, Eman Alefishat, Optimizing antimicrobial therapy in urinary tract infections: A focus on urine culture and sensitivity testing, 2022, 13, 1663-9812, 10.3389/fphar.2022.1058669
    101. Shweta Singh, Arun Goyal, 2022, Chapter 3, 978-3-030-84125-6, 47, 10.1007/978-3-030-84126-3_3
    102. Marco Cavaco, Miguel A. R. B. Castanho, Vera Neves, The Use of Antibody-Antibiotic Conjugates to Fight Bacterial Infections, 2022, 13, 1664-302X, 10.3389/fmicb.2022.835677
    103. Panagiotis Zagaliotis, Jordyn Michalik-Provasek, Jason Gill, Thomas Walsh, Therapeutic Bacteriophages for Gram-Negative Bacterial Infections in Animals and Humans, 2022, 7, 2469-2964, 1, 10.20411/pai.v7i2.516
    104. Mudassar Hussain, Iram Liaqat, Urooj Zafar, Sadiah Saleem, Muhammad Nauman Aftab, Awais Khalid, Yosra Modafer, Fahdah Ayed Alshammari, Abdullah Mashraqi, Ahmed A. El-Mansi, Antibiofilm Potential of Coelomic Fluid and Paste of Earthworm Pheretima posthuma (Clitellata, Megascolecidae) against Pathogenic Bacteria, 2023, 11, 2076-2607, 342, 10.3390/microorganisms11020342
    105. David Chinemerem Nwobodo, Malachy Chigozie Ugwu, Clement Oliseloke Anie, Mushtak T. S. Al‐Ouqaili, Joseph Chinedu Ikem, Uchenna Victor Chigozie, Morteza Saki, Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace, 2022, 36, 0887-8013, 10.1002/jcla.24655
    106. Dnyanada G. Desai, Govinda R. Navale, Dattatray J. Late, Mahesh S. Dharne, Pravin S. Walke, Size does matter: antibacterial activities and cytotoxic evaluation of polymorphic CuO nanostructures, 2023, 58, 0022-2461, 2782, 10.1007/s10853-023-08157-4
    107. Maria Luíza Soares Suhadolnik, Patrícia Silva Costa, Magna Cristina Paiva, Anna Christina de Matos Salim, Francisco Antônio Rodrigues Barbosa, Francisco Pereira Lobo, Andréa Maria Amaral Nascimento, Spatiotemporal dynamics of the resistome and virulome of riverine microbiomes disturbed by a mining mud tsunami, 2022, 806, 00489697, 150936, 10.1016/j.scitotenv.2021.150936
    108. Zainura Zainon Noor, Zainab Rabiu, Mohd. Helmi Mohd. Sani, Abdul Fatah A. Samad, Mohd. Farizal Ahmad Kamaroddin, María Florencia Perez, Julian Rafael Dib, Huma Fatima, Rajeshwari Sinha, Sunil Kumar Khare, Zainul Akmar Zakaria, A Review of Bacterial Antibiotic Resistance Genes and Their Removal Strategies from Wastewater, 2021, 7, 2198-6592, 494, 10.1007/s40726-021-00198-0
    109. Michele Iafisco, Francesca Carella, Lorenzo Degli Esposti, Alessio Adamiano, Daniele Catalucci, Jessica Modica, Alessandra Bragonzi, Alberto Vitali, Riccardo Torelli, Maurizio Sanguinetti, Francesca Bugli, Biocompatible antimicrobial colistin loaded calcium phosphate nanoparticles for the counteraction of biofilm formation in cystic fibrosis related infections, 2022, 230, 01620134, 111751, 10.1016/j.jinorgbio.2022.111751
    110. Tweedekharis Marlin Agatha, Prima Ayu Wibawati, Reza Ikhza Izulhaq, Bodhi Agustono, Ragil Angga Prastiya, Dhandy Koesoemo Wardhana, Abzal Abdramanov, Widya Paramita Lokapirnasari, Mirni Lamid, Antibiotic resistance of Escherichia coli from the milk of Ettawa crossbred dairy goats in Blitar Regency, East Java, Indonesia, 2023, 22310916, 168, 10.14202/vetworld.2023.168-174
    111. Firzan Nainu, Andi Dian Permana, Nana Juniarti Natsir Djide, Qonita Kurnia Anjani, Rifka Nurul Utami, Nur Rahma Rumata, Jianye Zhang, Talha Bin Emran, Jesus Simal-Gandara, Pharmaceutical Approaches on Antimicrobial Resistance: Prospects and Challenges, 2021, 10, 2079-6382, 981, 10.3390/antibiotics10080981
    112. Ismail Celik, Meryem Erol, Gulcan Kuyucuklu, Molecular modeling, density functional theory, ADME prediction and antimicrobial activity studies of 2-(substituted)oxazolo[4,5-b]pyridine derivatives, 2021, 45, 1144-0546, 11108, 10.1039/D1NJ00701G
    113. Sahar Serajian, Ehsan Ahmadpour, Sonia M. Rodrigues Oliveira, Maria de Lourdes Pereira, Siamak Heidarzadeh, CRISPR-Cas Technology: Emerging Applications in Clinical Microbiology and Infectious Diseases, 2021, 14, 1424-8247, 1171, 10.3390/ph14111171
    114. Hiromi Takahashi, Takao Yasui, Yoshinobu Baba, Nanobiodevices for the Isolation of Circulating Nucleic Acid for Biomedical Applications, 2021, 50, 0366-7022, 1244, 10.1246/cl.210066
    115. Sarah R. Herschede, Rayhanus Salam, Hassan Gneid, Nathalie Busschaert, Bacterial cytological profiling identifies transmembrane anion transport as the mechanism of action for a urea-based antibiotic, 2023, 1061-0278, 1, 10.1080/10610278.2023.2178921
    116. Alessia Catalano, Domenico Iacopetta, Jessica Ceramella, Domenica Scumaci, Federica Giuzio, Carmela Saturnino, Stefano Aquaro, Camillo Rosano, Maria Stefania Sinicropi, Multidrug Resistance (MDR): A Widespread Phenomenon in Pharmacological Therapies, 2022, 27, 1420-3049, 616, 10.3390/molecules27030616
    117. Md Mahamudul Haque, Katherine Yerex, Anastasia Kelekis-Cholakis, Kangmin Duan, Advances in novel therapeutic approaches for periodontal diseases, 2022, 22, 1472-6831, 10.1186/s12903-022-02530-6
    118. Rachael Pei, Liz Zhang, Catherine Duan, Michael Gao, Rachel Feng, Qian Jia, Zuyi (Jacky) Huang, Investigation of Stress Response Genes in Antimicrobial Resistant Pathogens Sampled from Five Countries, 2021, 9, 2227-9717, 927, 10.3390/pr9060927
    119. Rashmi Trivedi, Tarun Kumar Upadhyay, Mohd Adnan Kausar, Amir Saeed, Amit Baran Sharangi, Ahmad Almatroudi, Nadiyah M. Alabdallah, Mohd Saeed, Farrukh Aqil, Nanotechnological interventions of the microbiome as a next-generation antimicrobial therapy, 2022, 833, 00489697, 155085, 10.1016/j.scitotenv.2022.155085
    120. Varun Sodhi, Kelli A. Kronsberg, Mickayla Clark, Jonathan C. Cho, Tebipenem pivoxil hydrobromide—No PICC, no problem!, 2021, 41, 0277-0008, 748, 10.1002/phar.2614
    121. Yohannes E. Messele, Mauida F. Hasoon, Darren J. Trott, Tania Veltman, Joe P. McMeniman, Stephen P. Kidd, Wai Y. Low, Kiro R. Petrovski, Longitudinal Analysis of Antimicrobial Resistance among Enterococcus Species Isolated from Australian Beef Cattle Faeces at Feedlot Entry and Exit, 2022, 12, 2076-2615, 2690, 10.3390/ani12192690
    122. Valentina Rep, Rebeka Štulić, Sanja Koštrun, Bojan Kuridža, Ivo Crnolatac, Marijana Radić Stojković, Hana Čipčić Paljetak, Mihaela Perić, Mario Matijašić, Silvana Raić-Malić, Novel tetrahydropyrimidinyl-substituted benzimidazoles and benzothiazoles: synthesis, antibacterial activity, DNA interactions and ADME profiling, 2022, 13, 2632-8682, 1504, 10.1039/D2MD00143H
    123. Nitin Yadav, Utkarsh Kumar, Virander Singh Chauhan, Conformationally restricted, dipeptide-based, self-assembled nanoparticles for efficient vancomycin delivery, 2023, 1743-5889, 10.2217/nnm-2022-0144
    124. Pavel A. Nazarov, MDR Pumps as Crossroads of Resistance: Antibiotics and Bacteriophages, 2022, 11, 2079-6382, 734, 10.3390/antibiotics11060734
    125. Manju Sharma, Nidhi Aggarwal, Sonika Chibh, Avneet Kour, Samraggi Choudhury, Jiban Jyoti Panda, 2022, Chapter 5, 978-3-031-21899-6, 113, 10.1007/978-3-031-21900-9_5
    126. Alaa Badr Eldin, Marwa Ezzat, Manal Afifi, Omar Sabry, Giovanni Caprioli, Herbal medicine: the magic way crouching microbial resistance, 2023, 1478-6419, 1, 10.1080/14786419.2023.2172009
    127. Atul Kumar Singh, Kumari Sunita Prajapati, Shashank Kumar, Acarbose Potentially Binds to the Type I Peptide Deformylase Catalytic Site and Inhibits Bacterial Growth: An In Silico and In Vitro Study, 2022, 28, 13816128, 2890, 10.2174/1381612828666220922100556
    128. Tanuka Sen, Naresh K. Verma, Functional Role of YnfA, an Efflux Transporter in Resistance to Antimicrobial Agents in Shigella flexneri, 2022, 66, 0066-4804, 10.1128/aac.00293-22
    129. María J. Martín de Vidales, Robert Prieto, Gabriel Galán-Lucarelli, Evangelina Atanes-Sánchez, Francisco Fernández-Martínez, Removal of contaminants of emerging concern by photocatalysis with a highly ordered TiO2 nanotubular array catalyst, 2023, 09205861, 113995, 10.1016/j.cattod.2023.01.002
    130. Mahsa Ebrahimi, Omid Akhavan, Nanomaterials for Photocatalytic Degradations of Analgesic, Mucolytic and Anti-Biotic/Viral/Inflammatory Drugs Widely Used in Controlling SARS-CoV-2, 2022, 12, 2073-4344, 667, 10.3390/catal12060667
    131. Shamanth A. Shankarnarayan, Joshua D. Guthrie, Daniel A. Charlebois, 2022, Chapter 9, 978-1-80356-041-0, 10.5772/intechopen.104841
    132. A. R. Pandimurugan, G. Vijaya Prasath, K. S. Usha, J. Vivekanandan, C. Karthikeyan, K. Sankaranarayanan, G. Ravi, Synthesis, properties and antibacterial activity of Ca doped Zn2SnO4 nanoparticles by microwave assisted method, 2023, 129, 0947-8396, 10.1007/s00339-023-06410-w
    133. Sonia Abid Bhatti, Muhammad Hammad Hussain, Muhammad Zubair Mohsin, Ali Mohsin, Waqas Qamar Zaman, Meijin Guo, Muhammad Waheed Iqbal, Shahida Anusha Siddiqui, Salam A. Ibrahim, Saeed Ur-Rehman, Sameh A. Korma, Evaluation of the antimicrobial effects of Capsicum, Nigella sativa, Musa paradisiaca L., and Citrus limetta: A review, 2022, 6, 2571-581X, 10.3389/fsufs.2022.1043823
    134. Afroza Akter Tanni, Nahid Sultana, Wazir Ahmed, Md. Mahbub Hasan, Md. Shakhawat Hossain, Sajjad Hossain Noyon, Md. Mobarok Hossain, Adnan Mannan, Jianhai Yin, Investigating Antimicrobial Resistance and ESBL Producing Gene in Klebsiella Isolates among Neonates and Adolescents in Southern Bangladesh, 2022, 2022, 1918-1493, 1, 10.1155/2022/7071009
    135. Sònia López-Molina, Cristina Galiana-Roselló, Carolina Galiana, Ariadna Gil-Martínez, Stephane Bandeira, Jorge González-García, Alkaloids as Photosensitisers for the Inactivation of Bacteria, 2021, 10, 2079-6382, 1505, 10.3390/antibiotics10121505
    136. Vishakha Tambe, Aayushi Ditani, Kuldeep Rajpoot, Rakesh Kumar Tekade, 2021, 9780128144251, 83, 10.1016/B978-0-12-814425-1.00014-0
    137. Sonika Sharma, Sibnarayan Datta, Soumya Chatterjee, Moumita Dutta, Jhuma Samanta, Mohan G. Vairale, Rajeev Gupta, Vijay Veer, Sanjai K. Dwivedi, Isolation and characterization of a lytic bacteriophage against Pseudomonas aeruginosa, 2021, 11, 2045-2322, 10.1038/s41598-021-98457-z
    138. Adeoye John Kayode, Anthony Ifeanyi Okoh, Antibiotic Resistance Profile of Listeria monocytogenes Recovered from Ready-to-Eat Foods Surveyed in South Africa, 2022, 85, 0362028X, 1807, 10.4315/JFP-22-090
    139. Alexandra-Cristina Munteanu, Valentina Uivarosi, Ruthenium Complexes in the Fight against Pathogenic Microorganisms. An Extensive Review, 2021, 13, 1999-4923, 874, 10.3390/pharmaceutics13060874
    140. Pamela Hindieh, Joseph Yaghi, André El Khoury, Ali Chokr, Ali Atoui, Nicolas Louka, Jean Claude Assaf, Lactobacillus rhamnosus and Staphylococcus epidermidis in gut microbiota: in vitro antimicrobial resistance, 2022, 12, 2191-0855, 10.1186/s13568-022-01468-w
    141. Ehsan F. Hussein, 2022, 10.5772/intechopen.108759
    142. Prachi Singh, Jenna Holmen, Multidrug-Resistant Infections in the Developing World, 2022, 69, 00313955, 141, 10.1016/j.pcl.2021.09.003
    143. Vanitha Mariappan, Kumutha Malar Vellasamy, Nor Alia Mohamad, Sreeramanan Subramaniam, Jamuna Vadivelu, OneHealth Approaches Contribute Towards Antimicrobial Resistance: Malaysian Perspective, 2021, 12, 1664-302X, 10.3389/fmicb.2021.718774
    144. Christy El-Khoury, Elissar Mansour, Yori Yuliandra, Felcia Lai, Bryson A. Hawkins, Jonathan J. Du, Eric J. Sundberg, Nicolas Sluis-Cremer, David E. Hibbs, Paul W. Groundwater, The role of adjuvants in overcoming antibacterial resistance due to enzymatic drug modification, 2022, 13, 2632-8682, 1276, 10.1039/D2MD00263A
    145. Dmitriy A. Serov, Dmitriy E. Burmistrov, Alexander V. Simakin, Maxim E. Astashev, Oleg V. Uvarov, Eteri R. Tolordava, Anastasia A. Semenova, Andrey B. Lisitsyn, Sergey V. Gudkov, Composite Coating for the Food Industry Based on Fluoroplast and ZnO-NPs: Physical and Chemical Properties, Antibacterial and Antibiofilm Activity, Cytotoxicity, 2022, 12, 2079-4991, 4158, 10.3390/nano12234158
    146. Varshaa Arer, Debasish Kar, Biochemical exploration of β-lactamase inhibitors, 2023, 13, 1664-8021, 10.3389/fgene.2022.1060736
    147. Zakio Makuvara, Jerikias Marumure, Rangarirayi Karidzagundi, Claudious Gufe, Richwell Alufasi, 2023, Chapter 18, 978-981-19-8079-4, 307, 10.1007/978-981-19-8080-0_18
    148. Ahamed Basha Kusunur, George Kamal Kuraganti, Shanmukha Sai Mogilipuri, Murugadas Vaiyapuri, Sreejith Viyyokkaran Narayanan, Madhusudana Rao Badireddy, Multidrug resistance of Escherichia coli in fish supply chain: A preliminary investigation , 2022, 42, 0149-6085, 10.1111/jfs.12972
    149. Aditya Upadhayay, Jingjing Ling, Dharm Pal, Yuhao Xie, Feng-Feng Ping, Awanish Kumar, Resistance-proof antimicrobial drug discovery to combat global antimicrobial resistance threat, 2023, 66, 13687646, 100890, 10.1016/j.drup.2022.100890
    150. Federico Riu, Alessandro Ruda, Roberta Ibba, Simona Sestito, Ilenia Lupinu, Sandra Piras, Göran Widmalm, Antonio Carta, Antibiotics and Carbohydrate-Containing Drugs Targeting Bacterial Cell Envelopes: An Overview, 2022, 15, 1424-8247, 942, 10.3390/ph15080942
    151. Sayerh Fatimazahra, Mouhir Latifa, Saafadi Laila, Khazraji Monsif, Review of hospital effluents: special emphasis on characterization, impact, and treatment of pollutants and antibiotic resistance, 2023, 195, 0167-6369, 10.1007/s10661-023-11002-5
    152. Miguel Herraiz-Carboné, Salvador Cotillas, Engracia Lacasa, Pablo Cañizares, Manuel A. Rodrigo, Cristina Sáez, Depletion of ARGs in antibiotic-resistance Klebsiella, Pseudomonas and Staphylococcus in hospital urines by electro and photo-electro disinfection, 2022, 49, 22147144, 103035, 10.1016/j.jwpe.2022.103035
    153. Soraya Olana, Rossella Mazzilli, Iolanda Santino, Daniela Martinelli, Virginia Zamponi, Manuela Macera, Gerardo Salerno, Fernando Mazzilli, Antongiulio Faggiano, Daniele Gianfrilli, Sperm culture and bacterial susceptibility to antibiotics in a large andrological population: prevalence and impact on seminal parameters, 2022, 26, 1618-1905, 69, 10.1007/s10123-022-00273-6
    154. Arturo Martínez-Trejo, Juan Manuel Ruiz-Ruiz, Luis Uriel Gonzalez-Avila, Andrés Saldaña-Padilla, Cecilia Hernández-Cortez, Miguel Angel Loyola-Cruz, Juan Manuel Bello-López, Graciela Castro-Escarpulli, Evasion of Antimicrobial Activity in Acinetobacter baumannii by Target Site Modifications: An Effective Resistance Mechanism, 2022, 23, 1422-0067, 6582, 10.3390/ijms23126582
    155. Minori Takaichi, Kayo Osawa, Ryohei Nomoto, Noriko Nakanishi, Masanori Kameoka, Makiko Miura, Katsumi Shigemura, Shohiro Kinoshita, Koichi Kitagawa, Atsushi Uda, Takayuki Miyara, Ni Made Mertaniasih, Usman Hadi, Dadik Raharjo, Ratna Yulistiani, Masato Fujisawa, Kuntaman Kuntaman, Toshiro Shirakawa, Antibiotic Resistance in Non-Typhoidal Salmonella enterica Strains Isolated from Chicken Meat in Indonesia, 2022, 11, 2076-0817, 543, 10.3390/pathogens11050543
    156. Danyel Ramirez, Liam Berry, Ronald Domalaon, Yanqi Li, Gilbert Arthur, Ayush Kumar, Frank Schweizer, Dioctanoyl Ultrashort Tetrabasic β-Peptides Sensitize Multidrug-Resistant Gram-Negative Bacteria to Novobiocin and Rifampicin, 2021, 12, 1664-302X, 10.3389/fmicb.2021.803309
    157. Riley B. Guntrip, Milson J. Luce, Peppermint, thyme, and green tea extracts modulate antibiotic sensitivity, 2022, 92, 0005-3155, 10.1893/BIOS-D-19-00023
    158. Shaukat A. Shaikh, Indira K. Priyadarsini, Sirisha L. Vavilala, Ebselen’s Potential to Inhibit Planktonic and Biofilm Growth of Neisseria mucosa, 2022, 16, 22127968, 61, 10.2174/2212796816666220330090107
    159. Isabella Sanseverino, Livia Gómez, Anna Navarro, Francesca Cappelli, Magdalena Niegowska, Armin Lahm, Maurizio Barbiere, Elena Porcel-Rodríguez, Sara Valsecchi, Rosalba Pedraccini, Simone Crosta, Teresa Lettieri, Holistic approach to chemical and microbiological quality of aquatic ecosystems impacted by wastewater effluent discharges, 2022, 835, 00489697, 155388, 10.1016/j.scitotenv.2022.155388
    160. María J. Martín de Vidales, Esteban Palomo de la Fuente, Evangelina Atanes-Sánchez, Francisco Fernández-Martínez, New compact multi option photo reactor for the removal of contaminants of emerging concern from wastewater, 2022, 10, 22133437, 107700, 10.1016/j.jece.2022.107700
    161. Fatima Akram, Memoona Imtiaz, Ikram ul Haq, Emergent crisis of antibiotic resistance: A silent pandemic threat to 21st century, 2023, 174, 08824010, 105923, 10.1016/j.micpath.2022.105923
    162. Syed Mohd Danish Rizvi, Talib Hussain, Farhan Alshammari, Hana Sonbol, Nabeel Ahmad, Syed Shah Mohammed Faiyaz, Mohammad Amjad Kamal, El-Sayed Khafagy, Afrasim Moin, Amr Selim Abu Lila, Nano-Conversion of Ineffective Cephalosporins into Potent One against Resistant Clinical Uro-Pathogens via Gold Nanoparticles, 2023, 13, 2079-4991, 475, 10.3390/nano13030475
    163. Willis Gwenzi, Athena Dana, Kar Yern Kam, Nor Azimah Mohd Zain, Tinoziva T. Simbanegavi, Piotr Rzymski, 2022, 9780323900515, 195, 10.1016/B978-0-323-90051-5.00018-3
    164. M. İhsan Han, Ufuk İnce, Miyase Gözde Gündüz, G. Pelin Coşkun, Kaan Birgül, Şengül Dilem Doğan, Ş. Güniz Küçükgüzel, Synthesis, antimicrobial evaluation and molecular modeling studies of novel thiosemicarbazides/semicarbazides derived from p-aminobenzoic acid, 2022, 1261, 00222860, 132907, 10.1016/j.molstruc.2022.132907
    165. Meron Moges‐Tsegaye, Manish Kumar, S. P. Pandey, Molla Fentie‐Tasew, Priya‐ Yadav, Garima Chouhan, Characterization and Antibacterial Activity of Plant‐Mediated Silver Oxide Nanoparticles, 2023, 407, 1022-1360, 2200084, 10.1002/masy.202200084
    166. Bidhayak Chakraborty, Raju Suresh Kumar, Abdulrahman I. Almansour, Pethaiah Gunasekaran, Sreenivasa Nayaka, Bioprospection and secondary metabolites profiling of marine Streptomyces levis strain KS46, 2022, 29, 1319562X, 667, 10.1016/j.sjbs.2021.11.055
    167. Soha Lotfy Elshaer, Mona I. Shaaban, Inhibition of Quorum Sensing and Virulence Factors of Pseudomonas aeruginosa by Biologically Synthesized Gold and Selenium Nanoparticles, 2021, 10, 2079-6382, 1461, 10.3390/antibiotics10121461
    168. Wenxi Lei, Anke Deckers, Charlotte Luchena, Anna Popova, Markus Reischl, Nicole Jung, Stefan Bräse, Thomas Schwartz, Ilga K. Krimmelbein, Lutz F. Tietze, Pavel A. Levkin, Droplet Microarray as a Powerful Platform for Seeking New Antibiotics Against Multidrug‐Resistant Bacteria, 2022, 6, 2701-0198, 2200166, 10.1002/adbi.202200166
    169. Sejal Mahalle, Shishir Bobate, Shweta Srivastava, Abhay Bajaj, Nishant A. Dafale, 2023, 9780323998666, 67, 10.1016/B978-0-323-99866-6.00005-2
    170. Anil Mathew Tharappel, Zhong Li, Yan Chun Zhu, Xiangmeng Wu, Sudha Chaturvedi, Qing-Yu Zhang, Hongmin Li, Calcimycin InhibitsCryptococcus neoformansIn VitroandIn Vivoby Targeting the Prp8 Intein Splicing, 2022, 8, 2373-8227, 1851, 10.1021/acsinfecdis.2c00137
    171. Jiale Dong, Wenzhi Wang, Wei Zhou, Siming Zhang, Meng Li, Ning Li, Guoqing Pan, Xianzuo Zhang, Jiaxiang Bai, Chen Zhu, Immunomodulatory biomaterials for implant-associated infections: from conventional to advanced therapeutic strategies, 2022, 26, 2055-7124, 10.1186/s40824-022-00326-x
    172. Manzoor Ahmad Mir, Shariqa Aisha, Hafsa Qadri, Ulfat Jan, Abrar Yousuf, Nusrat Jan, 2022, 9780323961271, 31, 10.1016/B978-0-323-96127-1.00013-9
    173. Rekha Yamini Kosuru, Amrita Roy, Soumen Bera, Antagonistic Roles of Gallates and Ascorbic Acid in Pyomelanin Biosynthesis of Pseudomonas aeruginosa Biofilms, 2021, 78, 0343-8651, 3843, 10.1007/s00284-021-02655-x
    174. Kamalya Karamova, Natalia Danilova, Svetlana Selivanovskaya, Polina Galitskaya, The Impact of Chicken Manure Biochar on Antibiotic Resistance Genes in Chicken Manure Composting, 2022, 12, 2077-0472, 1158, 10.3390/agriculture12081158
    175. Claudia Teso-Pérez, Manuel Martínez-Bueno, Juan Manuel Peralta-Sánchez, Eva Valdivia, Mercedes Maqueda, M. Esther Fárez-Vidal, Antonio M. Martín-Platero, Enterocin Cross-Resistance Mediated by ABC Transport Systems, 2021, 9, 2076-2607, 1411, 10.3390/microorganisms9071411
    176. Ting Li, Zhenlong Wang, Jianhua Guo, Cesar de la Fuente-Nunez, Jinquan Wang, Bing Han, Hui Tao, Jie Liu, Xiumin Wang, Bacterial resistance to antibacterial agents: Mechanisms, control strategies, and implications for global health, 2023, 860, 00489697, 160461, 10.1016/j.scitotenv.2022.160461
    177. Madeline M. Dekarske, Lewis Oscar Felix, Carlos Monteagudo Ortiz, Erika E. Csatary, Elefterios Mylonakis, William M. Wuest, nTZDpa (non-thiazolidinedione PPARγ partial agonist) derivatives retain antimicrobial activity without improving renal toxicity, 2022, 64, 0960894X, 128678, 10.1016/j.bmcl.2022.128678
    178. Nilesh Mhapankar, Aqsa Siddique, Gaurav Doshi, Angel Godad, Sandip Zine, Deciphering the Role of β-Lactamase Inhibitors, Membrane Permeabilizers and Efflux Pump Inhibitors as Emerging Targets in Antibiotic Resistance, 2022, 62, 0046-8991, 524, 10.1007/s12088-022-01045-6
    179. Ekaterina Nefedova, Nikolay Shkil, Roberto Luna Vazquez-Gomez, Diana Garibo, Alexey Pestryakov, Nina Bogdanchikova, AgNPs Targeting the Drug Resistance Problem of Staphylococcus aureus: Susceptibility to Antibiotics and Efflux Effect, 2022, 14, 1999-4923, 763, 10.3390/pharmaceutics14040763
    180. Joonhyeok Choi, Ahjin Jang, Young Kyung Yoon, Yangmee Kim, Development of Novel Peptides for the Antimicrobial Combination Therapy against Carbapenem-Resistant Acinetobacter baumannii Infection, 2021, 13, 1999-4923, 1800, 10.3390/pharmaceutics13111800
    181. O.N. Aguda, A. Lateef, Recent advances in functionalization of nanotextiles: A strategy to combat harmful microorganisms and emerging pathogens in the 21st century, 2022, 8, 24058440, e09761, 10.1016/j.heliyon.2022.e09761
    182. Hugo I. MacDermott-Opeskin, Vrinda Gupta, Megan L. O’Mara, Lipid-mediated antimicrobial resistance: a phantom menace or a new hope?, 2022, 14, 1867-2450, 145, 10.1007/s12551-021-00912-8
    183. Anthonymuthu Selvaraj, Alaguvel Valliammai, Shunmugiah Karutha Pandian, 2021, Chapter 16, 978-981-16-0690-8, 287, 10.1007/978-981-16-0691-5_16
    184. Lucia Maestre-Carballa, Vicente Navarro-López, Manuel Martinez-Garcia, A Resistome Roadmap: From the Human Body to Pristine Environments, 2022, 13, 1664-302X, 10.3389/fmicb.2022.858831
    185. Manish Pandey, Divya Ojha, Sakshi Bansal, Ambadas B. Rode, Geetanjali Chawla, From bench side to clinic: Potential and challenges of RNA vaccines and therapeutics in infectious diseases, 2021, 81, 00982997, 101003, 10.1016/j.mam.2021.101003
    186. Soumya Ghosh, Zainab T. Al-Sharify, Mathabatha Frank Maleka, Helen Onyeaka, Maleke Maleke, Alhaji Maolloum, Liliana Godoy, Maryam Meskini, Mina Rezghi Rami, Shabnam Ahmadi, Shahad Z. Al-Najjar, Noor T. Al-Sharify, Sura M. Ahmed, Mohammad Hadi Dehghani, Propolis efficacy on SARS-COV viruses: a review on antimicrobial activities and molecular simulations, 2022, 29, 0944-1344, 58628, 10.1007/s11356-022-21652-6
    187. Abhirami P. Sreekantan, Pooja P. Rajan, Minsa Mini, Praveen Kumar, Multidrug Efflux Pumps in Bacteria and Efflux Pump Inhibitors, 2022, 0, 2545-3149, 10.2478/am-2022-0009
    188. Hock Wei Tang, Pongsathon Phapugrangkul, Hafizuddin Mohamed Fauzi, Joo Shun Tan, Lactic Acid Bacteria Bacteriocin, an Antimicrobial Peptide Effective Against Multidrug Resistance: a Comprehensive Review, 2022, 28, 1573-3149, 10.1007/s10989-021-10317-6
    189. Esteban Charria-Girón, María C. Espinosa, Andrea Zapata-Montoya, María J. Méndez, Juan P. Caicedo, Andrés F. Dávalos, Beatriz E. Ferro, Aida M. Vasco-Palacios, Nelson H. Caicedo, Evaluation of the Antibacterial Activity of Crude Extracts Obtained From Cultivation of Native Endophytic Fungi Belonging to a Tropical Montane Rainforest in Colombia, 2021, 12, 1664-302X, 10.3389/fmicb.2021.716523
    190. Qinglai Meng, Shichao Liu, Jinhua Meng, Jiao Feng, Michael Mecklenburg, Lei Zhu, Lifang Zhou, Leif Bülow, Jianyi Liu, Dewei Song, Changxin Wu, Bin Xie, Rapid personalized AMR diagnostics using two-dimensional antibiotic resistance profiling strategy employing a thermometric NDM-1 biosensor, 2021, 193, 09565663, 113526, 10.1016/j.bios.2021.113526
    191. Abhishek Sharma, Vyoma Mistry, Vinay Kumar, Pragya Tiwari, Production of Effective Phyto-antimicrobials via Metabolic Engineering Strategies, 2022, 22, 15680266, 1068, 10.2174/1568026622666220310104645
    192. Leon G. Leanse, Carolina dos Anjos, Sana Mushtaq, Tianhong Dai, Antimicrobial blue light: A ‘Magic Bullet’ for the 21st century and beyond?, 2022, 180, 0169409X, 114057, 10.1016/j.addr.2021.114057
    193. Federica Verdirosa, Laurent Gavara, Laurent Sevaille, Giusy Tassone, Giuseppina Corsica, Alice Legru, Georges Feller, Giulia Chelini, Paola Sandra Mercuri, Silvia Tanfoni, Filomena Sannio, Manuela Benvenuti, Giulia Cerboni, Filomena De Luca, Ezeddine Bouajila, Yen Vo Hoang, Patricia Licznar‐Fajardo, Moreno Galleni, Cecilia Pozzi, Stefano Mangani, Jean‐Denis Docquier, Jean‐François Hernandez, 1,2,4‐Triazole‐3‐Thione Analogues with a 2‐Ethylbenzoic Acid at Position 4 as VIM‐type Metallo‐β‐Lactamase Inhibitors, 2022, 17, 1860-7179, 10.1002/cmdc.202100699
    194. Mohammed Kamil Hadi, Nedaa A. Hameed A. Rahim, Ahmed T. Sulaiman, Rusul Mohammed Hasan Ali, Synthesis, Characterization and Preliminary Antimicrobial Evaluation of New Schiff bases and Aminothiadiazole Derivatives of N- Substituted Phthalimide, 2022, 0974-360X, 3861, 10.52711/0974-360X.2022.00647
    195. Pan Fu, Hongmei Xu, Chunmei Jing, Jikui Deng, Hongmei Wang, Chunzhen Hua, Yinghu Chen, Xuejun Chen, Ting Zhang, Hong Zhang, Yiping Chen, Jinhong Yang, Aiwei Lin, Shifu Wang, Qing Cao, Xing Wang, Huiling Deng, Sancheng Cao, Jianhua Hao, Wei Gao, Yuanyuan Huang, Hui Yu, Chuanqing Wang, Jennifer Dien Bard, Bacterial Epidemiology and Antimicrobial Resistance Profiles in Children Reported by the ISPED Program in China, 2016 to 2020, 2021, 9, 2165-0497, 10.1128/Spectrum.00283-21
    196. Nader Ghassemi, Alexandre Poulhazan, Fabien Deligey, Frederic Mentink-Vigier, Isabelle Marcotte, Tuo Wang, Solid-State NMR Investigations of Extracellular Matrixes and Cell Walls of Algae, Bacteria, Fungi, and Plants, 2022, 122, 0009-2665, 10036, 10.1021/acs.chemrev.1c00669
    197. Adriana Aurelia Chiș, Luca Liviu Rus, Claudiu Morgovan, Anca Maria Arseniu, Adina Frum, Andreea Loredana Vonica-Țincu, Felicia Gabriela Gligor, Maria Lucia Mureșan, Carmen Maximiliana Dobrea, Microbial Resistance to Antibiotics and Effective Antibiotherapy, 2022, 10, 2227-9059, 1121, 10.3390/biomedicines10051121
    198. P. A. Nazarov, A. M. Kuznetsova, M. V. Karakozova, Multidrug Resistance Pumps as a Keystone of Bacterial Resistance, 2022, 77, 0096-3925, 193, 10.3103/S009639252204006X
    199. M. İhsan Han, Ufuk Ince, Miyase Gözde Gündüz, Ş. Güniz Küçükgüzel, Synthesis, Antimicrobial Evaluation, and Molecular Modeling Studies of New Thiosemicarbazide‐Triazole Hybrid Derivatives of ( S )‐Naproxen , 2022, 19, 1612-1872, 10.1002/cbdv.202100900
    200. Humaira Shah, Sher Zaman Safi, 2021, Chapter 7, 978-3-030-76319-0, 197, 10.1007/978-3-030-76320-6_7
    201. Chya Vannakovida, Kannika Na Lampang, Phongsakorn Chuammitri, Veerasak Punyapornwithaya, Khwanchai Kreausukon, Raktham Mektrirat, Comparative occurrence and antibiogram of extended-spectrum β-lactamase-producing Escherichia coli among post-weaned calves and lactating cows from smallholder dairy farms in a parallel animal husbandry area, 2021, 22310916, 1311, 10.14202/vetworld.2021.1311-1318
    202. Zhengjun Cai, Bingyi Chen, Ying Yu, Junsong Guo, Zhiteng Luo, Bao Cheng, Jun Xu, Qiong Gu, Huihao Zhou, Design, Synthesis, and Proof-of-Concept of Triple-Site Inhibitors against Aminoacyl-tRNA Synthetases, 2022, 65, 0022-2623, 5800, 10.1021/acs.jmedchem.2c00134
    203. Homesh Yadav, Anand Mahalvar, Madhulika Pradhan, Krishna Yadav, Kantrol Kumar Sahu, Rahul Yadav, Exploring the potential of phytochemicals and nanomaterial: A boon to antimicrobial treatment, 2023, 17, 25900986, 100151, 10.1016/j.medidd.2023.100151
    204. Kuldeep Soni, Km Jyoti, Harish Chandra, Ram Chandra, Bacterial antibiotic resistance in municipal wastewater treatment plant; mechanism and its impacts on human health and economy, 2022, 19, 2589014X, 101080, 10.1016/j.biteb.2022.101080
    205. S. Shivaji, 2022, Chapter 4, 978-981-19-1753-0, 101, 10.1007/978-981-19-1754-7_4
    206. Francisca A. E. de de Brito, Ana P. P. de de Freitas, Maristela S. Nascimento, Multidrug-Resistant Biofilms (MDR): Main Mechanisms of Tolerance and Resistance in the Food Supply Chain, 2022, 11, 2076-0817, 1416, 10.3390/pathogens11121416
    207. Paul Ochieng Nyalo, George Isanda Omwenga, Mathew Piero Ngugi, Olufunmiso Olusola Olajuyigbe, GC-MS Analysis, Antibacterial and Antioxidant Potential of Ethyl Acetate Leaf Extract of Senna singueana (Delile) Grown in Kenya, 2022, 2022, 1741-4288, 1, 10.1155/2022/5436476
    208. Hisham N. Altayb, Nijood F. Yassin, Salman Hosawi, Imran Kazmi, In-vitro and in-silico antibacterial activity of Azadirachta indica (Neem), methanolic extract, and identification of Beta.d-Mannofuranoside as a promising antibacterial agent, 2022, 22, 1471-2229, 10.1186/s12870-022-03650-5
    209. Lucrezia Bottalico, Ioannis Alexandros Charitos, Maria Assunta Potenza, Monica Montagnani, Luigi Santacroce, The war against bacteria, from the past to present and beyond, 2022, 20, 1478-7210, 681, 10.1080/14787210.2022.2013809
    210. Oana Săndulescu, Ioana Viziteu, Anca Streinu-Cercel, Victor Daniel Miron, Liliana Lucia Preoțescu, Narcis Chirca, Simona Elena Albu, Mihai Craiu, Adrian Streinu-Cercel, Novel Antimicrobials, Drug Delivery Systems and Antivirulence Targets in the Pipeline—From Bench to Bedside, 2022, 12, 2076-3417, 11615, 10.3390/app122211615
    211. Yared Abate Getahun, Destaw Asfaw Ali, Bihonegn Wodajnew Taye, Yismaw Alemie Alemayehu, Multidrug-Resistant Microbial Therapy Using Antimicrobial Peptides and the CRISPR/Cas9 System, 2022, Volume 13, 2230-2034, 173, 10.2147/VMRR.S366533
    212. Yongzhi Chen, Hongxia Li, Jiayong Liu, Rongcui Zhong, Haizhou Li, Shanfang Fang, Shouping Liu, Shuimu Lin, Synthesis and biological evaluation of indole-based peptidomimetics as antibacterial agents against Gram-positive bacteria, 2021, 226, 02235234, 113813, 10.1016/j.ejmech.2021.113813
    213. Elena Circella, Gaia Casalino, Francesco D’Amico, Nicola Pugliese, Michela Maria Dimuccio, Antonio Camarda, Giancarlo Bozzo, In Vitro Antimicrobial Effectiveness Tests Using Garlic (Allium sativum) against Salmonella enterica Subspecies enterica Serovar Enteritidis, 2022, 11, 2079-6382, 1481, 10.3390/antibiotics11111481
    214. Sabine Ziesemer, Sven-Olaf Kuhn, Anke Hahnenkamp, Manuela Gerber, Elvira Lutjanov, Matthias Gruendling, Jan-Peter Hildebrandt, Staphylococcus aureus Alpha-Toxin in Deep Tracheal Aspirates—Preliminary Evidence for Its Presence in the Lungs of Sepsis Patients, 2022, 14, 2072-6651, 450, 10.3390/toxins14070450
    215. James Kiamba Mailu, Joseph Mwanzia Nguta, James Mucunu Mbaria, Mitchel Otieno Okumu, Qualitative and quantitative phytochemical composition, antimicrobial activity, and brine shrimp cytotoxicity of different solvent extracts of Acanthus polystachyus, Keetia gueinzii, and Rhynchosia elegans, 2021, 7, 2314-7253, 10.1186/s43094-021-00342-z
    216. Miloš S. Jovanović, Nemanja Krgović, Jelena Živković, Tatjana Stević, Gordana Zdunić, Dubravka Bigović, Katarina Šavikin, Ultrasound-Assisted Natural Deep Eutectic Solvents Extraction of Bilberry Anthocyanins: Optimization, Bioactivities, and Storage Stability, 2022, 11, 2223-7747, 2680, 10.3390/plants11202680
    217. Tal Shprung, Naiem Ahmad Wani, Miriam Wilmes, Maria Luisa Mangoni, Arkadi Bitler, Eyal Shimoni, Hans-Georg Sahl, Yechiel Shai, Opposing Effects of PhoPQ and PmrAB on the Properties of Salmonella enterica serovar Typhimurium: Implications on Resistance to Antimicrobial Peptides, 2021, 60, 0006-2960, 2943, 10.1021/acs.biochem.1c00287
    218. Willis Gwenzi, Margaret Siyawamwaya, 2022, 9780323900515, 307, 10.1016/B978-0-323-90051-5.00001-8
    219. Pavel Nazarov, Marina Kuznetsova, Marina Karakozova, Multidrug resistance pumps as a keystone of bacterial resistance, 2023, 77, 0137-0952, 215, 10.55959/MSU0137-0952-16-2022-77-4-215-223
    220. Kushal Kumar Bansal, Rajat Goyal, Archana Sharma, Prabodh Chander Sharma, Ramesh K. Goyal, 2023, Chapter 16, 978-981-19-5398-9, 347, 10.1007/978-981-19-5399-6_16
    221. Kinga Paruch, Anna Biernasiuk, Dmytro Khylyuk, Roman Paduch, Monika Wujec, Łukasz Popiołek, Synthesis, Biological Activity and Molecular Docking Studies of Novel Nicotinic Acid Derivatives, 2022, 23, 1422-0067, 2823, 10.3390/ijms23052823
    222. Lucas Böttcher, Hans Gersbach, A Refunding Scheme to Incentivize Narrow-Spectrum Antibiotic Development, 2022, 84, 0092-8240, 10.1007/s11538-022-01013-7
    223. Lulu Cui, Xiaonan Zhao, Ruibo Li, Yu Han, Guijuan Hao, Guisheng Wang, Shuhong Sun, Companion Animals as Potential Reservoirs of Antibiotic Resistant Diarrheagenic Escherichia coli in Shandong, China, 2022, 11, 2079-6382, 828, 10.3390/antibiotics11060828
    224. Zafar Iqbal, Jian Sun, Haikang Yang, Jingwen Ji, Lili He, Lijuan Zhai, Jinbo Ji, Pengjuan Zhou, Dong Tang, Yangxiu Mu, Lin Wang, Zhixiang Yang, Recent Developments to Cope the Antibacterial Resistance via β-Lactamase Inhibition, 2022, 27, 1420-3049, 3832, 10.3390/molecules27123832
    225. Rahul Chaudhari, Kanika Singh, Prashant Kodgire, Biochemical and molecular mechanisms of antibiotic resistance in Salmonella spp., 2023, 174, 09232508, 103985, 10.1016/j.resmic.2022.103985
    226. Mousumi Saha, Agniswar Sarkar, Review on Multiple Facets of Drug Resistance: A Rising Challenge in the 21st Century, 2021, 11, 2039-4713, 197, 10.3390/jox11040013
    227. Patrick Di Martino, Antimicrobial agents and microbial ecology, 2022, 8, 2471-1888, 1, 10.3934/microbiol.2022001
    228. Katia Iskandar, Jayaseelan Murugaiyan, Dalal Hammoudi Halat, Said El Hage, Vindana Chibabhai, Saranya Adukkadukkam, Christine Roques, Laurent Molinier, Pascale Salameh, Maarten Van Dongen, Antibiotic Discovery and Resistance: The Chase and the Race, 2022, 11, 2079-6382, 182, 10.3390/antibiotics11020182
    229. Alem Getaneh, Getnet Ayalew, Debaka Belete, Mohabaw Jemal, Sirak Biset, Bacterial Etiologies of Ear Infection and Their Antimicrobial Susceptibility Pattern at the University of Gondar Comprehensive Specialized Hospital, Gondar, Northwest Ethiopia: A Six-Year Retrospective Study, 2021, Volume 14, 1178-6973, 4313, 10.2147/IDR.S332348
    230. E. S. Obukhova, A. M. Rozhina, V. P. Voronin, P. Yu. Dgebuadze, S. A. Murzina, Antimicrobial Activity of Lipid Extracts of Echinoderms in the Nhatrang Bay (South China Sea), 2022, 503, 1607-6729, 59, 10.1134/S1607672922020119
    231. Amy V. Thees, Kathryn M. Pietrosimone, Clare K. Melchiorre, Jeremiah N. Marden, Joerg Graf, Michael A. Lynes, Michele Maltz-Matyschsyk, PmtA Regulates Pyocyanin Expression and Biofilm Formation in Pseudomonas aeruginosa, 2021, 12, 1664-302X, 10.3389/fmicb.2021.789765
    232. Rama Alkhawaldeh, Rana Abu Farha, Khawla Abu Hammour, Eman Alefishat, The Appropriateness of Empiric Treatment of Urinary Tract Infections in a Tertiary Teaching Hospital in Joran: A Cross-Sectional Study, 2022, 11, 2079-6382, 629, 10.3390/antibiotics11050629
    233. Radu NARTITA, Daniela IONITA, Ioana DEMETRESCU, Marius ENACHESCU, SELECTING A SURFACE PREPARATION TREATMENT ON A MEDIUM ENTROPY Ti-Zr-Ta-Ag ALLOY, 2021, 6, 25374761, 23, 10.56082/annalsarsciphyschem.2021.2.23
    234. Armel J. Seukep, Nembo E. Nembu, Helene G. Mbuntcha, Victor Kuete, 2023, 106, 9780443158162, 21, 10.1016/bs.abr.2022.08.002
    235. Lewis D. Blackman, Tara D. Sutherland, Paul J. De Barro, Helmut Thissen, Katherine E. S. Locock, Addressing a future pandemic: how can non-biological complex drugs prepare us for antimicrobial resistance threats?, 2022, 9, 2051-6347, 2076, 10.1039/D2MH00254J
    236. Fatimah A. Alqahtani, Hibah I. Almustafa, Reem S. Alshehri, Sumayah O. Alanazi, Ashraf Y. Khalifa, Combating Antibiotic Resistance in Bacteria: The Development of Novel Therapeutic Strategies, 2022, 16, 09737510, 2201, 10.22207/JPAM.16.4.01
    237. Julia Sebastian, Jhancy Mary Samuel, Anticancer potential of poly(2-aminobenzoic acid)-blend-Aloe vera against the human breast cancer cell line MDA-MB-231, 2023, 38, 0883-9115, 58, 10.1177/08839115221138772
    238. Wei Liu, Yan Xu, Vera I. Slaveykova, Oxidative stress induced by sub-lethal exposure to copper as a mediator in development of bacterial resistance to antibiotics, 2023, 860, 00489697, 160516, 10.1016/j.scitotenv.2022.160516
    239. Aben Ovung, Jhimli Bhattacharyya, 2023, 9780323857307, 479, 10.1016/B978-0-323-85730-7.00067-9
    240. Venkataramana Kandi, Anusha Vundecode, Tanmai Reddy Godalwar, Sindhusree Dasari, Sabitha Vadakedath, Vikram Godishala, The Current Perspectives in Clinical Research: Computer-Assisted Drug Designing, Ethics, and Good Clinical Practice, 2022, 5, 26214814, 161, 10.33084/bjop.v5i2.3013
    241. Michaela Kember, Shannen Grandy, Renee Raudonis, Zhenyu Cheng, Non-Canonical Host Intracellular Niche Links to New Antimicrobial Resistance Mechanism, 2022, 11, 2076-0817, 220, 10.3390/pathogens11020220
    242. Andrea-Sarahí Balderrama-González, Hilda-Amelia Piñón-Castillo, Claudia-Adriana Ramírez-Valdespino, Linda-Lucila Landeros-Martínez, Erasmo Orrantia-Borunda, Hilda-Esperanza Esparza-Ponce, Antimicrobial Resistance and Inorganic Nanoparticles, 2021, 22, 1422-0067, 12890, 10.3390/ijms222312890
    243. I. N. Lykov, I. E. Galemina, N. S. Zaitseva, Y. A. Kapinus, 2022, 2467, 0094-243X, 070045, 10.1063/5.0093319
    244. Meenal Chawla, Jyoti Verma, Rashi Gupta, Bhabatosh Das, Antibiotic Potentiators Against Multidrug-Resistant Bacteria: Discovery, Development, and Clinical Relevance, 2022, 13, 1664-302X, 10.3389/fmicb.2022.887251
    245. Christoph Grohmann, Danushka S. Marapana, Gregor Ebert, Targeted protein degradation at the host–pathogen interface, 2022, 117, 0950-382X, 670, 10.1111/mmi.14849
    246. Md Sohel, Moushumi Akter, Md. Fahmid Hasan, Shahin Mahmud, Mohammod Johirul Islam, Ashekul Islam, Khairul Islam, Abdullah Al Mamun, María B. Pérez-Gago, Antibiotics Resistance Pattern of Food-Borne Bacteria Isolated from Ice Cream in Bangladesh: A Multidisciplinary Study, 2022, 2022, 1745-4557, 1, 10.1155/2022/5016795
    247. Denis N. Chausov, Veronika V. Smirnova, Dmitriy E. Burmistrov, Ruslan M. Sarimov, Alexander D. Kurilov, Maxim E. Astashev, Oleg V. Uvarov, Mikhail V. Dubinin, Valery A. Kozlov, Maria V. Vedunova, Maksim B. Rebezov, Anastasia A. Semenova, Andrey B. Lisitsyn, Sergey V. Gudkov, Synthesis of a Novel, Biocompatible and Bacteriostatic Borosiloxane Composition with Silver Oxide Nanoparticles, 2022, 15, 1996-1944, 527, 10.3390/ma15020527
    248. Munira Momin, Varsha Mishra, Sankalp Gharat, Abdelwahab Omri, Recent advancements in cellulose-based biomaterials for management of infected wounds, 2021, 18, 1742-5247, 1741, 10.1080/17425247.2021.1989407
    249. Abhirami P. Sreekantan, Pooja P. Rajan, Minsa Mini, Praveen Kumar, Multidrug Efflux Pumps in Bacteria and Efflux Pump Inhibitors, 2022, 61, 2545-3149, 105, 10.2478/am-2022-009
    250. Mandeep Singh Dhillon, Aman Hooda, Thomas Fintan Moriarty, Siddhartha Sharma, Biofilms—What Should the Orthopedic Surgeon know?, 2023, 57, 0019-5413, 44, 10.1007/s43465-022-00782-6
    251. Kah Wei Chin, Hui Ling Michelle Tiong, Vijitra Luang-In, Nyuk Ling Ma, An overview of antibiotic and antibiotic resistance, 2023, 11, 26667657, 100331, 10.1016/j.envadv.2022.100331
    252. Arpita Roy, Shreeja Datta, Ritika Luthra, Muhammad Arshad Khan, Amel Gacem, Mohd Abul Hasan, Krishna Kumar Yadav, Yongtae Ahn, Byong-Hun Jeon, Green synthesis of metalloid nanoparticles and its biological applications: A review, 2022, 10, 2296-2646, 10.3389/fchem.2022.994724
    253. Paolo Gaibani, Linda Bussini, Stefano Amadesi, Michele Bartoletti, Federica Bovo, Tiziana Lazzarotto, Pierluigi Viale, Simone Ambretti, Successful Treatment of Bloodstream Infection due to a KPC-Producing Klebsiella Pneumoniae Resistant to Imipenem/Relebactam in a Hematological Patient, 2022, 10, 2076-2607, 778, 10.3390/microorganisms10040778
    254. Shakil Ahmed Polash, Linda Varadi, Ravi Shukla, 2022, Chapter 7, 978-3-031-10219-6, 237, 10.1007/978-3-031-10220-2_7
    255. Anis Karuniawati, Merry Ambarwulan, Selvi Nafisa Shahab, Yefta Moenadjat, Toar J. M. Lalisang, Neneng Dewi Kurniati, Vicky Sumarki Budipramana, Tomy Lesmana, Iva Puspitasari, Erik Prabowo, Dwi Putranti Chitra Sasmitasari, Dian Oktavianti Putri, Amrilmaen Badawi, Ceftolozane/Tazobactam In-Vitro Activity against Clinical Isolates from Complicated Intra-Abdominal Infection Patients in Three Indonesian Referral Hospitals, 2022, 12, 2079-6382, 52, 10.3390/antibiotics12010052
    256. Graham Cope, The invisible pandemic: Antimicrobial resistance, 2021, 2021, 1747-9800, 14, 10.12968/indn.2021.5.14
    257. Ahmad Ibrahim Al-Mustapha, Ibrahim Adisa Raufu, Oluwaseun Adeolu Ogundijo, Ismail Ayoade Odetokun, Ananda Tiwari, Michael S.M. Brouwer, Victoria Adetunji, Annamari Heikinheimo, Antibiotic resistance genes, mobile elements, virulence genes, and phages in cultivated ESBL-producing Escherichia coli of poultry origin in Kwara State, North Central Nigeria, 2023, 389, 01681605, 110086, 10.1016/j.ijfoodmicro.2023.110086
    258. Hafsa Qadri, Abdul Haseeb Shah, Syed Mudasir Ahmad, Bader Alshehri, Abdullah Almilaibary, Manzoor Ahmad Mir, Natural products and their semi-synthetic derivatives against antimicrobial-resistant human pathogenic bacteria and fungi, 2022, 29, 1319562X, 103376, 10.1016/j.sjbs.2022.103376
    259. M. N. Aditya, S. Aishwarya, Mrigank Sharma, K. Sivagami, S. Karthika, Samarshi Chakraborty, 2022, Chapter 8, 978-981-19-1846-9, 177, 10.1007/978-981-19-1847-6_8
    260. Kalyarat Kaewnirat, Surachat Chuaychob, Arnon Chukamnerd, Rattanaruji Pomwised, Komwit Surachat, May Thet Paing Phoo, Chanitnart Phaothong, Chanida Sakunrang, Kongpop Jeenkeawpiam, Thanaporn Hortiwakul, Boonsri Charernmak, Sarunyou Chusri, In vitro Synergistic Activities of Fosfomycin in Combination with Other Antimicrobial Agents Against Carbapenem-Resistant Escherichia coli Harboring blaNDM-1 on the IncN2 Plasmid and a Study of the Genomic Characteristics of These Pathogens, 2022, Volume 15, 1178-6973, 1777, 10.2147/IDR.S357965
    261. Iqbal Ahmad, Shirjeel Ahmad Siddiqui, Kirti Suman, Faizan Abul Qais, 2022, Chapter 15, 978-981-16-9096-9, 237, 10.1007/978-981-16-9097-6_15
    262. Atul N. Chandu, Samsher Singh, Santosh Kumar Rath, 2022, Chapter 13, 978-3-030-84125-6, 315, 10.1007/978-3-030-84126-3_13
    263. Hams M. A. Mohamed, Sulaiman Mohammed Alnasser, Hanan H. Abd-Elhafeez, Meshal Alotaibi, Gaber El-Saber Batiha, Waleed Younis, Detection of β-Lactamase Resistance and Biofilm Genes in Pseudomonas Species Isolated from Chickens, 2022, 10, 2076-2607, 1975, 10.3390/microorganisms10101975
    264. Franciele da Silva Bruckmann, Franciane Batista Nunes, Theodoro da Rosa Salles, Camila Franco, Francine Carla Cadoná, Cristiano Rodrigo Bohn Rhoden, Biological Applications of Silica-Based Nanoparticles, 2022, 8, 2312-7481, 131, 10.3390/magnetochemistry8100131
    265. Marcin Wysocki, Beata Czarczynska‐Goslinska, Daniel Ziental, Maciej Michalak, Emre Güzel, Lukasz Sobotta, Excited State and Reactive Oxygen Species against Cancer and Pathogens: A Review on Sonodynamic and Sono‐Photodynamic Therapy, 2022, 17, 1860-7179, 10.1002/cmdc.202200185
    266. Rabia Javed, Noor ul Ain, Ayesha Gul, Muhammad Arslan Ahmad, Weihong Guo, Qiang Ao, Shen Tian, Diverse biotechnological applications of multifunctional titanium dioxide nanoparticles: An up‐to‐date review, 2022, 16, 1751-8741, 171, 10.1049/nbt2.12085
    267. Megan Keller, Xiang Han, Tobias Dörr, George O'Toole, Disrupting Central Carbon Metabolism Increases β-Lactam Antibiotic Susceptibility in Vibrio cholerae, 2023, 0021-9193, 10.1128/jb.00476-22
    268. Urška Rozman, Darja Duh, Mojca Cimerman, Sonja Šostar Turk, Hygiene of Medical Devices and Minimum Inhibitory Concentrations for Alcohol-Based and QAC Disinfectants among Isolates from Physical Therapy Departments, 2022, 19, 1660-4601, 14690, 10.3390/ijerph192214690
    269. Senzosenkosi Surprise Mkhize, Ofentse Jacob Pooe, Sandile Khoza, Ishmael Nkoana Mongalo, Rene Khan, Mthokozisi Blessing Cedric Simelane, Characterization and Biological Evaluation of Zinc Oxide Nanoparticles Synthesized from Pleurotus ostreatus Mushroom, 2022, 12, 2076-3417, 8563, 10.3390/app12178563
    270. M. Bermúdez-Capdevila, B.R.H. Cervantes-Huamán, J.J. Rodríguez-Jerez, C. Ripolles-Avila, Repeated sub-inhibitory doses of cassia essential oil do not increase the tolerance pattern in Listeria monocytogenes cells, 2022, 165, 00236438, 113681, 10.1016/j.lwt.2022.113681
    271. Hande Mumcu, Emine Tuğçe Sarac Cebeci, Meryem Menekse Kılıc, Anıl Cebeci, Yagmur Gunes, Ilker Karacan, Merve Oztug, Nurgul Balci, Nevin Gul Karaguler, Identification of phenotypic and genotypic properties and cold adaptive mechanisms of novel freeze–thaw stress-resistant strain Pseudomonas mandelii from Antarctica, 2023, 0722-4060, 10.1007/s00300-023-03114-y
    272. Rasha Y. Abd Elghaffar, Basma H. Amin, Amr H. Hashem, Amira E. Sehim, Promising Endophytic Alternaria alternata from Leaves of Ziziphus spina-christi: Phytochemical Analyses, Antimicrobial and Antioxidant Activities, 2022, 194, 0273-2289, 3984, 10.1007/s12010-022-03959-9
    273. Gregory A. Ballash, Lohendy Munoz-Vargas, Amy Albers, Patricia M. Dennis, Jeffrey T. LeJeune, Dixie F. Mollenkopf, Thomas E. Wittum, Temporal Trends in Antimicrobial Resistance of Fecal Escherichia coli from Deer, 2021, 18, 1612-9202, 288, 10.1007/s10393-021-01559-3
    274. Giuseppe Mancuso, Angelina Midiri, Elisabetta Gerace, Carmelo Biondo, Bacterial Antibiotic Resistance: The Most Critical Pathogens, 2021, 10, 2076-0817, 1310, 10.3390/pathogens10101310
    275. Urmilesh Singh, Prabhakar Singh, Ankit Kumar Singh, Sweksha Singh, Deepak Kumar, Sushant Kumar Shrivastava, Ravi Kumar Asthana, In silico and in vitro evaluation of extract derived from Dunaliella salina, a halotolerant microalga for its antifungal and antibacterial activity, 2022, 0739-1102, 1, 10.1080/07391102.2022.2115556
    276. Laurent Gavara, Federica Verdirosa, Laurent Sevaille, Alice Legru, Giuseppina Corsica, Lionel Nauton, Paola Sandra Mercuri, Filomena Sannio, Filomena De Luca, Margot Hadjadj, Giulia Cerboni, Yen Vo Hoang, Patricia Licznar-Fajardo, Moreno Galleni, Jean-Denis Docquier, Jean-François Hernandez, 1,2,4-Triazole-3-thione analogues with an arylakyl group at position 4 as metallo-β-lactamase inhibitors, 2022, 72, 09680896, 116964, 10.1016/j.bmc.2022.116964
    277. Abdi Wira Septama, Eldiza Puji Rahmi, Lucia Dwi Antika, Rizna Triana Dewi, Amit Jaisi, A synergy interaction of artocarpin and tetracycline against Pseudomonas aeruginosa and its mechanism of action on membrane permeability, 2022, 77, 0939-5075, 57, 10.1515/znc-2021-0076
    278. Mohamed Azab El-Liethy, Mohamed Mahmoud, Akebe Luther King Abia, Khalid Z. Elwakeel, 2023, Chapter 12, 978-3-031-23795-9, 275, 10.1007/978-3-031-23796-6_12
    279. Tarek Abou Elmaaty, Khaled Sayed-Ahmed, Md. Ibrahim H. Mondal, 2022, 9780323904773, 199, 10.1016/B978-0-323-90477-3.00004-3
    280. Alberto Aragón-Muriel, Viviana Reyes-Márquez, Farrah Cañavera-Buelvas, Jesús R. Parra-Unda, Fernando Cuenú-Cabezas, Dorian Polo-Cerón, Raúl Colorado-Peralta, Galdina V. Suárez-Moreno, Bethsy Adriana Aguilar-Castillo, David Morales-Morales, Pincer Complexes Derived from Tridentate Schiff Bases for Their Use as Antimicrobial Metallopharmaceuticals, 2022, 10, 2304-6740, 134, 10.3390/inorganics10090134
    281. Caio Vaz Rimoli, Rafael de Oliveira Pedro, Paulo B. Miranda, Interaction mechanism of chitosan oligomers in pure water with cell membrane models studied by SFG vibrational spectroscopy, 2022, 219, 09277765, 112782, 10.1016/j.colsurfb.2022.112782
    282. Daria V. Evsyutina, Tatiana A. Semashko, Maria A. Galyamina, Sergey I. Kovalchuk, Rustam H. Ziganshin, Valentina G. Ladygina, Gleb Y. Fisunov, Olga V. Pobeguts, Molecular Basis of the Slow Growth of Mycoplasma hominis on Different Energy Sources, 2022, 12, 2235-2988, 10.3389/fcimb.2022.918557
    283. Hakan Ayyıldız, Seda Arslan Tuncer, Is it possible to determine antibiotic resistance of E. coli by analyzing laboratory data with machine learning?, 2021, 46, 1303-829X, 623, 10.1515/tjb-2021-0040
    284. Pownraj Brindangnanam, Ajit Ramesh Sawant, K. Prashanth, Mohane Selvaraj Coumar, Bacterial effluxome as a barrier against antimicrobial agents: structural biology aspects and drug targeting, 2022, 10, 2168-8370, 10.1080/21688370.2021.2013695
    285. Gulshan Bandre, Nandkishor Bankar, Jagadish Makade, Dattu Hawale, Bacteria evade antibiotics with silent mutations to survive, 2023, 23523689, 1, 10.3233/JCB-230086
    286. Ashagrachew Tewabe, Tesfa Marew, Gebremariam Birhanu, The contribution of nano‐based strategies in overcoming ceftriaxone resistance: a literature review, 2021, 9, 2052-1707, 10.1002/prp2.849
    287. Ignacio Lizana, Gina Pecchi, Elena A. Uribe, Eduardo J. Delgado, A rationale for the unlike potency of avibactam and ETX2514 against OXA-24 β-lactamase, 2022, 727, 00039861, 109343, 10.1016/j.abb.2022.109343
    288. Atnafu Bushen, Eyob Tekalign, Mengistu Abayneh, Drug- and Multidrug-Resistance Pattern of Enterobacteriaceae Isolated from Droppings of Healthy Chickens on a Poultry Farm in Southwest Ethiopia, 2021, Volume 14, 1178-6973, 2051, 10.2147/IDR.S312185
    289. Piotr Roszkowski, Jolanta Szymańska-Majchrzak, Michał Koliński, Sebastian Kmiecik, Małgorzata Wrzosek, Marta Struga, Daniel Szulczyk, Novel Tetrazole-Based Antimicrobial Agents Targeting Clinical Bacteria Strains: Exploring the Inhibition of Staphylococcus aureus DNA Topoisomerase IV and Gyrase, 2021, 23, 1422-0067, 378, 10.3390/ijms23010378
    290. Ali Kedir Elale, Aseer Manilal, Dagimawie Tadesse, Mohammed Seid, Amanuel Dubale, Magnitude and associated factors of bacterial urinary tract infections among paediatric patients in Arba Minch, southern Ethiopia, 2023, 51, 20522975, 101083, 10.1016/j.nmni.2023.101083
    291. Kassidy O'Malley, Patrick J. McNamara, Walter M. McDonald, Seasonal and spatial patterns differ between intracellular and extracellular antibiotic resistance genes in urban stormwater runoff, 2022, 1, 2754-7000, 380, 10.1039/D2VA00065B
    292. Foroogh Neamati, Mansoor Kodori, Mohammad Mehdi Feizabadi, Mohammad Abavisani, Mohammad Barani, Mansoor Khaledi, Masoud Moghadaszadeh, Mohammad Karim Azadbakht, Mojdeh Zeinali, Hadis Fathizadeh, Bismuth nanoparticles against microbial infections, 2023, 1743-5889, 10.2217/nnm-2022-0153
    293. Rachael Nkechi Eboma, Clement Olusola Ogidi, Bamidele Juliet Akinyele, Bioactive compounds and antimicrobial activity of extracts from fermented African locust bean (Parkia biglobosa) against pathogenic microorganisms, 2021, 4, 2588-1582, 343, 10.51745/najfnr.4.8.343-350
    294. Carla Maria Batista Ferreira Pires, 2022, chapter 10, 9781668451137, 184, 10.4018/978-1-6684-5113-7.ch010
    295. Fazlurrahman Khan, Priyanka Singh, Abhayraj S. Joshi, Nazia Tabassum, Geum-Jae Jeong, Nilushi Indika Bamunuarachchi, Ivan Mijakovic, Young-Mog Kim, Multiple potential strategies for the application of nisin and derivatives, 2022, 1040-841X, 1, 10.1080/1040841X.2022.2112650
    296. Anirudh Singh, Ayush Amod, Priyanshu Pandey, Pranay Bose, M Shivapriya Pingali, Saurabh Shivalkar, Pritish Kumar Varadwaj, Amaresh Kumar Sahoo, Sintu Kumar Samanta, Bacterial biofilm infections, their resistance to antibiotics therapy and current treatment strategies, 2022, 17, 1748-6041, 022003, 10.1088/1748-605X/ac50f6
    297. Sheida Beiranvand, Abbas Doosti, Seyed Abbas Mirzaei, Putative novel B-cell vaccine candidates identified by reverse vaccinology and genomics approaches to control Acinetobacter baumannii serotypes, 2021, 96, 15671348, 105138, 10.1016/j.meegid.2021.105138
    298. Nicholas Cedraro, Rolando Cannalire, Andrea Astolfi, Gianmarco Mangiaterra, Tommaso Felicetti, Salvatore Vaiasicca, Giada Cernicchi, Serena Massari, Giuseppe Manfroni, Oriana Tabarrini, Violetta Cecchetti, Maria Letizia Barreca, Francesca Biavasco, Stefano Sabatini, From Quinoline to Quinazoline‐Based S. aureus NorA Efflux Pump Inhibitors by Coupling a Focused Scaffold Hopping Approach and a Pharmacophore Search , 2021, 16, 1860-7179, 3044, 10.1002/cmdc.202100282
    299. Fatemeh Karkeh-Abadi, Hossein Safardoust-Hojaghan, Layth S. Jasim, Waleed K. Abdulsahib, Makarim A. Mahdi, Masoud Salavati-Niasari, Synthesis and characterization of Cu2Zn1.75Mo3O12 ceramic nanoparticles with excellent antibacterial property, 2022, 356, 01677322, 119035, 10.1016/j.molliq.2022.119035
    300. Jing Kong, Jingui Zhang, Ming Shen, Sufen Zhang, Peipei Shen, Chuanli Ren, Preparation of manganese(II) oxide doped zinc oxide nanocomposites with improved antibacterial activity via ROS, 2022, 806, 00092614, 140053, 10.1016/j.cplett.2022.140053
    301. Yu. A. Krutyakov, A. G. Khina, Bacterial Resistance to Nanosilver: Molecular Mechanisms and Possible Ways to Overcome them, 2022, 58, 0003-6838, 493, 10.1134/S0003683822050106
    302. Onkar Singh, Wen-Lian Hsu, Emily Chia-Yu Su, Co-AMPpred for in silico-aided predictions of antimicrobial peptides by integrating composition-based features, 2021, 22, 1471-2105, 10.1186/s12859-021-04305-2
    303. Marta Makowska, Paulina Kosikowska-Adamus, Magdalena Zdrowowicz, Dariusz Wyrzykowski, Adam Prahl, Emilia Sikorska, Lipidation of Naturally Occurring α-Helical Antimicrobial Peptides as a Promising Strategy for Drug Design, 2023, 24, 1422-0067, 3951, 10.3390/ijms24043951
    304. Sunday Temitope Akinwotu, Oluwaseun Fapohunda, War against antimicrobial resistance, 2020, 8, 2373437X, 148, 10.15406/jmen.2020.08.00300
    305. Sahadevan Seena, Akhilesh Rai, 2023, Chapter 9, 978-981-19-9166-0, 221, 10.1007/978-981-19-9167-7_9
    306. Feng Huang, Yanting Hong, Chunhao Mo, Peier Huang, Xindi Liao, Yiwen Yang, Removal of antibiotic resistance genes during livestock wastewater treatment processes: Review and prospects, 2022, 9, 2297-1769, 10.3389/fvets.2022.1054316
    307. Meghashyama Prabhakara Bhat, Sreenivasa Nayaka, Cave Soil Streptomyces sp. strain YC69 Antagonistic to Chilli Fungal Pathogens Exhibits In Vitro Anticancer Activity Against Human Cervical Cancer Cells, 2023, 0273-2289, 10.1007/s12010-023-04388-y
    308. Md. Anwar Hossain, M. Mahboob Hossain, Nilufar Begum, Antimicrobial susceptibility patterns of bacterial isolates from routine clinical specimens of a tertiary hospital in Bangladesh, 2021, 2519-1586, 1, 10.55010/imcjms.16.004
    309. Tommaso Felicetti, Nicholas Cedraro, Andrea Astolfi, Giada Cernicchi, Gianmarco Mangiaterra, Salvatore Vaiasicca, Serena Massari, Giuseppe Manfroni, Maria Letizia Barreca, Oriana Tabarrini, Francesca Biavasco, Violetta Cecchetti, Carla Vignaroli, Stefano Sabatini, New C-6 functionalized quinoline NorA inhibitors strongly synergize with ciprofloxacin against planktonic and biofilm growing resistant Staphylococcus aureus strains, 2022, 241, 02235234, 114656, 10.1016/j.ejmech.2022.114656
    310. Mohamed H. El-Shershaby, Kamal M. El-Gamal, Ashraf H. Bayoumi, Khaled El-Adl, Mohamed Alswah, Hany E. A. Ahmed, Ahmed A. Al-Karmalamy, Hamada S. Abulkhair, The antimicrobial potential and pharmacokinetic profiles of novel quinoline-based scaffolds: synthesis and in silico mechanistic studies as dual DNA gyrase and DHFR inhibitors, 2021, 45, 1144-0546, 13986, 10.1039/D1NJ02838C
    311. Fusheng Zhang, Wei Cheng, The Mechanism of Bacterial Resistance and Potential Bacteriostatic Strategies, 2022, 11, 2079-6382, 1215, 10.3390/antibiotics11091215
    312. Yosra A. Helmy, Khaled Taha-Abdelaziz, Hanan Abd El-Halim Hawwas, Soumya Ghosh, Samar Sami AlKafaas, Mohamed M. M. Moawad, Essa M. Saied, Issmat I. Kassem, Asmaa M. M. Mawad, Antimicrobial Resistance and Recent Alternatives to Antibiotics for the Control of Bacterial Pathogens with an Emphasis on Foodborne Pathogens, 2023, 12, 2079-6382, 274, 10.3390/antibiotics12020274
    313. Emergence of CC8/ST239- SCCmec III/t421 tigecycline resistant and CC/ST22-SCCmec IV/t790 vancomycin resistant Staphylococcus aureus strains isolated from wound: A two-year multi-center study in Tehran, Iran, 2021, 1217-8950, 10.1556/030.2021.01534
    314. M. Beatriz Espeche Turbay, Valentina Rey, Rita D. Dorado, Marcelo C. Sosa, Claudio D. Borsarelli, Silver nanoparticle-protein interactions and the role of lysozyme as an antagonistic antibacterial agent, 2021, 208, 09277765, 112030, 10.1016/j.colsurfb.2021.112030
    315. Md. Mominur Rahman, Mst. Afroza Alam Tumpa, Mehrukh Zehravi, Md. Taslim Sarker, Md. Yamin, Md. Rezaul Islam, Md. Harun-Or-Rashid, Muniruddin Ahmed, Sarker Ramproshad, Banani Mondal, Abhijit Dey, Fouad Damiri, Mohammed Berrada, Md. Habibur Rahman, Simona Cavalu, An Overview of Antimicrobial Stewardship Optimization: The Use of Antibiotics in Humans and Animals to Prevent Resistance, 2022, 11, 2079-6382, 667, 10.3390/antibiotics11050667
    316. Alice Legru, Federica Verdirosa, Jean-François Hernandez, Giusy Tassone, Filomena Sannio, Manuela Benvenuti, Pierre-Alexis Conde, Guillaume Bossis, Caitlyn A. Thomas, Michael W. Crowder, Melissa Dillenberger, Katja Becker, Cecilia Pozzi, Stefano Mangani, Jean-Denis Docquier, Laurent Gavara, 1,2,4-Triazole-3-thione compounds with a 4-ethyl alkyl/aryl sulfide substituent are broad-spectrum metallo-β-lactamase inhibitors with re-sensitization activity, 2021, 226, 02235234, 113873, 10.1016/j.ejmech.2021.113873
    317. Ravleen Kaur, Pooja Rani, Atanas G. Atanasov, Qushmua Alzahrani, Reena Gupta, Bhupinder Kapoor, Monica Gulati, Pooja Chawla, Discovery and Development of Antibacterial Agents: Fortuitous and Designed, 2022, 22, 13895575, 984, 10.2174/1570193X19666211221150119
    318. Abeer H. Elmaidomy, Nourhan Hisham Shady, Khaled Mohamed Abdeljawad, Mohamed Badran Elzamkan, Hussein Hykel Helmy, Emad Ashour Tarshan, Abanoub Nabil Adly, Yasmin Hamdy Hussien, Nesma Gamal Sayed, Ahmed Zayed, Usama Ramadan Abdelmohsen, Antimicrobial potentials of natural products against multidrug resistance pathogens: a comprehensive review, 2022, 12, 2046-2069, 29078, 10.1039/D2RA04884A
    319. Shimaa N. Edris, Ahmed Hamad, Dina A. B. Awad, Islam I. Sabeq, Prevalence, antibiotic resistance patterns, and biofilm formation ability of Enterobacterales recovered from food of animal origin in Egypt, 2023, 22310916, 403, 10.14202/vetworld.2023.403-413
    320. Hyunjin Shim, Three Innovations of Next-Generation Antibiotics: Evolvability, Specificity, and Non-Immunogenicity, 2023, 12, 2079-6382, 204, 10.3390/antibiotics12020204
    321. Thabang B. M. Mosaka, John O. Unuofin, Michael O. Daramola, Chedly Tizaoui, Samuel A. Iwarere, Inactivation of antibiotic-resistant bacteria and antibiotic-resistance genes in wastewater streams: Current challenges and future perspectives, 2023, 13, 1664-302X, 10.3389/fmicb.2022.1100102
    322. SA Maruve, SY Essack, Knowledge, attitudes, and practices of veterinarians on antibiotic use and resistance and its containment in South Africa, 2022, 93, 1019-9128, 99, 10.36303/JSAVA.164
    323. Ekaterina Moskvitina, Vladimir Kuznetsov, Sergey Moseenkov, Aleksandra Serkova, Alexey Zavorin, Antibacterial Effect of Carbon Nanomaterials: Nanotubes, Carbon Nanofibers, Nanodiamonds, and Onion-like Carbon, 2023, 16, 1996-1944, 957, 10.3390/ma16030957
    324. Palanisamy Sankar, Karunakaran Vijayakaran, Kalaivanan Ramya, 2023, Chapter 43-1, 978-981-16-9723-4, 1, 10.1007/978-981-16-9723-4_43-1
    325. Arpit Shukla, Nistha Jani, Monika Polra, Anushree Kamath, Dhara Patel, CRISPR: The Multidrug Resistance Endgame?, 2021, 63, 1073-6085, 676, 10.1007/s12033-021-00340-9
    326. Sajid Asghar, Ikram Ullah Khan, Saad Salman, Syed Haroon Khalid, Rabia Ashfaq, Thierry F. Vandamme, Plant-derived nanotherapeutic systems to counter the overgrowing threat of resistant microbes and biofilms, 2021, 179, 0169409X, 114019, 10.1016/j.addr.2021.114019
    327. Matthew Drayton, Julia P. Deisinger, Kevin C. Ludwig, Nigare Raheem, Anna Müller, Tanja Schneider, Suzana K. Straus, Host Defense Peptides: Dual Antimicrobial and Immunomodulatory Action, 2021, 22, 1422-0067, 11172, 10.3390/ijms222011172
    328. Chengxi Liu, Qixuan Hong, Rachel Yoon Kyung Chang, Philip Chi Lip Kwok, Hak-Kim Chan, Phage–Antibiotic Therapy as a Promising Strategy to Combat Multidrug-Resistant Infections and to Enhance Antimicrobial Efficiency, 2022, 11, 2079-6382, 570, 10.3390/antibiotics11050570
    329. Wannisa Meepoo, Tassanee Jaroensong, Chantima Pruksakorn, Jatuporn Rattanasrisomporn, Investigation of Bacterial Isolations and Antimicrobial Susceptibility of Chronic Rhinitis in Cats, 2022, 12, 2076-2615, 1572, 10.3390/ani12121572
    330. Hyunjin Shim, Investigating the Genomic Background of CRISPR-Cas Genomes for CRISPR-Based Antimicrobials, 2022, 18, 1176-9343, 117693432211038, 10.1177/11769343221103887
    331. Nandini Gupta, Payal M. Deoghare, Prashant Singh, Mahipal Singh Sankhla, Swaroop S. Sonone, Kapil Parihar, C. R. Vanisree, Chandra Shekhar Yadav, Sandeep Kumar Verma, 2022, Chapter 11, 978-3-031-10219-6, 369, 10.1007/978-3-031-10220-2_11
    332. Nagaraj Basavegowda, Kwang-Hyun Baek, Combination Strategies of Different Antimicrobials: An Efficient and Alternative Tool for Pathogen Inactivation, 2022, 10, 2227-9059, 2219, 10.3390/biomedicines10092219
    333. Lijuan Luo, Michael Payne, Qinning Wang, Sandeep Kaur, Irani U. Rathnayake, Rikki Graham, Mailie Gall, Jenny Draper, Elena Martinez, Sophie Octavia, Mark M. Tanaka, Amy V. Jennison, Vitali Sintchenko, Ruiting Lan, Jasna Kovac, Genomic Epidemiology and Multilevel Genome Typing of Australian Salmonella enterica Serovar Enteritidis, 2023, 11, 2165-0497, 10.1128/spectrum.03014-22
    334. Brigid Hooban, Kelly Fitzhenry, Louise O'Connor, Georgios Miliotis, Aoife Joyce, Alexandra Chueiri, Maeve Louise Farrell, Niall DeLappe, Alma Tuohy, Martin Cormican, Dearbháile Morris, A Longitudinal Survey of Antibiotic-Resistant Enterobacterales in the Irish Environment, 2019–2020, 2022, 828, 00489697, 154488, 10.1016/j.scitotenv.2022.154488
    335. Tanvir Mahtab Uddin, Arka Jyoti Chakraborty, Ameer Khusro, BM Redwan Matin Zidan, Saikat Mitra, Talha Bin Emran, Kuldeep Dhama, Md. Kamal Hossain Ripon, Márió Gajdács, Muhammad Umar Khayam Sahibzada, Md. Jamal Hossain, Niranjan Koirala, Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects, 2021, 14, 18760341, 1750, 10.1016/j.jiph.2021.10.020
    336. Ekemini M. Okon, Reuben C. Okocha, Babatunde T. Adesina, Judith O. Ehigie, Olayinka O. Alabi, Adeniran M. Bolanle, N. Matekwe, Babatunde M. Falana, Adebisi M. Tiamiyu, Isaac O. Olatoye, Olufemi B. Adedeji, Antimicrobial resistance in fish and poultry: Public health implications for animal source food production in Nigeria, Egypt, and South Africa, 2022, 1, 2813-2467, 10.3389/frabi.2022.1043302
    337. Nagaraj B Kalburgi, Shweta Sonkusle, Jyoti I Pattanashetti, Varsha Singh, Kavita A Patil, Formulation and Evaluation of Antimicrobial Activity of Boswellia serrata Roxb. Gel against Periodontal Pathogens: An In Vitro Study, 2022, 13, 0976-6006, 600, 10.5005/jp-journals-10015-2125
    338. Hithesh Kumar, Anand Manoharan, Anand Anbarasu, Sudha Ramaiah, Emergence of sulphonamide resistance in azithromycin-resistant pediatric strains of Salmonella Typhi and Paratyphi A: A genomics insight, 2023, 851, 03781119, 146995, 10.1016/j.gene.2022.146995
    339. Camelia Melania Budea, Marius Pricop, Ion Cristian Mot, Florin George Horhat, Kakarla Hemaswini, Raja Akshay, Rodica Anamaria Negrean, Andrada Licinia Oprisoni, Cosmin Citu, Bogdan Andrei Bumbu, Abduljabar Adi, Ibrahim Khan, Adelina Mavrea, Iulia Bogdan, Adrian Vasile Bota, Roxana Manuela Fericean, Iosif Marincu, The Assessment of Antimicrobial Resistance in Gram-Negative and Gram-Positive Infective Endocarditis: A Multicentric Retrospective Analysis, 2023, 59, 1648-9144, 457, 10.3390/medicina59030457
    340. Angel León-Buitimea, Cesar R. Garza-Cárdenas, María Fernanda Román-García, César Agustín Ramírez-Díaz, Martha Ulloa-Ramírez, José Rubén Morones-Ramírez, Nanomaterials-Based Combinatorial Therapy as a Strategy to Combat Antibiotic Resistance, 2022, 11, 2079-6382, 794, 10.3390/antibiotics11060794
    341. Paul Cressey, Louis-Gabriel Bronstein, Rayene Benmahmoudi, Véronique Rosilio, Christophe Regeard, Ali Makky, Novel liposome-like assemblies composed of phospholipid-porphyrin conjugates with photothermal and photodynamic activities against bacterial biofilms, 2022, 623, 03785173, 121915, 10.1016/j.ijpharm.2022.121915
    342. Georgiana Nitulescu, Dragos Paul Mihai, Anca Zanfirescu, Miruna Silvia Stan, Daniela Gradinaru, George Mihai Nitulescu, Discovery of New Microbial Collagenase Inhibitors, 2022, 12, 2075-1729, 2114, 10.3390/life12122114
    343. Naoki Kohira, Meredith A Hackel, Merime Oota, Miki Takemura, Fupin Hu, Hiromichi Mizuno, Daniel F Sahm, Yoshinori Yamano, In vitro antibacterial activities of cefiderocol against Gram-negative clinical strains isolated from China in 2020, 2022, 22137165, 10.1016/j.jgar.2022.11.017
    344. Fazlurrahman Khan, Nazia Tabassum, Nilushi Indika Bamunuarachchi, Young-Mog Kim, Phloroglucinol and Its Derivatives: Antimicrobial Properties toward Microbial Pathogens, 2022, 70, 0021-8561, 4817, 10.1021/acs.jafc.2c00532
    345. Karl A. Glen, Iain L. Lamont, β-lactam Resistance in Pseudomonas aeruginosa: Current Status, Future Prospects, 2021, 10, 2076-0817, 1638, 10.3390/pathogens10121638
    346. Negin Malekian, Amay A. Agrawal, Thomas U. Berendonk, Ali Al-Fatlawi, Michael Schroeder, A genome-wide scan of wastewater E. coli for genes under positive selection: focusing on mechanisms of antibiotic resistance, 2022, 12, 2045-2322, 10.1038/s41598-022-11432-0
    347. Enitan Omobolanle Adesanya, Akingbolabo Daniel Ogunlakin, 2023, Chapter 8, 978-1-83769-985-8, 10.5772/intechopen.108351
    348. Madonsela Khumbulani, Kazeem Adekunle Alayande, Saheed Sabiu, Sekar Vijayakumar, Orientin Enhances Colistin-Mediated Bacterial Lethality through Oxidative Stress Involvement, 2022, 2022, 1741-4288, 1, 10.1155/2022/3809232
    349. Yotam Kolben, Henny Azmanov, Ram Gelman, Danna Dror, Yaron Ilan, Using chronobiology-based second-generation artificial intelligence digital system for overcoming antimicrobial drug resistance in chronic infections, 2023, 55, 0785-3890, 311, 10.1080/07853890.2022.2163053
    350. Rocío Marisol Espinoza-Chávez, Alessandra Salerno, Anastasia Liuzzi, Andrea Ilari, Andrea Milelli, Elisa Uliassi, Maria Laura Bolognesi, Targeted Protein Degradation for Infectious Diseases: from Basic Biology to Drug Discovery, 2023, 3, 2694-2437, 32, 10.1021/acsbiomedchemau.2c00063
    351. Alqassem Y Hakami, Lujain H Felemban, Noor A Aljifri, Ghayda M Alyamani, Khadijah A Abosallamh, Rahaf A Aljohani, Taghreed Aldosary, Abdulmajeed Basheikh, Antibacterial Resistance Patterns Among Common Infections in a Tertiary Care Hospital in Saudi Arabia, 2022, 2168-8184, 10.7759/cureus.31695
    352. Ahmed M. Sayed, Nader S. Abutaleb, Ahmed Kotb, Hany G. Ezzat, Mohamed N. Seleem, Abdelrahman S. Mayhoub, Mohamed M. Elsebaie, Arylpyrazole as selective anti‐enterococci; synthesis and biological evaluation of novel derivatives for their antimicrobial efficacy, 2023, 60, 0022-152X, 134, 10.1002/jhet.4570
    353. Satwik Majumder, Dongyun Jung, Jennifer Ronholm, Saji George, Prevalence and mechanisms of antibiotic resistance in Escherichia coli isolated from mastitic dairy cattle in Canada, 2021, 21, 1471-2180, 10.1186/s12866-021-02280-5
    354. T.-P. Nguyen, N.-A. Vu Thi, X.-N. Nguyen Diep, T.N. Nguyen, L.M. Bui, Antimicrobial resistance tendency and collateral sensitivity of Staphylococcus aureus adapted to antibiotics or extracts of medicinal plants grown in Viet Nam, 2022, 75, 1472-765X, 616, 10.1111/lam.13697
    355. Ashwini Wani, Hiren Mange, Aishwarya Vasudevan, Essential Oils: A Novel Approach for Anti-Microbial Therapy, 2022, 12, 22103155, 10.2174/2210315511666210906114009
    356. Rohan Bir Singh, Sujata Das, James Chodosh, Namrata Sharma, Michael E. Zegans, Regis P. Kowalski, Vishal Jhanji, Paradox of complex diversity: Challenges in the diagnosis and management of bacterial keratitis, 2022, 88, 13509462, 101028, 10.1016/j.preteyeres.2021.101028
    357. Natalija Đorđević, Ivana Karabegović, Dragoljub Cvetković, Branislav Šojić, Dragiša Savić, Bojana Danilović, Assessment of Chitosan Coating Enriched with Free and Nanoencapsulated Satureja montana L. Essential Oil as a Novel Tool for Beef Preservation, 2022, 11, 2304-8158, 2733, 10.3390/foods11182733
    358. Rumin Fu, Cairong Xiao, Zhekun Zhang, Kunyu Ren, Zhengnan Zhou, Zhengao Wang, Chengyun Ning, Chunlin Deng, Lei Zhou, Peng Yu, Xiaolan Wang, Guoxin Tan, A Nano-CuO doped sodium aluminosilicate composite ceramic with high efficiency against streptococcus mutans for dental restorative materials, 2022, 48, 02728842, 28578, 10.1016/j.ceramint.2022.06.171
    359. Mackingsley Kushan Dassanayake, Teng-Jin Khoo, Jia An, Antibiotic resistance modifying ability of phytoextracts in anthrax biological agent Bacillus anthracis and emerging superbugs: a review of synergistic mechanisms, 2021, 20, 1476-0711, 10.1186/s12941-021-00485-0
    360. Rachael Nkechi Eboma, Clement Olusola Ogidi, Bamidele Juliet Akinyele, Bioactive compounds and antimicrobial activity of extracts from fermented African locust bean (Parkia biglobosa) against pathogenic microorganisms, 2021, 4, 2588-1582, 343, 10.51745/najfnr.4.8.343-350
    361. Andreea Crintea, Rahela Carpa, Andrei-Otto Mitre, Robert Istvan Petho, Vlad-Florin Chelaru, Sebastian-Mihail Nădășan, Lidia Neamti, Alina Gabriela Dutu, Nanotechnology Involved in Treating Urinary Tract Infections: An Overview, 2023, 13, 2079-4991, 555, 10.3390/nano13030555
    362. Aswathy Jayakumar, Sabarish Radoor, Jasila Karayil, Indu C. Nair, Suchart Siengchin, Jyotishkumar Parameswaranpillai, E. K. Radhakrishnan, 2022, Chapter 5, 978-981-16-8577-4, 87, 10.1007/978-981-16-8578-1_5
    363. Suad Algarni, Steven C. Ricke, Steven L. Foley, Jing Han, The Dynamics of the Antimicrobial Resistance Mobilome of Salmonella enterica and Related Enteric Bacteria, 2022, 13, 1664-302X, 10.3389/fmicb.2022.859854
    364. Addisu D. Teklemariam, Rashad R. Al-Hindi, Mona G. Alharbi, Ibrahim Alotibi, Sheren A. Azhari, Ishtiaq Qadri, Turki Alamri, Ahmed Esmael, Steve Harakeh, Isolation and Characterization of a Novel Lytic Phage, vB_PseuP-SA22, and Its Efficacy against Carbapenem-Resistant Pseudomonas aeruginosa, 2023, 12, 2079-6382, 497, 10.3390/antibiotics12030497
    365. A. Kavitha, A. Doss, R.P. Praveen Pole, T.P. Kumari Pushpa Rani, Ram Prasad, S. Satheesh, A mini review on plant-mediated zinc oxide nanoparticles and their antibacterial potency, 2023, 48, 18788181, 102654, 10.1016/j.bcab.2023.102654
    366. Laurent Gavara, Alice Legru, Federica Verdirosa, Laurent Sevaille, Lionel Nauton, Giuseppina Corsica, Paola Sandra Mercuri, Filomena Sannio, Georges Feller, Rémi Coulon, Filomena De Luca, Giulia Cerboni, Silvia Tanfoni, Giulia Chelini, Moreno Galleni, Jean-Denis Docquier, Jean-François Hernandez, 4-Alkyl-1,2,4-triazole-3-thione analogues as metallo-β-lactamase inhibitors, 2021, 113, 00452068, 105024, 10.1016/j.bioorg.2021.105024
    367. Murshida Khan, Sulav Indra Paul, Md. Mahbubur Rahman, Julie Anderson Lively, Antimicrobial Resistant Bacteria in Shrimp and Shrimp Farms of Bangladesh, 2022, 14, 2073-4441, 3172, 10.3390/w14193172
    368. Rajeshwari Kundar, Karuna Gokarn, CRISPR-Cas System: A Tool to Eliminate Drug-Resistant Gram-Negative Bacteria, 2022, 15, 1424-8247, 1498, 10.3390/ph15121498
    369. Mohammad J. Hajipour, Amir Ata Saei, Edward D. Walker, Brian Conley, Yadollah Omidi, Ki‐Bum Lee, Morteza Mahmoudi, Nanotechnology for Targeted Detection and Removal of Bacteria: Opportunities and Challenges, 2021, 8, 2198-3844, 2100556, 10.1002/advs.202100556
    370. Antresh Kumar, Manisha Kaushal, 2021, Chapter 8, 978-1-83962-742-2, 10.5772/intechopen.100622
    371. Panchanathan Manivasagan, Jungbae Kim, Eue-Soon Jang, Recent progress in multifunctional conjugated polymer nanomaterial-based synergistic combination phototherapy for microbial infection theranostics, 2022, 470, 00108545, 214701, 10.1016/j.ccr.2022.214701
    372. Meghashyama Prabhakara Bhat, Sreenivasa Nayaka, Raju Suresh Kumar, A swamp forest Streptomyces sp. strain KF15 with broad spectrum antifungal activity against chilli pathogens exhibits anticancer activity on HeLa cells, 2022, 204, 0302-8933, 10.1007/s00203-022-03147-7
    373. Chuan-Yun Xiao, Jiang-Er Lan, Xiao Liu, Zhong-Lin Sun, Xiao-Jin Li, Yi-Han Yin, Simon Gibbons, Qing Mu, Acetylenic spiroketal enol ethers from Artemisia rupestris and their synergistic antibacterial effects on methicillin-resistant Staphylococcus aureus, 2023, 1478-6419, 1, 10.1080/14786419.2023.2183952
    374. Wendy Wai Yeng Yeo, Sathiya Maran, Amanda Shen-Yee Kong, Wan-Hee Cheng, Swee-Hua Erin Lim, Jiun-Yan Loh, Kok-Song Lai, A Metal-Containing NP Approach to Treat Methicillin-Resistant Staphylococcus aureus (MRSA): Prospects and Challenges, 2022, 15, 1996-1944, 5802, 10.3390/ma15175802
    375. Adam Grzywaczyk, Wojciech Smułek, Grzegorz Smułek, Mariusz Ślachciński, Ewa Kaczorek, Application of natural surfactants for improving the leaching of zinc and copper from different soils, 2021, 24, 23521864, 101926, 10.1016/j.eti.2021.101926
    376. Nilotpal Borah, Abhijit Gogoi, Jiban Saikia, 2022, Chapter 15, 978-981-19-1853-7, 379, 10.1007/978-981-19-1854-4_15
    377. Tatiana Hillman, Reducing bacterial antibiotic resistance by targeting bacterial metabolic pathways and disrupting RND efflux pump activity, 2022, 26955075, 60, 10.53986/ibjm.2022.0008
    378. Cesar Augusto Roque-Borda, Patricia Bento da Silva, Mosar Corrêa Rodrigues, Leonardo Delello Di Filippo, Jonatas L. Duarte, Marlus Chorilli, Eduardo Festozo Vicente, Saulo Santesso Garrido, Fernando Rogério Pavan, Pharmaceutical nanotechnology: Antimicrobial peptides as potential new drugs against WHO list of critical, high, and medium priority bacteria, 2022, 241, 02235234, 114640, 10.1016/j.ejmech.2022.114640
    379. Larissa Kever, Aël Hardy, Tom Luthe, Max Hünnefeld, Cornelia Gätgens, Lars Milke, Johanna Wiechert, Johannes Wittmann, Cristina Moraru, Jan Marienhagen, Julia Frunzke, Gisela Storz, Aminoglycoside Antibiotics Inhibit Phage Infection by Blocking an Early Step of the Infection Cycle, 2022, 13, 2150-7511, 10.1128/mbio.00783-22
    380. Lu Zhang, Jing Sun, Zisha Zhang, Zitong Peng, Xiaohu Dai, Bing-Jie Ni, Polyethylene terephthalate microplastic fibers increase the release of extracellular antibiotic resistance genes during sewage sludge anaerobic digestion, 2022, 217, 00431354, 118426, 10.1016/j.watres.2022.118426
    381. Domenico Franco, Giovanna Calabrese, Salvatore Pietro Paolo Guglielmino, Sabrina Conoci, Metal-Based Nanoparticles: Antibacterial Mechanisms and Biomedical Application, 2022, 10, 2076-2607, 1778, 10.3390/microorganisms10091778
    382. Kaio Jefté Santos De Oliveira Dias, Gustavo Marinho Miranda, Jonatas Reis Bessa, Ana Carolina Justino De Araújo, Priscilla Ramos Freitas, Ray Silva De Almeida, Cícera Laura Roque Paulo, José Bezerra De Araújo Neto, Henrique D. M. Coutinho, Jaime Ribeiro-Filho, Terpenes as bacterial efflux pump inhibitors: A systematic review, 2022, 13, 1663-9812, 10.3389/fphar.2022.953982
    383. Shamsaldeen Ibrahim, Loh Wei Hoong, Yip Lai Siong, Zaharuddin Mustapha, C. W. Salma C. W. Zalati, Erkihun Aklilu, Maizan Mohamad, Nor Fadhilah Kamaruzzaman, Prevalence of Antimicrobial Resistance (AMR) Salmonella spp. and Escherichia coli Isolated from Broilers in the East Coast of Peninsular Malaysia, 2021, 10, 2079-6382, 579, 10.3390/antibiotics10050579
    384. Ijeoma N. Okoliegbe, Karolin Hijazi, Kim Cooper, Corinne Ironside, Ian M. Gould, Antimicrobial Synergy Testing: Comparing the Tobramycin and Ceftazidime Gradient Diffusion Methodology Used in Assessing Synergy in Cystic Fibrosis-Derived Multidrug-Resistant Pseudomonas aeruginosa, 2021, 10, 2079-6382, 967, 10.3390/antibiotics10080967
    385. Atif Khurshid Wani, Nahid Akhtar, Farooq Sher, Acacio Aparecido Navarrete, Juliana Heloisa Pinê Américo-Pinheiro, Microbial adaptation to different environmental conditions: molecular perspective of evolved genetic and cellular systems, 2022, 204, 0302-8933, 10.1007/s00203-022-02757-5
    386. M Ameri, L Suarez, B Miles, CF Michie, J Abdul, Antimicrobial resistance: An unrelenting enemy, 2022, 9, 24555282, 008, 10.17352/2455-5282.000147
    387. Xiumin Wang, Ting Li, 2023, 9780323998666, 89, 10.1016/B978-0-323-99866-6.00016-7
    388. Ignacio Lizana, Elena A. Uribe, Eduardo J. Delgado, A theoretical approach for the acylation/deacylation mechanisms of avibactam in the reversible inhibition of KPC-2, 2021, 35, 0920-654X, 943, 10.1007/s10822-021-00408-3
    389. Soamyaa Srivastava, An Outrage: The Mechanism of Antimicrobial Resistance (AMR) in Microorganisms, 2022, 11, 22115501, 189, 10.2174/2211550111666220428105504
    390. Azole Sindelo, Pinar Sen, Tebello Nyokong, Photodynamic inactivation of methicillin-resistant Staphylococcus aureus using pyrrolidinium containing Schiff base phthalocyanines, 2023, 438, 10106030, 114535, 10.1016/j.jphotochem.2022.114535
    391. Grigorios I. Leontiadis, George F. Longstreth, Evolutionary Medicine Perspectives: Helicobacter pylori, Lactose Intolerance, and 3 Hypotheses for Functional and Inflammatory Gastrointestinal and Hepatobiliary Disorders, 2022, 117, 0002-9270, 721, 10.14309/ajg.0000000000001681
    392. Panal Sitorus, Jane Melita Keliat, Vivi Asfianti, Mahatir Muhammad, Denny Satria, A Literature Review of Artocarpus lacucha Focusing on the Phytochemical Constituents and Pharmacological Properties of the Plant, 2022, 27, 1420-3049, 6940, 10.3390/molecules27206940
    393. Aaron Albert Aryee, Farid Mzee Mpatani, Runping Han, Xinxin Shi, Lingbo Qu, A review on adsorbents for the remediation of wastewater: Antibacterial and adsorption study, 2021, 9, 22133437, 106907, 10.1016/j.jece.2021.106907
    394. Amarachukwu Anyogu, Ayomide Olukorede, Christian Anumudu, Helen Onyeaka, Esther Areo, Obadina Adewale, Joyce N. Odimba, Ogueri Nwaiwu, Microorganisms and food safety risks associated with indigenous fermented foods from Africa, 2021, 129, 09567135, 108227, 10.1016/j.foodcont.2021.108227
    395. T. Truong, H. D. Bui, T. T. V. Pham, L. T. Tran, D. H. Nguyen, C. Ng, T.-H. Le, Occurrences of antibiotic resistant bacteria in a tropical river impacted by anthropogenic activities in Ho Chi Minh City, 2022, 19, 1735-1472, 7049, 10.1007/s13762-021-03636-0
    396. Meenakshi Sharma, Pragati Yadav, Deepika Tripathi, 2022, Chapter 8, 978-1-80355-795-3, 10.5772/intechopen.103951
    397. Anjaneyulu Musini, Priyanka Kandula, Archana Giri, 2021, Chapter 17, 978-3-030-80107-6, 355, 10.1007/978-3-030-80108-3_17
    398. Kadiatou Keita, Charles Darkoh, Florence Okafor, Secondary plant metabolites as potent drug candidates against antimicrobial-resistant pathogens, 2022, 4, 2523-3963, 10.1007/s42452-022-05084-y
    399. Tnuja Rana, Umar Farooq, Navroop Kaur, Amir Khan, Azhar Khan, Plants Derived Efflux Pump Inhibitors: An approach against Multidrug-Resistant Gram-negative bacteria Klebsiella pneumoniae, 2023, 14, 2229-5402, 71, 10.51847/7FQXFNYnT5
    400. Anasuya Bhargav, Srijanee Gupta, Surabhi Seth, Sweety James, Firdaus Fatima, Pratibha Chaurasia, Srinivasan Ramachandran, Knowledgebase of potential multifaceted solutions to antimicrobial resistance, 2022, 101, 14769271, 107772, 10.1016/j.compbiolchem.2022.107772
    401. Reza Bagheri, Sepideh Bohlouli, Solmaz Maleki Dizaj, Shahriar Shahi, Mohammad Yousef Memar, Sara Salatin, The Antimicrobial and Anti-Biofilm Effects of Hypericum perforatum Oil on Common Pathogens of Periodontitis: An In Vitro Study, 2022, 12, 2039-7283, 1009, 10.3390/clinpract12060104
    402. Kanjana Mahanil, Pachara Sattayawat, Jeeraporn Pekkoh, Masafumi Kameya, Masaharu Ishii, Chayakorn Pumas, Simple transformation of the filamentous thermophilic cyanobacterium Leptolyngbya sp. KC45, 2022, 66, 22119264, 102758, 10.1016/j.algal.2022.102758
    403. Stephen J. Kassinger, Monique L. van Hoek, Genetic Determinants of Antibiotic Resistance in Francisella, 2021, 12, 1664-302X, 10.3389/fmicb.2021.644855
    404. Mariana Sousa, Ana Cristina Afonso, Lília Soares Teixeira, Anabela Borges, Maria José Saavedra, Lúcia Chaves Simões, Manuel Simões, Hydrocinnamic Acid and Perillyl Alcohol Potentiate the Action of Antibiotics against Escherichia coli, 2023, 12, 2079-6382, 360, 10.3390/antibiotics12020360
    405. Susheel Bhanu Busi, Laura de Nies, Paraskevi Pramateftaki, Massimo Bourquin, Tyler J. Kohler, Leïla Ezzat, Stilianos Fodelianakis, Grégoire Michoud, Hannes Peter, Michail Styllas, Matteo Tolosano, Vincent De Staercke, Martina Schön, Valentina Galata, Paul Wilmes, Tom Battin, Jeffrey A. Gralnick, Glacier-Fed Stream Biofilms Harbor Diverse Resistomes and Biosynthetic Gene Clusters, 2023, 11, 2165-0497, 10.1128/spectrum.04069-22
    406. Łukasz Grabowski, Lidia Gaffke, Karolina Pierzynowska, Zuzanna Cyske, Marta Choszcz, Grzegorz Węgrzyn, Alicja Węgrzyn, Enrofloxacin—The Ruthless Killer of Eukaryotic Cells or the Last Hope in the Fight against Bacterial Infections?, 2022, 23, 1422-0067, 3648, 10.3390/ijms23073648
    407. Min-Gyun Kang, Fazlurrahman Khan, Nazia Tabassum, Kyung-Jin Cho, Du-Min Jo, Young-Mog Kim, Inhibition of Biofilm and Virulence Properties of Pathogenic Bacteria by Silver and Gold Nanoparticles Synthesized from Lactiplantibacillus sp. Strain C1, 2023, 2470-1343, 10.1021/acsomega.2c06789
    408. Md. Saiful Islam, Md. Tanvir Rahman, A Comprehensive Review on Bacterial Vaccines Combating Antimicrobial Resistance in Poultry, 2023, 11, 2076-393X, 616, 10.3390/vaccines11030616
    409. SEMA MISIR, SERAP OZER YAMAN, NINA PETROVIĆ, CEREN SUMER, CEYLAN HEPOKUR, YUKSEL ALIYAZICIOGLU, circRNAs in drug resistance of breast cancer, 2022, 30, 0965-0407, 157, 10.32604/or.2022.027547
    410. Jannette Wen Fang Wu-Wu, Carolina Guadamuz-Mayorga, Douglas Oviedo-Cerdas, William J. Zamora, Antibiotic Resistance and Food Safety: Perspectives on New Technologies and Molecules for Microbial Control in the Food Industry, 2023, 12, 2079-6382, 550, 10.3390/antibiotics12030550
    411. Maria H.C. Santos, Valdenice F. Santos, Priscilla R. Freitas, Romério R.S. Silva, Renato Rodrigues Roma, Ana L.E. Santos, Daiany Alves Ribeiro, Henrique D.M. Coutinho, Bruno A.M. Rocha, Manoel M.E. Oliveira, Claudener S. Teixeira, Dioclea violacea lectin increases the effect of neomycin against multidrug-resistant strains and promotes the purification of the antibiotic in immobilized lectin column, 2023, 236, 01418130, 123941, 10.1016/j.ijbiomac.2023.123941
    412. Luca Nalbone, Giorgia Sorrentino, Filippo Giarratana, Aurelian Schiopu- Mariean, Graziella Ziino, Alessandro Giuffrida, Effects of osmotic stress on Listeria monocytogenes ATCC 7644: persistent cells and heat resistance, 2023, 12, 2239-7132, 10.4081/ijfs.2023.10880
    413. Geetika Dhanda, Yash Acharya, Jayanta Haldar, Antibiotic Adjuvants: A Versatile Approach to Combat Antibiotic Resistance, 2023, 2470-1343, 10.1021/acsomega.3c00312
    414. Yuqi Guo, Youmin Ying, Qihao Wu, Bin Wei, Jianwei Chen, Hong Wang, β-Cyclopiazonic acid binds iron demonstrating siderophore-like activity and promotes growth in Pseudomonas aeruginosa, 2023, 2096-5508, 10.1007/s00343-022-2007-3
    415. Rajesh V. Wagh, Ruchir Priyadarshi, Jong-Whan Rhim, Novel Bacteriophage-Based Food Packaging: An Innovative Food Safety Approach, 2023, 13, 2079-6412, 609, 10.3390/coatings13030609
    416. Nurul Asma Razali, Zuhair Jamain, Synthesis, Chemical Identification and Biological Application of Azo-based Molecules containing Different Terminal Group: A Review, 2023, 00222860, 135329, 10.1016/j.molstruc.2023.135329
    417. Milena Despotovic, Laura de Nies, Susheel Bhanu Busi, Paul Wilmes, Reservoirs of antimicrobial resistance in the context of One Health, 2023, 73, 13695274, 102291, 10.1016/j.mib.2023.102291
    418. Jennifer Scott, Clara Valero, Álvaro Mato-López, Ian J. Donaldson, Alejandra Roldán, Harry Chown, Norman Van Rhijn, Rebeca Lobo-Vega, Sara Gago, Takanori Furukawa, Alma Morogovsky, Ronen Ben Ami, Paul Bowyer, Nir Osherov, Thierry Fontaine, Gustavo H. Goldman, Emilia Mellado, Michael Bromley, Jorge Amich, Alexandre Alanio, Aspergillus fumigatus Can Display Persistence to the Fungicidal Drug Voriconazole , 2023, 2165-0497, 10.1128/spectrum.04770-22
    419. Ema H. Graham, Wesley A. Tom, Alison C. Neujahr, Michael S. Adamowicz, Jennifer L. Clarke, Joshua R. Herr, Samodha C. Fernando, The persistence and stabilization of auxiliary genes in the human skin virome, 2023, 20, 1743-422X, 10.1186/s12985-023-02012-3
    420. Zeinab Breijyeh, Rafik Karaman, Design and Synthesis of Novel Antimicrobial Agents, 2023, 12, 2079-6382, 628, 10.3390/antibiotics12030628
    421. Thi Huyen Thu Nguyen, Hai Dang Nguyen, Mai Huong Le, Thi Thu Hien Nguyen, Thi Dua Nguyen, Duc Long Nguyen, Quang Huy Nguyen, Thi Kieu Oanh Nguyen, Serge Michalet, Marie-Geneviève Dijoux-Franca, Hoang Nam Pham, Efflux Pump Inhibitors in Controlling Antibiotic Resistance: Outlook under a Heavy Metal Contamination Context, 2023, 28, 1420-3049, 2912, 10.3390/molecules28072912
    422. Aleksandra Baran, Aleksandra Kwiatkowska, Leszek Potocki, Antibiotics and Bacterial Resistance—A Short Story of an Endless Arms Race, 2023, 24, 1422-0067, 5777, 10.3390/ijms24065777
    423. Aswathy Jayakumar, Shiji Mathew, Sabarish Radoor, Jun Tae Kim, Jong-Whan Rhim, Suchart Siengchin, Recent advances in two-dimensional nanomaterials: properties, antimicrobial, and drug delivery application of nanocomposites, 2023, 30, 24685194, 101492, 10.1016/j.mtchem.2023.101492
    424. Atanu Naskar, Kwang-sun Kim, Friends against the Foe: Synergistic Photothermal and Photodynamic Therapy against Bacterial Infections, 2023, 15, 1999-4923, 1116, 10.3390/pharmaceutics15041116
    425. Ragini Amarnani, Amey Revdekar, Bhagyashree Salvi, Pravin Shende, Potential of nanocarriers using ABC transporters for antimicrobial resistance, 2023, 13596446, 103570, 10.1016/j.drudis.2023.103570
    426. NUNO M. PEREIRA, HUGO DAVID, 2023, 9780323828529, 395, 10.1016/B978-0-323-82852-9.00059-9
    427. Jiawei Li, Xuejun Liang, Fangxin Wang, Juping Wang, Feng Ding, The Current Status of Antisense Gene Therapies for Bacteria-caused Diseases Challenges and Opportunities, 2023, 29, 13816128, 272, 10.2174/1381612829666230118152428
    428. Trudy-Ann Grant, Mario López-Pérez, Jose Manuel Haro-Moreno, Salvador Almagro-Moreno, Diarmaid Hughes, Allelic diversity uncovers protein domains contributing to the emergence of antimicrobial resistance, 2023, 19, 1553-7404, e1010490, 10.1371/journal.pgen.1010490
    429. Michael J. Parnham, Virginia Norris, Jennifer A. Kricker, Thorarinn Gudjonsson, Clive P. Page, 2023, 10543589, 10.1016/bs.apha.2023.03.002
    430. Franciszek Bydalek, Gordon Webster, Ruth Barden, Andrew J. Weightman, Barbara Kasprzyk-Hordern, Jannis Wenk, Microplastic biofilm, associated pathogen and antimicrobial resistance dynamics through a wastewater treatment process incorporating a constructed wetland, 2023, 235, 00431354, 119936, 10.1016/j.watres.2023.119936
    431. Shambel Mekonnen, Tewodros Tesfa, Tadesse Shume, Fikru Tebeje, Kedir Urgesa, Fitsum Weldegebreal, Ulrich Nübel, Bacterial profile, their antibiotic susceptibility pattern, and associated factors of urinary tract infections in children at Hiwot Fana Specialized University Hospital, Eastern Ethiopia, 2023, 18, 1932-6203, e0283637, 10.1371/journal.pone.0283637
    432. Odunayo T. Ore, Adedapo O. Adeola, Oluwaseun Fapohunda, Demilade T. Adedipe, Ajibola A. Bayode, Festus M. Adebiyi, Humic substances derived from unconventional resources: extraction, properties, environmental impacts, and prospects, 2023, 1614-7499, 10.1007/s11356-023-26809-5
    433. Alex Wright, Xunde Li, Xiang Yang, Esteban Soto, Jackson Gross, Disease prevention and mitigation in US finfish aquaculture: A review of current approaches and new strategies, 2023, 1753-5123, 10.1111/raq.12807
    434. Eulalia Betzabé Cuenca-Riascos, Humberto Daniel Riascos-Jaramillo, Jonnathan Gerardo Ortiz–Tejedor, Resistencia antimicrobiana de bacterias aisladas de secreciones bronquiales en una Unidad de Cuidados Intensivos, 2023, 51, 2477-9628, 10.56903/kasmera.5138570
    435. Elif Odabaş Köse, Özlem Koyuncu Özyurt, Süreyya Bilmen, Hakan Er, Cansu Kilit, Esra Aydemir, Quercetin: Synergistic Interaction with Antibiotics against Colistin-Resistant Acinetobacter baumannii, 2023, 12, 2079-6382, 739, 10.3390/antibiotics12040739
    436. Jiaxin Yao, Pengfei Zou, Yanan Cui, Liangzhu Quan, Chunsheng Gao, Zhiping Li, Wei Gong, Meiyan Yang, Recent Advances in Strategies to Combat Bacterial Drug Resistance: Antimicrobial Materials and Drug Delivery Systems, 2023, 15, 1999-4923, 1188, 10.3390/pharmaceutics15041188
    437. Ekaterina Avershina, Abdolrahman Khezri, Rafi Ahmad, Clinical Diagnostics of Bacterial Infections and Their Resistance to Antibiotics—Current State and Whole Genome Sequencing Implementation Perspectives, 2023, 12, 2079-6382, 781, 10.3390/antibiotics12040781
    438. Sena Nur Başaran, Lütfiye Öksüz, The role of efflux pumps ın antıbıotıc resıstance of gram negatıve rods, 2023, 205, 0302-8933, 10.1007/s00203-023-03539-3
    439. Hafsa Qadri, Abdul Haseeb Shah, Mustfa Alkhanani, Abdullah Almilaibary, Manzoor Ahmad Mir, Immunotherapies against human bacterial and fungal infectious diseases: A review, 2023, 10, 2296-858X, 10.3389/fmed.2023.1135541
    440. Mohamed A. Al Abboud, Khatib Sayeed Ismail, Abdullah Mashraqi, Saad Albishi, Ali A. Al-Namazi, Yahya S. Masrahi, GC-MS analysis and antibacterial activities of some plants belonging to the genus Euphorbia on selected bacterial isolates, 2023, 21, 2391-5420, 10.1515/chem-2022-0325
    441. Mohd Nur Fakhruzzaman Noorizhab, Norzuliana Zainal Abidin, Lay Kek Teh, Thean Hock Tang, Nneka Onyejepu, Chioma Kunle-Ope, Nwanneka E. Tochukwu, Michael A. Sheshi, Timothy Nwafor, Olaoluwa P. Akinwale, Ahmad Izuanuddin Ismail, Norazmi Mohd Nor, Mohd Zaki Salleh, Exploration of the diversity of multi-drug resistant Mycobacterium tuberculosis complex in Lagos, Nigeria using WGS: Distribution of lineages, drug resistance patterns and genetic mutations, 2023, 140, 14729792, 102343, 10.1016/j.tube.2023.102343
    442. Yusuf Oloruntoyin Ayipo, Chien Fung Chong, Mohd Nizam Mordi, Small-molecule inhibitors of bacterial-producing metallo-β-lactamases: insights into their resistance mechanisms and biochemical analyses of their activities, 2023, 2632-8682, 10.1039/D3MD00036B
    443. Har Lal Singh, Naveen Dhingra, Sunita Bhanuka, Synthesis, spectral, antibacterial and QSAR studies of tin and silicon complexes with Schiff base of amino acids, 2023, 00222860, 135670, 10.1016/j.molstruc.2023.135670
    444. Lindokuhle Ndlovu, Patrick Butaye, Tsolanku. S. Maliehe, Kudakwashe Magwedere, Bongi B. Mankonkwana, Albertus K. Basson, Siyanda. S. Ngema, Evelyn Madoroba, Virulence and Antimicrobial Resistance Profiling of Salmonella Serovars Recovered from Retail Poultry Offal in KwaZulu-Natal Province, South Africa, 2023, 12, 2076-0817, 641, 10.3390/pathogens12050641
    445. Nina Bogdanchikova, Maria Maklakova, Luis Jesús Villarreal-Gómez, Ekaterina Nefedova, Nikolay N. Shkil, Evgenii Plotnikov, Alexey Pestryakov, Revealing the Second and the Third Causes of AgNPs Property to Restore the Bacterial Susceptibility to Antibiotics, 2023, 24, 1422-0067, 7854, 10.3390/ijms24097854
    446. Shahriar Mohsin, Mohammad Nurul Amin, Superbugs: a constraint to achieving the sustainable development goals, 2023, 47, 2522-8307, 10.1186/s42269-023-01036-7
    447. Rossi Indiarto, Arif Nanda Irawan, Edy Subroto, Meat Irradiation: A Comprehensive Review of Its Impact on Food Quality and Safety, 2023, 12, 2304-8158, 1845, 10.3390/foods12091845
    448. Thawanrut Kiatyingangsulee, Shabbir Simjee, Rungtip Chuanchuen, Faye Swinbourne, Fergus Allerton, 2023, 9781789244953, 275, 10.1079/9781789244977.0016
    449. Smita Ghosh, Priyanka Kar, Sudipta Chakrabarti, Shrabani Pradhan, Keshab Chandra Mondal, Kuntal Ghosh, Pathogenicity of Vibrio harveyi and its biocontrol using bacteriophages, 2023, 2662-7655, 10.1007/s43393-023-00178-z
    450. Job Mwale, Edwin O. Magomere, Brian Maina, Leon Otieno, Frank G. Onyambu, Ali Kassim, Lucy Muchiri, Phenotypic and genetic extended spectrum beta lactamase profiles of bacterial isolates from ICU in tertiary level hospital in Kenya, 2023, 12, 2046-1402, 469, 10.12688/f1000research.133298.1
    451. C. Chapa González, L. I. González García, L. G. Burciaga Jurado, A. Carrillo Castillo, Bactericidal activity of silver nanoparticles in drug-resistant bacteria, 2023, 1517-8382, 10.1007/s42770-023-00991-7
    452. Saif ul Islam, 2023, 9780443187421, 119, 10.1016/B978-0-443-18742-1.00054-3
    453. Wei Zou, Alyssa McAdorey, Hongbin Yan, Wangxue Chen, Nanomedicine to overcome antimicrobial resistance: challenges and prospects, 2023, 1743-5889, 10.2217/nnm-2023-0022
    454. Beatriz de Aquino Marques da Costa, Ana Lúcia Figueiredo Porto, Vagne de Melo Oliveira, Tatiana Souza Porto, Bioactive collagen peptides: bibliometric approach and market trends for aquatic sources, 2023, 2, 2965-1190, 10.58951/fstoday.2023.17
    455. Cristian Daniel Marineci, Antimicrobial stewardship (II), 2023, 2, 1584-6539, 5, 10.26416/Farm.211.2.2023.7940
    456. Sisa Chalán‐Gualán, Iván Ramos‐Tomillero, Thibault Terencio, Lola De Lima, Daniela G. Navas‐León, Margarita Suárez, Nelson Santiago Vispo, Fernando Albericio, Hortensia Rodríguez, Cysteine‐Based Perfluorinated Derivatives: A Theoretical and Experimental Study**, 2023, 88, 2192-6506, 10.1002/cplu.202300028
    457. Ruba A. Ashy, Rewaa S. Jalal, Hana S. Sonbol, Mashael D. Alqahtani, Fatmah O. Sefrji, Sahar A. Alshareef, Fatimah M. Alshehrei, Haneen W. Abuauf, Lina Baz, Manal A. Tashkandi, Israa J. Hakeem, Mohammed Y. Refai, Aala A. Abulfaraj, Functional annotation of rhizospheric phageome of the wild plant species Moringa oleifera, 2023, 14, 1664-302X, 10.3389/fmicb.2023.1166148
    458. Mohammed Khalaf Auaed, Ayad Suleiman Hamad, Novel hydroquinazoline derivatives from Schiff base and study their biological activity, 2023, 22147853, 10.1016/j.matpr.2023.04.629
    459. Rohit Patil, Deepa Dehari, Aiswarya Chaudhuri, Dulla Naveen Kumar, Dinesh Kumar, Sanjay Singh, Gopal Nath, Ashish Kumar Agrawal, Recent advancements in nanotechnology-based bacteriophage delivery strategies against bacterial ocular infections, 2023, 273, 09445013, 127413, 10.1016/j.micres.2023.127413
    460. Rashmi P. Sharma, Shubhangi D. Shirsat, Pritamkumar V. Shinde, Suhas S. Mohite, Rajaram S. Mane, 2023, Chapter 5, 978-981-99-1634-4, 137, 10.1007/978-981-99-1635-1_5
    461. Peng Wang, Biru Wu, Min Li, Yuchen Song, Chengjian Chen, Guangxue Feng, Duo Mao, Fang Hu, Bin Liu, Lysosome-Targeting Aggregation-Induced Emission Nanoparticle Enables Adoptive Macrophage Transfer-Based Precise Therapy of Bacterial Infections, 2023, 1936-0851, 10.1021/acsnano.3c00796
    462. Millicent T. Mumbo, Evans N. Nyaboga, Johnson Kinyua, Edward K. Muge, Scholastica G. K. Mathenge, Geoffrey Muriira, Henry Rotich, Bernard Njiraini, Joshua M. Njiru, Prevalence and antimicrobial resistance profile of bacterial foodborne pathogens in Nile tilapia fish (Oreochromis niloticus) at points of retail sale in Nairobi, Kenya, 2023, 2, 2813-2467, 10.3389/frabi.2023.1156258
    463. Sabiha Essack, John Bell, Douglas Burgoyne, Khalid Eljaaly, Wirat Tongrod, Thomas Markham, Adrian Shephard, Elsa López-Pintor, Addressing Consumer Misconceptions on Antibiotic Use and Resistance in the Context of Sore Throat: Learnings from Social Media Listening, 2023, 12, 2079-6382, 957, 10.3390/antibiotics12060957
    464. Tobias Kielholz, Felix Rohde, Nathalie Jung, Maike Windbergs, Bacteriophage-loaded functional nanofibers for treatment of P. aeruginosa and S. aureus wound infections, 2023, 13, 2045-2322, 10.1038/s41598-023-35364-5
    465. Habtemariam Alekaw Habteweld, Tsegahun Asfaw, Novel Dietary Approach with Probiotics, Prebiotics, and Synbiotics to Mitigate Antimicrobial Resistance and Subsequent Out Marketplace of Antimicrobial Agents: A Review, 2023, Volume 16, 1178-6973, 3191, 10.2147/IDR.S413416
    466. Yu-Ching Su, Mahendar Kadari, Megan L. Straw, Martina Janoušková, Sandra Jonsson, Oskar Thofte, Farshid Jalalvand, Erika Matuschek, Linda Sandblad, Ákos Végvári, Roman A. Zubarev, Kristian Riesbeck, Non-typeable Haemophilus influenzae major outer membrane protein P5 contributes to bacterial membrane stability, and affects the membrane protein composition crucial for interactions with the human host, 2023, 13, 2235-2988, 10.3389/fcimb.2023.1085908
    467. Mohammed Harris, Tracy Fasolino, Diana Ivankovic, Nicole J. Davis, Noel Brownlee, Genetic Factors That Contribute to Antibiotic Resistance through Intrinsic and Acquired Bacterial Genes in Urinary Tract Infections, 2023, 11, 2076-2607, 1407, 10.3390/microorganisms11061407
    468. Jintu Rabha, Bimal Kumar Chetri, Sukanya Das, Dhruva Kumar Jha, In-vitro and in-silico evaluation of antimicrobial and antibiofilm secondary metabolites of a novel fungal endophyte, Albophoma sp. BAPR5, 2023, 158, 02546299, 347, 10.1016/j.sajb.2023.05.033
    469. Márcio Moura-Alves, Alexandra Esteves, Maria Ciríaco, José A. Silva, Cristina Saraiva, Antimicrobial and Antioxidant Edible Films and Coatings in the Shelf-Life Improvement of Chicken Meat, 2023, 12, 2304-8158, 2308, 10.3390/foods12122308
    470. Ana Masara Ahmad Mokhtar, Chen Sep Ngee, Mohammed Zharif Asyrani Mohammed Alias, Nor Hawani Salikin, Fatin Nur Izzati Mohd Fadzil, Nur Azzalia Kamaruzaman, 2023, Chapter 10, 978-981-99-1082-3, 179, 10.1007/978-981-99-1083-0_10
    471. Kalinga Pavan T. Silva, Ganesh Sundar, Anupama Khare, Efflux pump gene amplifications bypass necessity of multiple target mutations for resistance against dual-targeting antibiotic, 2023, 14, 2041-1723, 10.1038/s41467-023-38507-4
    472. Salvatore Galgano, Leah Conway, Nikki Dalby, Adrian Fellows, Jos G. M. Houdijk, Encapsulated peracetic acid as a valid broad-spectrum antimicrobial alternative, leading to beneficial microbiota compositional changes and enhanced performance in broiler chickens, 2023, 14, 2049-1891, 10.1186/s40104-023-00881-w
    473. Magaly De La Cruz-Noriega, Santiago M. Benites, Icela M. Rodríguez-Haro, Marco L. Salazar-Castillo, W. Rojas-Villacorta, N. M. Otiniano, Lizzie Karen Becerra-Gutiérrez, Luis Cabanillas-Chirinos, K. Mendoza-Villanueva, S. Rojas-Flores, Antimicrobial Potential of Tara Hydroalcoholic Extract (Caesalpinia spinosa) against Streptococcus Associated with Strep Throat, 2023, 11, 2227-9717, 1754, 10.3390/pr11061754
    474. Inji Park, Afreen Jailani, Jin-Hyung Lee, Bilal Ahmed, Jintae Lee, The Antibiofilm Effects of Antimony Tin Oxide Nanoparticles against Polymicrobial Biofilms of Uropathogenic Escherichia coli and Staphylococcus aureus, 2023, 15, 1999-4923, 1679, 10.3390/pharmaceutics15061679
    475. Amera F. Ebrahem, Azza S. El-Demerdash, Rania M. Orady, Nehal M. Nabil, Modulatory Effect of Competitive Exclusion on the Transmission of ESBL E. coli in Chickens, 2023, 1867-1306, 10.1007/s12602-023-10095-1
    476. Seiji Yamasaki, Martijn Zwama, Tomohiro Yoneda, Mitsuko Hayashi-Nishino, Kunihiko Nishino, Drug resistance and physiological roles of RND multidrug efflux pumps in Salmonella enterica, Escherichia coli and Pseudomonas aeruginosa , 2023, 169, 1350-0872, 10.1099/mic.0.001322
    477. Impact of antimicrobial resistance on health and economy: A comprehensive review, 2023, 9, 2410-955X, 56, 10.47262/BL/9.1.20230417
    478. Surachai Rattanasuk, Kitipong Wechgama, Theeraphan Chumroenph, Orn Anong Chaiyachet, Kanlayani Charoensop, Potential Antibacterial Activity of Ethanolic Curcuma longa L. Rhizome Extract Against Antibiotic-Resistant Bacteria, 2023, 26, 10288880, 119, 10.3923/pjbs.2023.119.123
    479. Mai Efdi, Tia Okselni, Afrizal Itam, Bustanul Arifin, Mesi Novela, Taufik Hidayat, , Essential Oil Extraction of Piper betle, Piper ramipilum, and Piper aduncum and their Antibacterial Activity against Food borne Pathogens, 2023, 26, 0972-060X, 446, 10.1080/0972060X.2023.2202335
    480. Pei Wang, Hai-Yan Huang, Li-Xin Dou, Wei Deng, Jin-Tao Wang, Xiang-Wen Liao, Ru-Jian Yu, Xue-Min Duan, Yan-Shi Xiong, Synthesis and biological evaluation of ruthenium complexes bearing the 1,2,4-triazole group as potential membrane-targeting antibacterial agents towards Staphylococcus aureus, 2023, 1477-9226, 10.1039/D3DT00889D
    481. Manita Paneri, Prashant Sevta, Overview of Antimicrobial Resistance: An Emerging Silent Pandemic, 2023, 18, 2765-8910, 11, 10.25259/GJMPBU_153_2022
    482. Katarína Kucková, Mangesh Bhide, Dendrimers as Antimicrobial Agents in the Central Nervous System Infections. A Review, 2023, 67, 2453-7837, 24, 10.2478/fv-2023-0014
    483. Amrita C. Bhagwat, Sunil D. Saroj, Polyamine as a microenvironment factor in resistance to antibiotics, 2023, 1040-841X, 1, 10.1080/1040841X.2023.2223277
    484. Sheeba Sawant, Timothy C. Baldwin, Oliwia Metryka, Ayesha Rahman, Evaluation of the Effect of Plectranthus amboinicus L. Leaf Extracts on the Bacterial Antioxidant System and Cell Membrane Integrity of Pseudomonas aeruginosa PA01 and Staphylococcus aureus NCTC8325, 2023, 12, 2076-0817, 853, 10.3390/pathogens12060853
    485. Patrícia Hudecová, Jana Koščová, Vanda Hajdučková, Phytobiotics and Their Antibacterial Activity Against Major Fish Pathogens. A Review, 2023, 67, 2453-7837, 51, 10.2478/fv-2023-0017
    486. Mert Tunca Doganay, Cyril John Chelliah, Abdullah Tozluyurt, Andrea M. Hujer, Stephen K. Obaro, Umut Gurkan, Robin Patel, Robert A. Bonomo, Mohamed Draz, 3D printed materials for combating antimicrobial resistance, 2023, 13697021, 10.1016/j.mattod.2023.05.030
    487. Mariam T. Sayed, Salwa A. Elsharabasy, Anhar Abdel-Aziem, Synthesis and antimicrobial activity of new series of thiazoles, pyridines and pyrazoles based on coumarin moiety, 2023, 13, 2045-2322, 10.1038/s41598-023-36705-0
    488. Sanket Rathod, Sreenath Dey, Swaranjali Pawar, Rakesh Dhavale, Prafulla Choudhari, Eerappa Rajakumara, Deepak Mahuli, Durgacharan Bhagwat, Yasinalli Tamboli, Poournima Sankpal, Sachin Mali, Harinath More, Identification of potential biogenic chalcones against antibiotic resistant efflux pump (AcrB) via computational study, 2023, 0739-1102, 1, 10.1080/07391102.2023.2225099
    489. Carlos Diaz-Uribe, Daily Rangel, William Vallejo, Roger Valle, Yoan Hidago-Rosa, Ximena Zarate, Eduardo Schott, Photophysical characterization of tetrahydroxyphenyl porphyrin Zn(II) and V(IV) complexes: experimental and DFT study, 2023, 0966-0844, 10.1007/s10534-023-00514-9
    490. Shepherd Sundayi Sambaza, Nisha Naicker, Contribution of wastewater to antimicrobial resistance: A review article, 2023, 34, 22137165, 23, 10.1016/j.jgar.2023.05.010
    491. Muhammad Junaid, Krit Thirapanmethee, Piyatip Khuntayaporn, Mullika Traidej Chomnawang, CRISPR-Based Gene Editing in Acinetobacter baumannii to Combat Antimicrobial Resistance, 2023, 16, 1424-8247, 920, 10.3390/ph16070920
    492. Balaji Maddiboyina, Harekrishna Roy, M. Ramaiah, C. N. Sarvesh, Sahasra Hanuman Kosuru, Ramya Krishna Nakkala, Bhabani Shankar Nayak, Methicillin-resistant Staphylococcus aureus: novel treatment approach breakthroughs, 2023, 47, 2522-8307, 10.1186/s42269-023-01072-3
    493. Emília Maria França Lima, Stephen C. Winans, Uelinton Manoel Pinto, Quorum sensing interference by phenolic compounds – A matter of bacterial misunderstanding, 2023, 9, 24058440, e17657, 10.1016/j.heliyon.2023.e17657
    494. Satwik Majumder, Peter David Eckersall, Saji George, Bovine Mastitis: Examining Factors Contributing to Treatment Failure and Prospects of Nano-enabled Antibacterial Combination Therapy, 2023, 2692-1952, 10.1021/acsagscitech.3c00066
    495. Jessica Santos Pizzo, Raira Andrade Pelvine, Andre Luiz Biscaia Ribeiro da Silva, Jane Martha Graton Mikcha, Jesui Vergilio Visentainer, Camila Rodrigues, Use of Essential Oil Emulsions to Control Escherichia coli O157:H7 in the Postharvest Washing of Lettuce, 2023, 12, 2304-8158, 2571, 10.3390/foods12132571
    496. Sandile Phinda Songca, Combinations of Photodynamic Therapy with Other Minimally Invasive Therapeutic Technologies against Cancer and Microbial Infections, 2023, 24, 1422-0067, 10875, 10.3390/ijms241310875
    497. Md. Abdus Salam, Md. Yusuf Al-Amin, Moushumi Tabassoom Salam, Jogendra Singh Pawar, Naseem Akhter, Ali A. Rabaan, Mohammed A. A. Alqumber, Antimicrobial Resistance: A Growing Serious Threat for Global Public Health, 2023, 11, 2227-9032, 1946, 10.3390/healthcare11131946
    498. Henrik O’Brien, Talish Davoodian, Michael D L Johnson, The promise of copper ionophores as antimicrobials, 2023, 75, 13695274, 102355, 10.1016/j.mib.2023.102355
    499. Haoxuan Zeng, Marc Stadler, Wolf-Rainer Abraham, Mathias Müsken, Hedda Schrey, Inhibitory Effects of the Fungal Pigment Rubiginosin C on Hyphal and Biofilm Formation in Candida albicans and Candida auris, 2023, 9, 2309-608X, 726, 10.3390/jof9070726
    500. Kavya IK, Nikita Kochhar, Anshika Ghosh, Shrashti Shrivastava, Varunendra Singh Rawat, Soma Mondal Ghorai, Kushneet Kaur Sodhi, Anina James, Mohit Kumar, Perspectives on Systematic generation of antibiotic resistance with special emphasis on modern antibiotics, 2023, 27728099, 100068, 10.1016/j.totert.2023.100068
    501. Vinod Kumar Vashistha, Renu Bala, Ankit Mittal, Dipak Kumar Das, Rajasekhar VSR. Pullabhotla, Synthesis, characterization and application of Cr2O3 nanoparticles as an efficient antibacterial agent, 2023, 100, 00194522, 101069, 10.1016/j.jics.2023.101069
    502. Kaniz F. Chowdhury, Rebecca J. Hall, Alan McNally, Laura J. Carter, Phytoremediation as a Tool to Remove Drivers of Antimicrobial Resistance in the Aquatic Environment, 2023, 261, 0179-5953, 10.1007/s44169-023-00039-9
    503. Ana Luíza A.R. Martin, Raimundo Luiz Silva Pereira, Janaína Esmeraldo Rocha, Pablo A.M. Farias, Thiago S. Freitas, Francisco Rodrigo de Lemos Caldas, Fernando G. Figueredo, Nadghia Figueiredo Leite Sampaio, Jaime Ribeiro-Filho, Irwin Rose de Alencar Menezes, Guilherme Andrade Brancaglion, Daniela Carvalho de Paulo, Diogo T. Carvalho, Micheline Azevedo Lima, Henrique D.M. Coutinho, Marta M.F. Fonteles, In vitro and in silico evidences about the inhibition of MepA efflux pump by coumarin derivatives, 2023, 08824010, 106246, 10.1016/j.micpath.2023.106246
    504. Bo Ao, Qingquan Du, Decheng Liu, Xiaoshan Shi, Junming Tu, Xian Xia, A review on synthesis and antibacterial potential of bio-selenium nanoparticles in the food industry, 2023, 14, 1664-302X, 10.3389/fmicb.2023.1229838
    505. Christiana Jesumirhewe, Adriana Cabal-Rosel, Franz Allerberger, Burkhard Springer, Werner Ruppitsch, Genetic characterization of Escherichia coli and Klebsiella spp. from humans and poultry in Nigeria, 2023, 5, 2516-8290, 10.1099/acmi.0.000509.v4
    506. Halaswamy Hire Math, Sreenivasa Nayaka, Muthuraj Rudrappa, Raju Suresh Kumar, Abdulrahman I. Almansour, Karthikeyan Perumal, Girish Babu Kantli, Isolation, Characterization of Pyraclostrobin Derived from Soil Actinomycete Streptomyces sp. HSN-01 and Its Antimicrobial and Anticancer Activity, 2023, 12, 2079-6382, 1211, 10.3390/antibiotics12071211
    507. Indira P. Sarethy, Nidhi Srivastava, Swapnil Chaturvedi, Nidhi Chauhan, Michael Danquah, 2023, 9780323953887, 329, 10.1016/B978-0-323-95388-7.00023-1
    508. Anuj Rohatgi, Pratima Gupta, Benzoic acid derivatives as potent antibiofilm agents against Klebsiella pneumoniae biofilm, 2023, 13891723, 10.1016/j.jbiosc.2023.06.011
    509. Palanisamy Sankar, Karunakaran Vijayakaran, Kalaivanan Ramya, 2023, Chapter 43, 978-981-19-9278-0, 947, 10.1007/978-981-19-9279-7_43
    510. Panxin Li, Rui Yin, Juanli Cheng, Jinshui Lin, Bacterial Biofilm Formation on Biomaterials and Approaches to Its Treatment and Prevention, 2023, 24, 1422-0067, 11680, 10.3390/ijms241411680
    511. Turki Al Hagbani, Syed Mohd Danish Rizvi, Shazi Shakil, Amr Selim Abu Lila, Nano-Formulating Besifloxacin and Employing Quercetin as a Synergizer to Enhance the Potency of Besifloxacin against Pathogenic Bacterial Strains: A Nano-Synergistic Approach, 2023, 13, 2079-4991, 2083, 10.3390/nano13142083
    512. Puneet Gandhi, Parkhi Shrivastava, 2023, 9780323953887, 575, 10.1016/B978-0-323-95388-7.00025-5
    513. Yinxia Huang, Chuanzhi Zhu, Liping Pan, Zongde Zhang, The role of Mycobacterium tuberculosis acetyltransferase and protein acetylation modifications in tuberculosis, 2023, 13, 2235-2988, 10.3389/fcimb.2023.1218583
    514. Guru Prasad Manderwad, Farhat Subhaana Chilakapati, Sandeep Kumar Tipparthi, Ravi Shankar Reddy A, Raj Kumar H.R.V, Pradeep Kumar Reddy Sripathi, Evaluation of uropathogens isolated in the outpatient department of a tertiary care hospital in south India, 2023, 10, 2394-546X, 101, 10.18231/j.ijmr.2023.018
    515. Olalekan Olanrewaju Bakare, Arun Gokul, Lee-Ann Niekerk, Omolola Aina, Ademola Abiona, Adele Mariska Barker, Gerhard Basson, Mbukeni Nkomo, Laetitia Otomo, Marshall Keyster, Ashwil Klein, Recent Progress in the Characterization, Synthesis, Delivery Procedures, Treatment Strategies, and Precision of Antimicrobial Peptides, 2023, 24, 1422-0067, 11864, 10.3390/ijms241411864
    516. Tareq Osaili, Ioannis N. Savvaidis, Ali Atoui, Maria I. Tsiraki, Layal Karam, Microbiota and sensorial attributes of buffalo meat stored under vacuum packaging: combined impact of marination, citrox and oregano essential oil, 2023, 26, 1094-2912, 1953, 10.1080/10942912.2023.2238919
    517. Mohamed A. Raslan, Sara A. Raslan, Eslam M. Shehata, Amr S. Mahmoud, Kenneth Lundstrom, Debmalaya Barh, Vasco Azevedo, Nagwa A. Sabri, Associations between Nutrigenomic Effects and Incidences of Microbial Resistance against Novel Antibiotics, 2023, 16, 1424-8247, 1093, 10.3390/ph16081093
    518. Kevin Scaife, Trung D. Vo, Yvonne Dommels, Elisa Leune, Kaj Albermann, Lucie Pařenicová, In silico and in vitro safety assessment of a fungal biomass from Rhizomucor pusillus for use as a novel food ingredient, 2023, 02786915, 113972, 10.1016/j.fct.2023.113972
    519. Petros Ioannou, Stella Baliou, Diamantis P. Kofteridis, Antimicrobial Peptides in Infectious Diseases and Beyond—A Narrative Review, 2023, 13, 2075-1729, 1651, 10.3390/life13081651
    520. Fernanda S. Short, Gisele Lôbo-Hajdu, Suzana M. Guimarães, Marinella S. Laport, Rosane Silva, Antimicrobial-Resistant Bacteria from Free-Living Green Turtles (Chelonia mydas), 2023, 12, 2079-6382, 1268, 10.3390/antibiotics12081268
    521. Aaima Amin, Ramisha Noureen, Ayesha Iftikhar, Annam Hussain, Wadi B. Alonazi, Hafiz Muhammad Zeeshan Raza, Ifra Ferheen, Muhammad Ibrahim, Uropathogenic bacteria and deductive genomics towards antimicrobial resistance, virulence, and potential drug targets, 2023, 1618-1905, 10.1007/s10123-023-00416-3
    522. Amrita Nepalia, Sheryl Erica Fernandes, Harpreet Singh, Shweta Rana, Deepak Kumar Saini, Anti‐microbial resistance and aging—A design for evolution, 2023, 2692-9368, 10.1002/wsbm.1626
    523. James B. Thoden, Bogdan M. Benin, Adam Priebe, Woo Shik Shin, Ramaiah Muthyala, Yuk Yin Sham, Hazel M. Holden, Characterization of a novel inhibitor for the New Delhi metallo-β-lactamase-4: implications for drug design and combating bacterial drug resistance, 2023, 00219258, 105135, 10.1016/j.jbc.2023.105135
    524. George Butler, Julia Bos, Robert H. Austin, Sarah R. Amend, Kenneth J. Pienta, Escherichia coli survival in response to ciprofloxacin antibiotic stress correlates with increased nucleoid length and effective misfolded protein management , 2023, 10, 2054-5703, 10.1098/rsos.230338
    525. Nikita O. Mishra, Alisa S. Quon, Anna Nguyen, Edgar K. Papazyan, Yajiao Hao, Yangyang Liu, Constructing Physiological Defense Systems against Infectious Disease with Metal–Organic Frameworks: A Review, 2023, 2576-6422, 10.1021/acsabm.3c00391
    526. Thein LIN, Shizuka NOMURA, Suzuka SOMENO, Takahiro ABE, Miyuki NISHIYAMA, Shunya SHIKI, Hayato HARIMA, Kanako ISHIHARA, Role of multidrug resistance and co-resistance on a high percentage of streptomycin resistance in Escherichia coli isolated from chicken meats in Japan, 2023, 85, 0916-7250, 832, 10.1292/jvms.23-0135
    527. Petro Karungamye, Anita Rugaika, Kelvin Mtei, Revocatus Machunda, Antibiotic Resistance Patterns of Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa Isolated from Hospital Wastewater, 2023, 3, 2673-8007, 867, 10.3390/applmicrobiol3030060
    528. Charalampos Zarras, Elias Iosifidis, Maria Simitsopoulou, Styliani Pappa, Angeliki Kontou, Emmanuel Roilides, Anna Papa, Neonatal Bloodstream Infection with Ceftazidime-Avibactam-Resistant blaKPC-2-Producing Klebsiella pneumoniae Carrying blaVEB-25, 2023, 12, 2079-6382, 1290, 10.3390/antibiotics12081290
    529. Velu Manikandan, Sea C. Min, Roles of polysaccharides-based nanomaterials in food preservation and extension of shelf-life of food products: A review, 2023, 252, 01418130, 126381, 10.1016/j.ijbiomac.2023.126381
    530. Shishir Bobate, Sejal Mahalle, Nishant A. Dafale, Abhay Bajaj, Emergence of environmental antibiotic resistance: Mechanism, monitoring and management, 2023, 13, 26667657, 100409, 10.1016/j.envadv.2023.100409
    531. Elaine Liu, Andrea M Prinzi, Jovan Borjan, Samuel L Aitken, Patricia A Bradford, William F Wright, #AMRrounds: a systematic educational approach for navigating bench to bedside antimicrobial resistance, 2023, 5, 2632-1823, 10.1093/jacamr/dlad097
    532. Olatunde Adekunle Ayodele, Iyanu Oluwafemi Awotuya, Bamigboye Josiah Taiwo, Oluwole Michael Osungunna, Mzozoyana Vuyisa, Saka Lateef Kasim, Two New Triterpenoids from the Leaf of Ficus vogelii and Their Antibacterial Activities, 2023, 2522-5758, 10.1007/s42250-023-00743-y
    533. М.Yu. Korbush, Т.M. Serhiichuk, Y.M. Yumyna, T.O. Borisova, G.M. Tolstanova, Effect of Particulate Matter of Natural and Anthropogenic Origin on Growth Indicators and Sensitivity to Antibiotics of Escherichia coli B906, 2023, 85, 2616-9258, 34, 10.15407/microbiolj85.04.034
    534. Afreen Hussain, S. Hari Krishna Kumar, R. Prathiviraj, Ashish Ashwin Kumar, Kalyani Renjith, G. Seghal Kiran, Joseph Selvin, The genome of Symbiodiniaceae-associated Stutzerimonas frequens CAM01 reveals a broad spectrum of antibiotic resistance genes indicating anthropogenic drift in the Palk Bay coral reef of south-eastern India, 2023, 205, 0302-8933, 10.1007/s00203-023-03656-z
    535. Neha Singh, Khushboo Bange, Rising antibiotic resistance: growing concern , 2023, 11, 24692786, 110, 10.15406/jbmoa.2023.11.00354
    536. James Gana, Nomakorinte Gcebe, Rian Ewald Pierneef, Yi Chen, Rebone Moerane, Abiodun Adewale Adesiyun, Genomic Characterization of Listeria innocua Isolates Recovered from Cattle Farms, Beef Abattoirs, and Retail Outlets in Gauteng Province, South Africa, 2023, 12, 2076-0817, 1062, 10.3390/pathogens12081062
    537. Tania Sultana, Rebekah N. Duffin, Victoria L. Blair, Philip C. Andrews, Gallium reactivates first and second generation quinolone antibiotics towards drug-resistant Klebsiella pneumoniae, 2023, 1359-7345, 10.1039/D3CC02916F
    538. John A. Renye, Mayra A. Mendez-Encinas, Andre K. White, Amanda L. Miller, Michael J. McAnulty, Madhav P. Yadav, Arland T. Hotchkiss, Giselle K. P. Guron, Adam M. Oest, Karla G. Martinez-Robinson, Elizabeth Carvajal-Millan, Antimicrobial activity of thermophilin 110 against the opportunistic pathogen Cutibacterium acnes, 2023, 45, 0141-5492, 1365, 10.1007/s10529-023-03419-2
    539. Israa El Hajjar, Maryam Al Bitar, Sarah Zahr, Rayan Zahr, Mahmoud Khalil, R. Awad, Investigation of the physical properties and antibacterial activity of various ferrite, chromite, and aluminate nanocomposites, 2023, 968, 09258388, 171953, 10.1016/j.jallcom.2023.171953
    540. Rinki Gupta, Mangal Singh, Ranjana Pathania, Chemical genetic approaches for the discovery of bacterial cell wall inhibitors, 2023, 2632-8682, 10.1039/D3MD00143A
    541. Yogendra P Shelke, Nandkishor J Bankar, Gulshan R Bandre , Dattu V Hawale, Pratibha Dawande, An Overview of Preventive Strategies and the Role of Various Organizations in Combating Antimicrobial Resistance, 2023, 2168-8184, 10.7759/cureus.44666
    542. Milad Tavassoli, Arezou Khezerlou, Balal Khalilzadeh, Ali Ehsani, Hossein Kazemian, Aptamer-modified metal organic frameworks for measurement of food contaminants: a review, 2023, 190, 0026-3672, 10.1007/s00604-023-05937-2
    543. Parvin Mohseni, Abozar Ghorbani, Niloofar Fariborzi, Exploring the potential of cold plasma therapy in treating bacterial infections in veterinary medicine: opportunities and challenges, 2023, 10, 2297-1769, 10.3389/fvets.2023.1240596
    544. 2023, 9781119862604, 273, 10.1002/9781119862611.ch18
    545. Sodiq Inaolaji Yusuff, Yusuf Amuda Tajudeen, Iyiola Olatunji Oladunjoye, Habeebullah Jayeola Oladipo, Olufunmilayo Victoria Bolarinwa, Olalekan Tolulope Popoola, Abdulhakeem Funsho Ahmed, Matifan Dereje Olana, The need to increase antimicrobial resistance surveillance among forcibly displaced persons (FDPs), 2023, 9, 2055-0936, 10.1186/s40794-023-00198-6
    546. Haileyesus Getahun, 2023, Chapter 22, 978-3-031-33850-2, 143, 10.1007/978-3-031-33851-9_22
    547. Asfiha Tarannum, Cristian Camilo Rodríguez-Almonacid, Jorge Salazar-Bravo, Zemfira N. Karamysheva, Molecular Mechanisms of Persistence in Protozoan Parasites, 2023, 11, 2076-2607, 2248, 10.3390/microorganisms11092248
    548. Ka Mun Chung, Xiew Leng Liau, Swee Seong Tang, Bacteriophages and Their Host Range in Multidrug-Resistant Bacterial Disease Treatment, 2023, 16, 1424-8247, 1467, 10.3390/ph16101467
    549. Neha Sharda, Deepak Kumar, Raman Thakur, Anil K. Sharma, Shailja Sankhyan, Anil Kumar, Environmental Antibiotic Resistance: Recent Trends, Scope, and Relevance, 2023, 234, 0049-6979, 10.1007/s11270-023-06695-w
    550. Mahmood Fadaie, Hassan Dianat-Moghadam, Elham Ghafouri, Shamsi Naderi, Mohammad Hossein Darvishali, Mahsa Ghovvati, Hossein Khanahmad, Maryam Boshtam, Pooyan Makvandi, Unraveling the potential of M13 phages in biomedicine: Advancing drug nanodelivery and gene therapy, 2023, 238, 00139351, 117132, 10.1016/j.envres.2023.117132
    551. Ibrahim Waziri, Hlonepho M. Masena, Tunde L. Yusuf, Louis-Charl C. Coetzee, Adedapo S. Adeyinka, Alfred J. Muller, Synthesis, characterization, biological evaluation, DFT and molecular docking studies of (Z)-2-((2-bromo-4-chlorophenyl)imino)methyl)-4-chlorophenol and its Co(ii), Ni(ii), Cu(ii), and Zn(ii) complexes, 2023, 47, 1144-0546, 17853, 10.1039/D3NJ02910G
    552. Benito E. Ramírez-Flores, Emilio Bucio, Synthesis and characterization of the graft copolymer PTFE-g-HEMA using gamma rays for the load and delivery of ciprofloxacin, 2023, 2159-6867, 10.1557/s43579-023-00491-7
    553. Codrut Sarafoleanu, Raluca Enache, Attitudes, perceptions and knowledge regarding antibiotic use for respiratory illness and antibiotic resistance in Romania: an observational, questionnaire-based study results, 2023, 13, 2393-3356, 144, 10.2478/rjr-2023-0023
    554. Madhan Jeyaraman, Naveen Jeyaraman, Arulkumar Nallakumarasamy, Karthikeyan P Iyengar, Vijay Kumar Jain, Anish G Potty, Ashim Gupta, Silver nanoparticle technology in orthopaedic infections, 2023, 14, 2218-5836, 662, 10.5312/wjo.v14.i9.662
    555. Faithfulness O. Osazee, Kate E. Mokobia, Ikhazuagbe H. Ifijen, The Urgent Need for Tungsten-Based Nanoparticles as Antibacterial Agents, 2023, 2731-4812, 10.1007/s44174-023-00127-3
    556. Amirah H. Ramli, Siti M. Mohd Faudzi, Diarylpentanoids, the privileged scaffolds in antimalarial and anti‐infectives drug discovery: A review, 2023, 0365-6233, 10.1002/ardp.202300391
    557. M. Thoriq Ihza Farizqi, Mustofa Helmi Effendi, R. Tatang Santanu Adikara, Ira Sari Yudaniayanti, Giovanni Dwi Syahni Putra, Aswin Rafif Khairullah, Shendy Canadya Kurniawan, Otto Sahat Martua Silaen, Safira Ramadhani, Saumi Kirey Millannia, Sergius Erikson Kaben, Yusac Kristanto Khoda Waruwu, Detection of extended-spectrum β-lactamase-producing Escherichia coli genes isolated from cat rectal swabs at Surabaya Veterinary Hospital, Indonesia, 2023, 22310916, 1917, 10.14202/vetworld.2023.1917-1925
    558. Rohan Samir Kumar Sachan, Vyoma Mistry, Mayuri Dholaria, Abhishek Rana, Inderpal Devgon, Iftikhar Ali, Javed Iqbal, Sayed M. Eldin, Abdel Rahman Mohammad Said Al-Tawaha, Sami Bawazeer, Joydeep Dutta, Arun Karnwal, Overcoming Mycobacterium tuberculosis Drug Resistance: Novel Medications and Repositioning Strategies, 2023, 8, 2470-1343, 32244, 10.1021/acsomega.3c02563
    559. Daniel Sakyi Agyirifo, Theophilus Abonyi Mensah, Andrews Senyenam Yao Senya, Alphonse Hounkpe, Cindy Deladem Dornyoh, Emmanuel Plas Otwe, Dynamics of antimicrobial resistance and virulence of staphylococcal species isolated from foods traded in the Cape Coast metropolitan and Elmina municipality of Ghana, 2023, 24058440, e21584, 10.1016/j.heliyon.2023.e21584
    560. Zenika Febian Ramadhanty, Dikdik Kurnia, Boima Situmeang, Mieke Hemiawati, Nur Asmah, Antibacterial and Antioxidant Superoxide Anion Radical Inhibitors from Myrmecodia pendans: An In silico Study, 2023, 13, 22103155, 10.2174/2210315513666230223094232
    561. Amit Jethwa, Jayesh Bhagat, Jacinta Teresa George, Sagar Shah, 2023, Chapter 6, 978-981-99-5280-9, 125, 10.1007/978-981-99-5281-6_6
    562. Jerrold H. Levy, Roman M. Sniecinski, Bianca Rocca, Kamrouz Ghadimi, James Douketis, Corinne Frere, Julie Helms, Toshiaki Iba, Andreas Koster, Tara K. Lech, Cheryl L. Maier, Mathew D. Neal, Ecatarina Scarlestscu, Alex Spyropoulos, Marie E. Steiner, Alfonso J. Tafur, Kenichi A. Tanaka, Jean M. Connors, Defining heparin resistance: communication from the ISTH SSC Subcommittee of Perioperative and Critical Care Thrombosis and Hemostasis, 2023, 15387836, 10.1016/j.jtha.2023.08.013
    563. Maxime Mourer, Jean-Bernard Regnouf-de-Vains, Raphaël E. Duval, Functionalized Calixarenes as Promising Antibacterial Drugs to Face Antimicrobial Resistance, 2023, 28, 1420-3049, 6954, 10.3390/molecules28196954
    564. Sidsel Nag, Gunhild Larsen, Judit Szarvas, Laura Elmlund Kohl Birkedahl, Gábor Máté Gulyás, Wojchiech Jakub Ciok, Timmie Mikkel Lagermann, Silva Tafaj, Susan Bradbury, Peter Collignon, Denise Daley, Victorien Dougnon, Kafayath Fabiyi, Boubacar Coulibaly, René Dembélé, Georgette Nikiema, Natama Magloire, Isidore Juste Ouindgueta, Zenat Zebin Hossain, Anowara Begum, Deyan Donchev, Mathew Diggle, LeeAnn Turnbull, Simon Lévesque, Livia Berlinger, Kirstine Kobberoe Sogaard, Paula Diaz Guevara, Carolina Duarte Valderrama, Panagiota Maikanti, Jana Amlerova, Pavel Drevinek, Jan Tkadlec, Milica Dilas, Achim Kaasch, Henrik Torkil Westh, Mohamed Azzedine Bachtarzi, Wahiba Amhis, Carolina Elisabeth Satán Salazar, JoséEduardo Villacis, Mária Angeles Dominguez Lúzon, Dámaris Berbel Palau, Claire Duployez, Maxime Paluche, Solomon Asante-Sefa, Mie Moller, Margaret Ip, Ivana Mareković, Agnes Pál-Sonnevend, Clementiza Elvezia Cocuzza, Asta Dambrauskiene, Alexandre Macanze, Anelsio Cossa, Inácio Mandomando, Philip Nwajiobi-Princewill, Iruka N. Okeke, Aderemi O. Kehinde, Ini Adebiyi, Ifeoluwa Akintayo, Oluwafemi Popoola, Anthony Onipede, Anita Blomfeldt, Nora Elisabeth Nyquist, Kiri Bocker, James Ussher, Amjad Ali, Nimat Ullah, Habibullah Khan, Natalie Weiler Gustafson, Ikhlas Jarrar, Arif Al-Hamad, Viravarn Luvira, Wantana Paveenkittiporn, Irmak Baran, James C. L. Mwansa, Linda Sikakwa, Kaunda Yamba, Rene Sjogren Hendriksen, Frank Moller Aarestrup, Whole genomes from bacteria collected at diagnostic units around the world 2020, 2023, 10, 2052-4463, 10.1038/s41597-023-02502-7
    565. Martina Rega, Laura Andriani, Antonio Poeta, Chiara Casadio, Giuseppe Diegoli, Silvia Bonardi, Mauro Conter, Cristina Bacci, Transmission of β-lactamases in the pork food chain: A public health concern, 2023, 17, 23527714, 100632, 10.1016/j.onehlt.2023.100632
    566. Naim Asyraf Rosli, Anis Rageh Al-Maleki, Mun Fai Loke, Eng Guan Chua, Mohammed Abdelfatah Alhoot, Jamuna Vadivelu, Polymorphism of virulence genes and biofilm associated with in vitro induced resistance to clarithromycin in Helicobacter pylori, 2023, 15, 1757-4749, 10.1186/s13099-023-00579-4
    567. Seda Ohanyan, Lilit Rshtuni, Ashkhen Hovhannisyan, 2024, Chapter 57, 978-3-031-42774-9, 537, 10.1007/978-3-031-42775-6_57
    568. Safiya Mehraj, Zahoor Ahmad Parry, 2023, 0, 2631-6188, 10.5772/intechopen.112853
    569. Naglaa A. Taha, Mohsen Mohamed Elsharkawy, Aya A. Shoughy, Mohamed K. El-Kazzaz, Amr A. Khedr, Biological control of postharvest tomato fruit rots using Bacillus spp. and Pseudomonas spp., 2023, 33, 2536-9342, 10.1186/s41938-023-00752-6
    570. Abhishek Kumar, Priya Bansal, Deepti Katiyar, Surya Prakash, Nidagurthi Guggilla Raghavendra Rao, Molecular Targeting and Novel Therapeutic Approaches against Fungal Infections, 2023, 23, 15665240, 726, 10.2174/1566524023666230302123310
    571. Cristina Rodrigues dos Santos Barbosa, Nair Silva Macêdo, Zildene de Sousa Silveira, Janaína Esmeraldo Rocha, Thiago Sampaio Freitas, Débora Feitosa Muniz, Isaac Moura Araújo, Cícera Datiane de Morais Oliveira-Tintino, Emmanuel Silva Marinho, Matheus Nunes da Rocha, Marcia Machado Marinho, Antonio Henrique Bezerra, Gabriela Ribeiro de Sousa, José Maria Barbosa-Filho, Jailton de Souza-Ferrari, Henrique Douglas Melo Coutinho, Hélcio Silva dos Santos, Francisco Assis Bezerra da Cunha, Evaluation of the antibacterial and inhibitory activity of the MepA efflux pump of Staphylococcus aureus by riparins I, II, III, and IV, 2023, 748, 00039861, 109782, 10.1016/j.abb.2023.109782
    572. Valentina Marturano, Angela Marotta, Sarai Agustin Salazar, Veronica Ambrogi, Pierfrancesco Cerruti, Recent advances in bio-based functional additives for polymers, 2023, 139, 00796425, 101186, 10.1016/j.pmatsci.2023.101186
    573. B Roja, S Saranya, L Thamanna, P Chellapandi, Inferring molecular mechanisms of host-microbe-drug interactions in the human gastrointestinal tract, 2023, 25901249, 100027, 10.1016/j.meomic.2023.100027
    574. Mansab Ali Saleemi, Lizhen Fang, Vuanghao Lim, 2023, 9780323953764, 1, 10.1016/B978-0-323-95376-4.00015-0
    575. Luciane Nunes de Sousa Casavechia, Antonio Carlos Meireles, Evandro Schapira, Rodrigo Antonio Brant Fernandes, Arthur Gustavo Fernandes, The impact of antibiotic prophylaxis with intracameral cefuroxime on postoperative infectious endophthalmitis rates in a high-volume cataract surgery center, 2023, 13, 2045-2322, 10.1038/s41598-023-45398-4
    576. Shweta Mishra, Jagriti Singh, Vineeta Singh, 2024, 9780323952415, 493, 10.1016/B978-0-323-95241-5.00029-0
    577. Blessing Temitope Lawani, Michael Tosin Bayode, Muyideen Enitan Sadibo, Elizabeth Foluke Awodire, Olayemi Philemon Aro, Abosede Ayodeji Akindele, Antibiotic Resistance Microbes’ (ARM) Mechanisms and Management: A Phytomedicinal Approach, 2023, 0369-8211, 10.1007/s40011-023-01525-9
    578. Katarzyna Palica, Fritz Deufel, Susann Skagseth, Gabriela Paula Di Santo Metzler, Johannes Thoma, Anna Andersson Rasmussen, Arto Valkonen, Per Sunnerhagen, Hanna-Kirsti S. Leiros, Hanna Andersson, Mate Erdelyi, α-Aminophosphonate inhibitors of metallo-β-lactamases NDM-1 and VIM-2, 2023, 2632-8682, 10.1039/D3MD00286A
    579. I. Rublenko, I. Chemerovska, M. Bolibrukh, S. Taranuha, M. Nasarenko, S. Rublenko, Examination of urine microflora and resistance of isolated pathogens during inflammatory processes of the urinary tract in dogs, 2023, 2415-7589, 70, 10.33245/2310-4902-2023-180-1-70-80
    580. Pratheep Sandrasaigaran, Shuvarnah Mohan, Nithiyha Sandara Segaran, Tze Yan Lee, Son Radu, Hanan Hasan, Prevalence of multi-antimicrobial resistant non-typhoidal Salmonella isolated from filth flies at wet markets in Klang, Malaysia, and their survival in the simulated gastric fluid, 2023, 407, 01681605, 110390, 10.1016/j.ijfoodmicro.2023.110390
    581. Rodolfo Dantas, Marcelo Brocchi, Taícia Pacheco Fill, 2023, Chapter 4, 978-3-031-41740-5, 71, 10.1007/978-3-031-41741-2_4
    582. Ahmed M. Kamal El-sagheir, Ireny Abdelmesseh Nekhala, Mohammed K. Abd El-Gaber, Ahmed S. Aboraia, Jonatan Persson, Ann-Britt Schäfer, Michaela Wenzel, Farghaly A. Omar, Design, Synthesis, Molecular Modeling, Biological Activity, and Mechanism of Action of Novel Amino Acid Derivatives of Norfloxacin, 2023, 2470-1343, 10.1021/acsomega.3c07221
    583. Jirapat Dawan, Songrae Kim, Juhee Ahn, Assessment of phenotypic heterogeneity in Salmonella Typhimurium preadapted to ciprofloxacin and tetracycline, 2023, 370, 1574-6968, 10.1093/femsle/fnad100
    584. Igor Rodrigues Lapa, Fallon dos Santos Siqueira, Cleydson Finotti Cordeiro, Marli Matiko Anraku de Campos, Rudy Bonfilio, Lívia de Figueiredo Diniz, Gabriella Martiniano Pereira, Jamie Anthony Hawkes, Lucas Lopardi Franco, Diogo Teixeira Carvalho, Combining eugenol and dihydroeugenol with a piperazine moiety to create new antimicrobial agents that are effective against resistant species, 2023, 184, 08824010, 106369, 10.1016/j.micpath.2023.106369
    585. Deepali Kalambhe, Lokesh K.M., Gourab Basak, Sumeet Singh, Abhilash Jadhao, 2023, Chapter 4, 978-981-99-2208-6, 51, 10.1007/978-981-99-2209-3_4
    586. Saynab F. Aden, Lila A.M. Mahmoud, Evdokiya H. Ivanovska, Lui R. Terry, Valeska P. Ting, Maria G. Katsikogianni, Sanjit Nayak, Controlled delivery of ciprofloxacin using zirconium-based MOFs and poly-caprolactone composites, 2023, 88, 17732247, 104894, 10.1016/j.jddst.2023.104894
    587. Vishwambar D. Navale, Balasaheb R. Borade, Gamidi Rama Krishna, Koteswara Rao Vamkudoth, Ravindar Kontham, Metabolites from Lactococcus lactis subsp. lactis: Isolation, Structure Elucidation, and Antimicrobial Activity, 2023, 8, 2470-1343, 36628, 10.1021/acsomega.3c01662
    588. Aysegul Bumin, Megan Shah, Kejun Huang, Tamer Kahveci, 2023, Vulture: VULnerabilities in impuTing drUg REsistance, 9798400701269, 1, 10.1145/3584371.3612993
    589. Zinka Maksimović, Benjamin Čengić, Amel Ćutuk, Alan Maksimović, 2023, 0, 2632-0517, 10.5772/intechopen.112977
    590. Cícera Datiane de Morais Oliveira-Tintino, Jorge Ederson Gonçalves Santana, Gabriel Gonçalves Alencar, Gustavo Miguel Siqueira, Sheila Alves Gonçalves, Saulo Relison Tintino, Irwin Rose Alencar de Menezes, João Pedro Viana Rodrigues, Vanessa Barbosa Pinheiro Gonçalves, Roberto Nicolete, Jaime Ribeiro-Filho, Teresinha Gonçalves da Silva, Henrique Douglas Melo Coutinho, Valencene, Nootkatone and Their Liposomal Nanoformulations as Potential Inhibitors of NorA, Tet(K), MsrA, and MepA Efflux Pumps in Staphylococcus aureus Strains, 2023, 15, 1999-4923, 2400, 10.3390/pharmaceutics15102400
    591. Radoslav Petkov, Amy H. Camp, Rivka L. Isaacson, James H. Torpey, Targeting bacterial degradation machinery as an antibacterial strategy, 2023, 480, 0264-6021, 1719, 10.1042/BCJ20230191
    592. Alka Pawar, Chandrika Konwar, Prakash Jha, Ravi Kant, Madhu Chopra, Uma Chaudhry, Daman Saluja, Bactericidal activity of esculetin is associated with impaired cell wall synthesis by targeting glutamate racemase of Neisseria gonorrhoeae, 2023, 1381-1991, 10.1007/s11030-023-10745-0
    593. Su Jin Jo, Jun Kwon, Sang Guen Kim, Seung-Jun Lee, The Biotechnological Application of Bacteriophages: What to Do and Where to Go in the Middle of the Post-Antibiotic Era, 2023, 11, 2076-2607, 2311, 10.3390/microorganisms11092311
    594. Anusha Gauba, Khondaker Miraz Rahman, Evaluation of Antibiotic Resistance Mechanisms in Gram-Negative Bacteria, 2023, 12, 2079-6382, 1590, 10.3390/antibiotics12111590
    595. Ali A. Rabaan, Mona A. Al Fares, Manar Almaghaslah, Tariq Alpakistany, Nawal A. Al Kaabi, Saleh A. Alshamrani, Ahmad A. Alshehri, Ibrahim Abdullah Almazni, Ahmed Saif, Abdulrahim R. Hakami, Faryal Khamis, Mubarak Alfaresi, Zainab Alsalem, Zainab A. Alsoliabi, Kawthar Amur Salim Al Amri, Amal K. Hassoueh, Ranjan K. Mohapatra, Kovy Arteaga-Livias, Mohammed Alissa, Application of CRISPR-Cas System to Mitigate Superbug Infections, 2023, 11, 2076-2607, 2404, 10.3390/microorganisms11102404
    596. Hadeel M. Yosif, Buthenia A. Hasoon, Majid S. Jabir, Laser Ablation for Synthesis of Hydroxyapatite and Au NP Conjugated Cefuroxime: Evaluation of Their Effects on the Biofilm Formation of Multidrug Resistance Klebsiella pneumoniae, 2023, 1557-1955, 10.1007/s11468-023-02053-y
    597. Unnati Patel, Emily C. Hunt, Recent Advances in Combating Bacterial Infections by Using Hybrid Nano-Systems, 2023, 4, 2624-845X, 429, 10.3390/jnt4030019
    598. Agung Febryanto, Dwi Utari Rahmiati, Ietje Wientarsih, Fitria Senja Murtiningrum, Bintang Nurul Iman, Deni Noviana, Gunanti Gunanti, Penyembuhan luka sayatan kulit menggunakan topikal balsamum peruvianum pascaoperasi infark miokardium pada babi domestik (Sus scrofa domestica) , 2023, 2962-8490, 25, 10.29244/currbiomed.1.1.25-32
    599. Yousra Hammouti, Amine Elbouzidi, Mohamed Taibi, Reda Bellaouchi, El Hassania Loukili, Mohamed Bouhrim, Omar M. Noman, Ramzi A. Mothana, Mansour N. Ibrahim, Abdeslam Asehraou, Bouchra El Guerrouj, Mohamed Addi, Screening of Phytochemical, Antimicrobial, and Antioxidant Properties of Juncus acutus from Northeastern Morocco, 2023, 13, 2075-1729, 2135, 10.3390/life13112135
    600. Deepthy B J, Athira A, Champa H, Maya S, Aimy Hynse, Antimicrobial resistance among common clinical isolates from Wayanad district, 2023, 9, 2581-4753, 162, 10.18231/j.ijmmtd.2023.032
    601. Omar Messaoudi, Ibrahim Benamar, Ahmed Azizi, Salim Albukhaty, Yasmina Khane, Ghassan M. Sulaiman, Mounir M. Salem-Bekhit, Kaouthar Hamdi, Sirine Ghoummid, Abdelhalim Zoukel, Ilhem Messahli, Yacine Kerchich, Farouk Benaceur, Mohamed M. Salem, Mourad Bendahou, Characterization of Silver Carbonate Nanoparticles Biosynthesized Using Marine Actinobacteria and Exploring of Their Antimicrobial and Antibiofilm Activity, 2023, 21, 1660-3397, 536, 10.3390/md21100536
    602. Saranya Kuppusamy, Kadiyala Venkateswarlu, Mallavarapu Megharaj, Kanmani Sellappa, Yong Bok Lee, Contamination of long-term manure-fertilized Indian paddy soils with veterinary antibiotics: Impact on bacterial communities and antibiotics resistance genes, 2023, 192, 09291393, 105106, 10.1016/j.apsoil.2023.105106
    603. Kanak Chahar, Yash Sharma, Preeti Patel, Vivek Asati, Balak Das Kurmi, A Mini-review on Recent Strategies and Applications of Nanomedicines to Combat Antimicrobial Resistance, 2023, 24, 13892002, 406, 10.2174/1389200224666230731093319
    604. Rohit Roy Chowdhury, Jesmita Dhar, Stephy Mol Robinson, Abhishake Lahiri, Kausik Basak, Sandip Paul, Rachana Banerjee, MACI: A machine learning-based approach to identify drug classes of antibiotic resistance genes from metagenomic data, 2023, 167, 00104825, 107629, 10.1016/j.compbiomed.2023.107629
    605. S. N. Orekhov, A. A. Mokhov, A. N. Yavorsky, Antimicrobial Resistance: A Risk Factor for the Biosafety System, 2023, 11, 2619-1164, 336, 10.30895/2312-7821-2023-11-3-336-347
    606. Shiwangi Dogra, Balendu Shekhar Giri, Manish Kumar, 2023, Chapter 1035, 1867-979X, 10.1007/698_2023_1035
    607. Pawan Kumar, Ananyaashree Behera, Pranav Tiwari, Sibi Karthik, Mainak Biswas, Avinash Sonawane, Shaikh M. Mobin, Exploring the antimicrobial potential of isoniazid loaded Cu-based metal–organic frameworks as a novel strategy for effective killing of Mycobacterium tuberculosis, 2023, 2050-750X, 10.1039/D3TB02292G
    608. Ng Xiao Ying, Fong Kar Wai, Kiew Lik Voon, Katrina Chung Pooi Yin, Liew Yun Khoon, Nicolas Delsuc, Mohd Zulkefeli, Low May Lee, Ruthenium(II) polypyridyl complexes as emerging photosensitisers for antibacterial photodynamic therapy, 2023, 01620134, 112425, 10.1016/j.jinorgbio.2023.112425
    609. Zuzanna Bacińska, Kinga Baberowska, Alicja Karolina Surowiak, Lucyna Balcerzak, Daniel Jan Strub, Exploring the Antimicrobial Properties of 99 Natural Flavour and Fragrance Raw Materials against Pathogenic Bacteria: A Comparative Study with Antibiotics, 2023, 12, 2223-7747, 3777, 10.3390/plants12213777
    610. Steward Mudenda, Patience Chisha, Billy Chabalenge, Victor Daka, Ruth Lindizyani Mfune, Maisa Kasanga, Martin Kampamba, Phumzile Skosana, Eustus Nsofu, Jimmy Hangoma, Linda Siachalinga, Christabel Nang’andu Hikaambo, Tadious Chimombe, Aurel Constant Allabi, Bawa Boya, Webrod Mufwambi, Zikria Saleem, Scott Kaba Matafwali, Antimicrobial stewardship: knowledge, attitudes and practices regarding antimicrobial use and resistance among non-healthcare students at the University of Zambia, 2023, 5, 2632-1823, 10.1093/jacamr/dlad116
    611. Karthika Prasad, Syamlal Sasi, Janith Weerasinghe, Igor Levchenko, Kateryna Bazaka, Enhanced Antimicrobial Activity through Synergistic Effects of Cold Atmospheric Plasma and Plant Secondary Metabolites: Opportunities and Challenges, 2023, 28, 1420-3049, 7481, 10.3390/molecules28227481
    612. Muhammad Saad Ullah, Athar Mahmood, Muhammad Mansoor Javaid, Maria Naqve, Safura Bibi, Zain Ul Abidin, Ikram ul Haq, Shahid Raza Khan, 2023, Chapter 12, 978-3-031-37427-2, 259, 10.1007/978-3-031-37428-9_12
    613. Chien Ing Yeo, Clariss Hui Peng Goh, Edward R.T. Tiekink, Jactty Chew, Antibiotics: A “GOLDen” promise?, 2024, 500, 00108545, 215429, 10.1016/j.ccr.2023.215429
    614. Robert Goss, Vicki J. Adams, Christine Heinrich, Rachael Grundon, Rose Linn‐Pearl, Emma Scurrell, Negar Hamzianpour, Progressive ulcerative keratitis in dogs in the United Kingdom: Microbial isolates, antimicrobial sensitivity, and resistance patterns, 2023, 1463-5216, 10.1111/vop.13160
    615. Mohamed Tagrida, Suriya Palamae, Jirakrit Saetang, Lukai Ma, Hui Hong, Soottawat Benjakul, Comparative Study of Quercetin and Hyperoside: Antimicrobial Potential towards Food Spoilage Bacteria, Mode of Action and Molecular Docking, 2023, 12, 2304-8158, 4051, 10.3390/foods12224051
    616. Abdul Haseeb, Safa S. Almarzoky Abuhussain, Saleh Alghamdi, Shahad M. Bahshwan, Ahmad J. Mahrous, Yazeed A. Alzahrani, Albaraa Faraj Alzahrani, Abdullmoin AlQarni, Manal AlGethamy, Asem Saleh Naji, Asim Abdulaziz Omar Khogeer, Muhammad Shahid Iqbal, Brian Godman, Zikria Saleem, Point Prevalence Survey of Antimicrobial Use and Resistance during the COVID-19 Era among Hospitals in Saudi Arabia and the Implications, 2023, 12, 2079-6382, 1609, 10.3390/antibiotics12111609
    617. Dingyuan Yan, Yue Huang, Jianyu Zhang, Qian Wu, Guangjie Song, Jian Ji, Qiao Jin, Dong Wang, Ben Zhong Tang, Adding Flying Wings: Butterfly-Shaped NIR-II AIEgens with Multiple Molecular Rotors for Photothermal Combating of Bacterial Biofilms, 2023, 0002-7863, 10.1021/jacs.3c09058
    618. Dongkun Yu, Indra Bhusan Basumatary, You Liu, Xingyan Zhang, Santosh Kumar, Fei Ye, Joydeep Dutta, Chitosan-photocatalyst nanocomposite on polyethylene films as antimicrobial coating for food packaging, 2024, 186, 03009440, 108069, 10.1016/j.porgcoat.2023.108069
    619. Hanny Tika Draviana, Istikhori Fitriannisa, Muhamad Khafid, Dyah Ika Krisnawati, Chien-Hung Lai, Yu-Jui Fan, Tsung-Rong Kuo, Size and charge effects of metal nanoclusters on antibacterial mechanisms, 2023, 21, 1477-3155, 10.1186/s12951-023-02208-3
    620. Ru Wei Chua, Keang Peng Song, Adeline Su Yien Ting, Characterization and identification of antimicrobial compounds from endophytic Fusarium incarnatum isolated from Cymbidium orchids, 2023, 1618-1905, 10.1007/s10123-023-00442-1
    621. Barakatullah Mohammadi, Natalia Gorkina, Marco Esteban Pérez-Reyes, Stephanie A. Smith, Profiling toxin genes and antibiotic resistance in Bacillus cereus isolated from pre-launch spacecraft, 2023, 14, 1664-302X, 10.3389/fmicb.2023.1231726
    622. Patrizia Nardulli, Andrea Ballini, Maria Zamparella, Danila De Vito, The Role of Stakeholders’ Understandings in Emerging Antimicrobial Resistance: A One Health Approach, 2023, 11, 2076-2607, 2797, 10.3390/microorganisms11112797
    623. Rizki Amalia Putri, Muhammad Saifur Rohman, Respati Tri Swasono, Tri Joko Raharjo, A novel synthetic peptide analog enhanced antibacterial activity of the frog-derived skin peptide wuchuanin-A1, 2023, 0739-1102, 1, 10.1080/07391102.2023.2281633
    624. Niloofar Sadat Tabibpour, Abbas Doosti, Ali Sharifzadeh, Putative novel outer membrane antigens multi-epitope DNA vaccine candidates identified by Immunoinformatic approaches to control Acinetobacter baumannii, 2023, 24, 1471-2172, 10.1186/s12865-023-00585-w
    625. Thangavelu Indumathi, Inbavalli Kumaresan, Jagadeesh Suriyaprakash, Abdullah A. Alarfaj, Abdurahman Hajinur Hirad, Ravindran Jaganathan, Maghimaa Mathanmohun, Synthesis and characterization of 4‐nitro benzaldehyde with ZnO‐based nanoparticles for biomedical applications, 2023, 0233-111X, 10.1002/jobm.202300494
    626. Leqaa A. Mohammed, Mohammed Alwan Farhan, Safaa A. Dadoosh, Mustafa A. Alheety, Abdulwahhab H. Majeed, Ali Saadon Mahmood, Zaid H. Mahmoud, A Review on Benzimidazole Heterocyclic Compounds: Synthesis and Their Medicinal Activity Applications, 2023, 07, 2509-9396, 652, 10.1055/a-2155-9125
    627. Rajesh Kushwaha, Rohit Rai, Vedant Gawande, Virendra Singh, Ashish Kumar Yadav, Biplob Koch, Prodyut Dhar, Samya Banerjee, Antibacterial Photodynamic Therapy by Zn(II)‐Curcumin Complex: Synthesis, Characterization, DFT Calculation, Antibacterial Activity, and Molecular Docking, 2023, 1439-4227, 10.1002/cbic.202300652
    628. Meera Patel, Nesha May O. Andoy, Susannah Megan Tran, Keuna Jeon, Ruby May A. Sullan, Different drug loading methods and antibiotic structure modulate the efficacy of polydopamine nanoparticles as drug nanocarriers, 2023, 2050-750X, 10.1039/D3TB01490H
    629. Kashif Ali, Sadia Shakeel, Azizullah Khan Dhiloo, Mehwish Wajdi, Fakhsheena Anjum, Saqib Hussain Ansari, Antibiotic Stewardship: A Handshaking Strategy Among Physicians and Pharmacists to Improve therapeutic Outcomes in Hematology-Oncology, 2023, 0018-5787, 10.1177/00185787231196774
    630. Sarah Rhea, Catherine Gensler, Nigatu Atlaw, Monique Pairis-Garcia, Gregory A. Lewbart, Alyssa Valentine, Marilyn Cruz, Paulina Castillo, Alberto Vélez, Gabriel Trueba, Megan E. Jacob, Presence of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli in Food-Producing and Companion Animals and Wildlife on Small-Holder Farms of Floreana Island, Galápagos Islands, 2023, 1530-3667, 10.1089/vbz.2023.0044
    631. Raunak Dhanker, Merwin Mammen, Anjali Singh, Shubham Goyal, Touseef Hussain, Priyanka Tyagi, 2023, Chapter 2, 978-3-031-44617-7, 25, 10.1007/978-3-031-44618-4_2
    632. Ningyuan Yao, Wei Li, Lanfang Hu, Nan Fang, Do mould inhibitors alter the microbial community structure and antibiotic resistance gene profiles on textiles?, 2024, 911, 00489697, 168808, 10.1016/j.scitotenv.2023.168808
    633. Sofía Isabel Cuevas-Cianca, Cristian Romero-Castillo, José Luis Gálvez-Romero, Eugenio Sánchez-Arreola, Zaida Nelly Juárez, Luis Ricardo Hernández, Latin American Plants against Microorganisms, 2023, 12, 2223-7747, 3997, 10.3390/plants12233997
    634. Delia Gambino, Francesco Giuseppe Galluzzo, Luca Cicero, Roberta Cirincione, Erika Mannino, Veronica Fiore, Daniela Proverbio, Eva Spada, Giovanni Cassata, Valeria Gargano, Antibiotic Resistance Genes Carried by Commensal Escherichia coli from Shelter Cats in Italy, 2023, 10, 2306-7381, 680, 10.3390/vetsci10120680
    635. Zakarya Al‐Shaebi, Munevver Akdeniz, Awel Olsido Ahmed, Mine Altunbek, Omer Aydin, Breakthrough Solution for Antimicrobial Resistance Detection: Surface‐Enhanced Raman Spectroscopy‐based on Artificial Intelligence, 2023, 2196-7350, 10.1002/admi.202300664
    636. The Emergence and Preventability of Globally Spreading Antibiotic Resistance: A Literature Review, 2023, 13, 2079-0864, 578, 10.1134/S2079086423060154
    637. Asmaa Gaber Mubarak, Hanan H. Abd-Elhafeez, Hams M. A. Mohamed, Molecular characterization of Helicobacter pylori isolated from Nile Tilapia (Oreochromis niloticus) and fish handlers, 2023, 19, 1746-6148, 10.1186/s12917-023-03819-6
    638. Mary Farah, Jaume Giralt, Frank Stüber, Josep Font, Azael Fabregat, Agustí Fortuny, Intensification of diclofenac removal through supported liquid membrane and ozonation, 2024, 33, 23521864, 103469, 10.1016/j.eti.2023.103469
    639. Nurul Azmiera, Hassanain Al-Talib, Noraziah Sahlan, Anna Krasilnikova, Shariza Sahudin, Chong Chin Heo, Antimicrobial Activity of Black Soldier Fly, Hermetia illucens (Diptera: Stratiomyidae) Larval Hemolymph against Various Pathogenic Bacteria, 2023, 17, 09737510, 2493, 10.22207/JPAM.17.4.47
    640. Nazanin Moradi, Carlos Lopez-Vazquez, Hector Garcia Hernandez, Vera Proskynitopoulou, Anastasios Vouros, Ioannis Garagounis, Souzana Lorentzou, Kyriakos D. Panopoulos, Damir Brdanovic, Mark C.M. van Loosdrecht, Francisco J. Rubio- Rincón, Practical application of UVOX Redox® for pharmaceutical removal from liquid digestate in two biogas plants, 2023, 23521864, 103473, 10.1016/j.eti.2023.103473
    641. Dagninet Alelign, Aschalew Kidanewold, Magnitude of extended-spectrum β-lactamase and carbapenemase producing Enterobacteriaceae among commonly vended street foods in Arba Minch town, southern Ethiopia, 2023, 23, 1471-2180, 10.1186/s12866-023-03137-9
    642. Javier A. Garza-Cervantes, Gricelda Mendiola-Garza, Angel León-Buitimea, José Rubén Morones-Ramírez, Synergistic antibacterial effects of exopolysaccharides/nickel-nanoparticles composites against multidrug-resistant bacteria, 2023, 13, 2045-2322, 10.1038/s41598-023-48821-y
    643. Lizandra Perez-Bou, Alejandro Gonzalez-Martinez, Jesus Gonzalez-Lopez, David Correa-Galeote, Promising bioprocesses for the efficient removal of antibiotics and antibiotic-resistance genes from urban and hospital wastewaters: Potentialities of aerobic granular systems, 2024, 342, 02697491, 123115, 10.1016/j.envpol.2023.123115
    644. Assefa Abebe, Alemayehu Birhanu, Methicillin Resistant Staphylococcus aureus: Molecular Mechanisms Underlying Drug Resistance Development and Novel Strategies to Combat, 2023, Volume 16, 1178-6973, 7641, 10.2147/IDR.S428103
    645. Maha A. Alshiekheid, Ali M. Dou, Mohammad Algahtani, Wafa Abdullah I. Al-Megrin, Yaseer Ali Alhawday, Arwa Essa Alradhi, Khulud Bukhari, Basmah F. Alharbi, Ahmed N Algefary, Basmah Awwadh Alhunayhani, Khaled S. Allemailem, Bioinformatics and Immunoinformatics Assisted Multiepitope Vaccine Construct against Burkholderia Anthina, 2023, 13190164, 101917, 10.1016/j.jsps.2023.101917
    646. Nitish Venkateswarlu Mogili, Kakara Divya, Jagadeeswar Kodavaty, Rajeswara Reddy Erva, 2023, 978-1-83916-761-4, 202, 10.1039/BK9781837671380-00202
    647. Atish Roy Chowdhury, Debapriya Mukherjee, Ritika Chatterjee, Dipshikha Chakravortty, Defying the odds: Determinants of the antimicrobial response of Salmonella Typhi and their interplay, 2023, 0950-382X, 10.1111/mmi.15209
    648. Ewa Felis, Adam Sochacki, Sylwia Bajkacz, Aneta Łuczkiewicz, Krzysztof Jóźwiakowski, Joan García, Jan Vymazal, Removal of selected sulfonamides and sulfonamide resistance genes from wastewater in full-scale constructed wetlands, 2024, 912, 00489697, 169195, 10.1016/j.scitotenv.2023.169195
    649. Aaruci Agarwalla, Waleed Ahmed, Ali H. Al-Marzouqi, Tahir A. Rizvi, Mushtaq Khan, Essam Zaneldin, Characteristics and Key Features of Antimicrobial Materials and Associated Mechanisms for Diverse Applications, 2023, 28, 1420-3049, 8041, 10.3390/molecules28248041
    650. Bianca Zingales, Andréa M. Macedo, Fifteen Years after the Definition of Trypanosoma cruzi DTUs: What Have We Learned?, 2023, 13, 2075-1729, 2339, 10.3390/life13122339
    651. Olajide Sunday Faleye, Bharath Reddy Boya, Jin-Hyung Lee, Inho Choi, Jintae Lee, Clive Page, Halogenated Antimicrobial Agents to Combat Drug-Resistant Pathogens, 2024, 76, 0031-6997, 90, 10.1124/pharmrev.123.000863
    652. Ananya Anurag Anand, Ayush Amod, Sarfraz Anwar, Amaresh Kumar Sahoo, Gautam Sethi, Sintu Kumar Samanta, A comprehensive guide on screening and selection of a suitable AMP against biofilm-forming bacteria, 2023, 1040-841X, 1, 10.1080/1040841X.2023.2293019
    653. Franklin Loic Tchinda Taghu, Boniface Pone Kamdem, Vincent Ngouana, Zuriatou Yajeh Tanka, Victorine Lorette Yimgang, Julius Nsami Ndi, Paul Keilah Lunga, Fabrice Fekam Boyom, Biological Synthesis and Characterization of Silver-Doped Nanocomposites: Antibacterial and Mechanistic Studies, 2023, 3, 2813-2998, 13, 10.3390/ddc3010002
    654. Lalit Mohan, Shaubhik Anand, Muskan Mittal, Keshav Goyal, Aman Dixit, Rakesh Kumar Gupta, Rita Jain, Prerna Diwan, Cross-sectional study: knowledge assessment of youth regarding the global public health threat of antibiotic resistance, 2023, 2198-1833, 10.1007/s10389-023-02179-7
    655. Ragaa A. Hamouda, Rabab R. Makharita, Fauzia A. K. Qarabai, Fathi S. Shahabuddin, Amna A. Saddiq, Laila Ahmed Bahammam, Shaymaa W. El-Far, Mamdouh A. Bukhari, Mohammad A. Elaidarous, Asmaa Abdella, Antibacterial Activities of Ag/Cellulose Nanocomposites Derived from Marine Environment Algae against Bacterial Tooth Decay, 2023, 12, 2076-2607, 1, 10.3390/microorganisms12010001
    656. Renu Solanki, Shailly Anand, Mugdha Anand, Prateek Kumar, Munendra Kumar, Monisha Khanna Kapur, Antibiotic Resistance: A Global Health Crisis, 2022, 1, 25835327, 3, 10.59118/NLKD4831
    657. Amaraporn Rerkasem, Pak Thaichana, Nuttida Bunsermvicha, Rawee Nopparatkailas, Supapong Arwon, Saranat Orrapin, Termpong Reanpang, Poon Apichartpiyakul, Saritphat Orrapin, Boonying Siribumrungwong, Nongkran Lumjuan, Kittipan Rerkasem, José G. B. Derraik, A COVID-19 Silver Lining—Decline in Antibiotic Resistance in Ischemic Leg Ulcers during the Pandemic: A 6-Year Retrospective Study from a Regional Tertiary Hospital (2017–2022), 2023, 13, 2079-6382, 35, 10.3390/antibiotics13010035
    658. Mouad Farhat, Slimane Khayi, Jaouad Berrada, Mohamed Mouahid, Najia Ameur, Hosny El-Adawy, Siham Fellahi, Salmonella enterica Serovar Gallinarum Biovars Pullorum and Gallinarum in Poultry: Review of Pathogenesis, Antibiotic Resistance, Diagnosis and Control in the Genomic Era, 2023, 13, 2079-6382, 23, 10.3390/antibiotics13010023
    659. Ya Zhang, Woo-Kyung Chung, Su-Hyun Moon, Jeoung-Gyu Lee, Ae-Son Om, Comparison of Antibacterial Activities of Korean Pine (Pinus densiflora) Needle Steam Distillation Extract on Escherichia coli and Staphylococcus aureus Focusing on Membrane Fluidity and Genes Involved in Membrane Lipids and Stress, 2023, 29, 1420-3049, 165, 10.3390/molecules29010165
    660. Berhanu Mekibib, Mesfin Belachew, Biruhtesfa Asrade, Girma Badada, Rahmeto Abebe, Incidence of uterine infections, major bacteria and antimicrobial resistance in postpartum dairy cows in southern Ethiopia, 2024, 24, 1471-2180, 10.1186/s12866-023-03160-w
    661. Aleksandra Martinovic, Andrea Milacic, Nadja Raicevic, Amil Orahovac, Beatriz Daza, Marija Vugdelic, Adriana Cabal, Werner Ruppitsch, 2024, Chapter 88, 978-3-031-49061-3, 845, 10.1007/978-3-031-49062-0_88
    662. Nishitha R. Kumar, Tejashree A. Balraj, Swetha N. Kempegowda, Akila Prashant, Multidrug-Resistant Sepsis: A Critical Healthcare Challenge, 2024, 13, 2079-6382, 46, 10.3390/antibiotics13010046
    663. Pedro Rafael Torres Tovar, Christian Ruíz Cometa, Llourenn Astrihd Pérez Mendoza, María Eugenia Hernández Valenzuela, Resistencia genética del Staphylococcus aureus meticilino resistente: una revisión, 2023, 6, 2665-2552, 26, 10.61182/rnavmed.v6n2a3
    664. Sana Saifi, Anam Ashraf, Gulam Mustafa Hasan, Anas Shamsi, Md. Imtaiyaz Hassan, Insights into the preventive actions of natural compounds against Klebsiella pneumoniae infections and drug resistance, 2024, 173, 0367326X, 105811, 10.1016/j.fitote.2023.105811
    665. Liu Yang, Jennifer C. Jackson, Camilla H. M. Camargos, Marcella Torres Maia, Diego Stéfani Teodoro Martinez, Amauri Jardim de Paula, Camila A. Rezende, Andreia F. Faria, Thin-Film Composite Polyamide Membranes Decorated with Photoactive Carbon Dots for Antimicrobial Applications, 2024, 2574-0970, 10.1021/acsanm.3c05880
    666. Tannishtha Biswas, Mehnaz Ahmed, Susmita Mondal, 2024, Chapter 4, 978-981-99-7260-9, 85, 10.1007/978-981-99-7261-6_4
    667. Adrianna Aleksandrowicz, Rafał Kolenda, Karolina Baraniewicz, Teresa L. M. Thurston, Jarosław Suchański, Krzysztof Grzymajlo, Membrane properties modulation by SanA: implications for xenobiotic resistance in Salmonella Typhimurium, 2024, 14, 1664-302X, 10.3389/fmicb.2023.1340143
    668. Evans Thompson, Akua Tutuwaa Badu, Emmanuella Abban, Evelyn Baawa Eyeson, Leslie Larry Afutu, Bless Amankwaah, Suzzana Dickson Buabeng, Abigail Agyen Frimpong, Alberta Serwah Anning, George Ghartey-Kwansah, Bacterial contamination on clinical surfaces and oxygen device accessories in the emergency unit of a tertiary health facility in Ghana, 2024, 24, 1471-2334, 10.1186/s12879-023-08894-6
    669. Jianwei Yu, Yan Jia, Qichao Yu, Lan Lin, Chao Li, Bowang Chen, Pingyu Zhong, Xueqing Lin, Huilan Li, Yinping Sun, Xuejing Zhong, Yuqi He, Xiaoyun Huang, Shuangming Lin, Yuanming Pan, Deciphering complex antibiotic resistance patterns in Helicobacter pylori through whole genome sequencing and machine learning, 2024, 13, 2235-2988, 10.3389/fcimb.2023.1306368
    670. Israa El Hajjar, Maryam Al Bitar, Rayan Zahr, Sarah Zahr, Mahmoud Khalil, R Awad, Fabrication, characterization, and antibacterial activity of ferrite, chromite, and aluminate nanoparticles, 2024, 11, 2053-1591, 015003, 10.1088/2053-1591/ad1774
    671. Saliy Olena, Popova Mariia, Tarasenko Hanna, Getalo Olga, Development strategy of novel drug formulations for the delivery of doxycycline in the treatment of wounds of various etiologies, 2024, 09280987, 106636, 10.1016/j.ejps.2023.106636
    672. Satoru Kusaka, Azusa Haruta, Miki Kawada‐Matsuo, Mi Nguyen‐Tra Le, Mineka Yoshikawa, Toshiki Kajihara, Koji Yahara, Junzo Hisatsune, Ryota Nomura, Kazuhiro Tsuga, Hiroki Ohge, Motoyuki Sugai, Hitoshi Komatsuzawa, Oral and rectal colonization of methicillin‐resistant Staphylococcus aureus in long‐term care facility residents and their association with clinical status, 2024, 0385-5600, 10.1111/1348-0421.13111
    673. Madara Jayanetti, Charitha Thambiliyagodage, Heshan Liyanaarachchi, Geethma Ekanayake, Amavin Mendis, Leshan Usgodaarachchi, In vitro influence of PEG functionalized ZnO–CuO nanocomposites on bacterial growth, 2024, 14, 2045-2322, 10.1038/s41598-024-52014-6
    674. Mayara Santana dos Santos, Jonathan Medeiros Silva, Mariana Brito Barbieri, Sérgio Antunes Filho, Bianca Pizzorno Backx, Bionanotechnology and its applications: The plurality of science is fundamental for the search for solutions, 2024, 27731111, 100060, 10.1016/j.plana.2024.100060
    675. Ali Mohammed Al-Rawe, Yousif Ibrahem Yousif, Ousama Khalaf Ghareeb Al-Jomaily, Semaa A. Shaban, Ahmed AbdulJabbar Suleiman, Identification of Antimicrobial Resistance Genes and Drug Targets in Antibiotic-Resistant Clostridioides difficile Clinical Isolates, 2023, 38, 0891-4168, 197, 10.3103/S0891416823030023
    676. Sasadhar Majhi, Sivakumar Manickam, 2024, 9780443152696, 25, 10.1016/B978-0-443-15269-6.00007-9
    677. Rangan Mitra, Suparna Ghosh, Goutam Mukherjee, Avik Acharya Chowdhury, 2023, Chapter 11-1, 978-3-031-30037-0, 1, 10.1007/978-3-031-30037-0_11-1
    678. Spencer Mark Mondol, Israt Islam, Md. Rafiul Islam, Shahriar Kabir Shakil, Nadira Naznin Rakhi, Jannatul Ferdous Mustary, Donald James Gomes, Hussain Md. Shahjalal, Md. Mizanur Rahaman, Genomic landscape of NDM-1 producing multidrug-resistant Providencia stuartii causing burn wound infections in Bangladesh, 2024, 14, 2045-2322, 10.1038/s41598-024-51819-9
    679. Chawalit Chatupheeraphat, Jiratchaya Peamchai, Noramon Kaewsai, Nuttapat Anuwongcharoen, Warawan Eiamphungporn, Farah Al-Marzooq, Enhancing the activity of β-lactamase inhibitory protein-II with cell-penetrating peptide against KPC-2-carrying Klebsiella pneumoniae, 2024, 19, 1932-6203, e0296727, 10.1371/journal.pone.0296727
    680. Kumbirai Musiyiwa, Tinoziva T. Simbanegavi, Jerikias Marumure, Zakio Makuvara, Nhamo Chaukura, Willis Gwenzi, The soil-microbe-plant resistome: A focus on the source-pathway-receptor continuum, 2024, 1614-7499, 10.1007/s11356-023-31788-8
    681. Connie A. Rojas, Zhandra Entrolezo, Jessica K. Jarett, Guillaume Jospin, Alex Martin, Holly H. Ganz, Microbiome Responses to Oral Fecal Microbiota Transplantation in a Cohort of Domestic Dogs, 2024, 11, 2306-7381, 42, 10.3390/vetsci11010042
    682. Derya Ozhava, Petras Winkler, Yong Mao, Enhancing antimicrobial activity and reducing cytotoxicity of silver nanoparticles through gelatin nanoparticles, 2024, 1743-5889, 10.2217/nnm-2023-0246
    683. Liangyu Zhou, Yi Deng, Yujie Ren, Hiu Ling Poon, Wang Yee Chu, Hua Wang, Yau Kei Chan, Antibiotics-free nanomaterials against bacterial keratitis: Eliminating infections with reactive oxygen species (ROS), 2024, 13858947, 148978, 10.1016/j.cej.2024.148978
    684. Tamaraukepreye Catherine Odubo, Adams Ovie Iyiola, Bukola Omotomilola Adetola, Ayotunde Samuel Kolawole, Sylvester Chibueze Izah, Morufu Olalekan Raimi, Matthew Chidozie Ogwu, 2023, Chapter 3-1, 978-3-031-21973-3, 1, 10.1007/978-3-031-21973-3_3-1
    685. Xiaomeng Liang, Aimin Cheng, Chengying Ma, Ning Gao, 2024, 9780128186190, 257, 10.1016/B978-0-12-818619-0.00134-9
    686. Hend Khalifa, Sari Rasheed, Jörg Haupenthal, Jennifer Herrmann, Yasmine M. Mandour, Ashraf H. Abadi, Matthias Engel, Rolf Müller, Anna K. H. Hirsch, Mohammad Abdel‐Halim, Mostafa M. Hamed, Development and evaluation of 2,4‐disubstituted‐5‐aryl pyrimidine derivatives as antibacterial agents, 2024, 0365-6233, 10.1002/ardp.202300656
    687. Abdelbagi Elfadil, Karem Ibrahem, Hani Abdullah, Jawahir Mokhtar, Mohammed Al-Rabia, Hafsa Mohammed, Synergistic Activity of 3-Hydrazinoquinoxaline-2-Thiol in Combination with Penicillin Against MRSA, 2024, Volume 17, 1178-6973, 355, 10.2147/IDR.S448843
    688. Brooke L. Smith, Sandun Fernando, Maria D. King, Escherichia coli resistance mechanism AcrAB-TolC efflux pump interactions with commonly used antibiotics: a molecular dynamics study, 2024, 14, 2045-2322, 10.1038/s41598-024-52536-z
    689. Temitope Oyedemi, Tolulope Fadeyi, Kolapo Fasina, 2024, 0, 3033-3318, 10.5772/intechopen.112848
    690. Mamoon Ur Rashid, Syed Jehangir Shah, Safira Attacha, Luqman Khan, Jawad Saeed, Syed Tanveer Shah, Heba I. Mohamed, Green Synthesis and Characterization of Zinc Oxide Nanoparticles Using Citrus limetta Peels Extract and Their Antibacterial Activity Against Brown and Soft Rot Pathogens and Antioxidant Potential, 2024, 1877-2641, 10.1007/s12649-023-02389-w
    691. Andrea Visca, Luciana Di Gregorio, Elisa Clagnan, Annamaria Bevivino, Sustainable strategies: Nature-based solutions to tackle antibiotic resistance gene proliferation and improve agricultural productivity and soil quality, 2024, 00139351, 118395, 10.1016/j.envres.2024.118395
    692. Farah Adiba, Bima Rajendra Naufal Prakosa, Ananda Rabiatul Awaliyah, Nindya Vidiasty Heruputri, Ikuro Kasuga, Cindy Rianti Priadi, Iftita Rahmatika, M.S. Abfertiawan, H.D. Ariesyady, I.R.S. Salami, M. Firdayati, Occurrence of extended-spectrum beta-lactamase producing escherichia coli in groundwater, 2024, 485, 2267-1242, 04007, 10.1051/e3sconf/202448504007
    693. Ayaz Ahmed, Moatter Zehra, Sidrah Asghar, Rabia Ilyas, Jazib Shafiq, Afshan Shams, Zulfiqar Ali Mirani, Syed Abid Ali, 2024, 9780323955133, 235, 10.1016/B978-0-323-95513-3.00018-6
    694. Mohanraj Gopikrishnan, Sree Haryini, George Priya Doss C, Emerging strategies and therapeutic innovations for combating drug resistance in Staphylococcus aureus strains: A comprehensive review, 2024, 0233-111X, 10.1002/jobm.202300579
    695. Marharyta Hancharova, Kinga Halicka-Stępień, Aleksandra Dupla, Anna Lesiak, Jadwiga Sołoducho, Joanna Cabaj, Antimicrobial activity of metal-based nanoparticles: a mini-review, 2024, 0966-0844, 10.1007/s10534-023-00573-y
    696. Misganu Yadesa Tesema, Alemayehu Godana Birhanu, One health initiative to mitigate the challenge of antimicrobial resistance in the perspectives of developing countries, 2024, 48, 2522-8307, 10.1186/s42269-024-01176-4
    697. Greta D. Cook, Nikolas M. Stasulli, Employing Synthetic Biology to Expand Antibiotic Discovery, 2024, 24726303, 100120, 10.1016/j.slast.2024.100120
    698. Ranieli Paiva Lopes, Fernanda Lopes Ferreira, Grasiely Faria de Sousa, Waleska Stephanie da Cruz Nizer, Cintia Lopes de Brito Magalhães, Jaqueline Maria Siqueira Ferreira, Antônio Helvécio Tótola, Lucienir Pains Duarte, José Carlos de Magalhães, Activity of extracts and terpenoids from Tontelea micrantha (Mart. ex Schult.) A.C.Sm. (Celastraceae) against pathogenic bacteria , 2024, 1478-6419, 1, 10.1080/14786419.2024.2309554
    699. Samuel Ariyo Okaiyeto, Parag Prakash Sutar, Chang Chen, Jia-Bao Ni, Jun Wang, Arun S. Mujumdar, Jing-Shou Zhang, Ming-Qiang Xu, Xiao-Ming Fang, Chunjiang Zhang, Hong-Wei Xiao, Antibiotic Resistant Bacteria in Food Systems: Current Status, Resistance Mechanisms, and Mitigation Strategies, 2024, 29497981, 100027, 10.1016/j.agrcom.2024.100027
    700. Valentina Straniero, Finding Ways to Fight Antimicrobial Resistance: Present, Future, and Perspectives, 2024, 13, 2079-6382, 171, 10.3390/antibiotics13020171
    701. Ghazal Shineh, Mohammadmahdi Mobaraki, Elham Afzali, Femi Alakija, Zeinab Jabbari Velisdeh, David K. Mills, Antimicrobial Metal and Metal Oxide Nanoparticles in Bone Tissue Repair, 2024, 2731-4812, 10.1007/s44174-024-00159-3
    702. Rui Zhang, Zhiling Chen, Yi Li, Delun Chen, Tao Wang, Bingrong Wang, Qionglin Zhou, Shaowen Cheng, Dan Xu, Xiaohong Wang, Lina Niu, Jinchun Tu, Qiang Wu, Enhanced photodynamic therapy efficacy of Ni-doped/oxygen vacancy double-defect Ni-ZnO@C photosensitizer in bacteria-infected wounds based on ROS damage and ATP synthesis inhibition, 2024, 10050302, 10.1016/j.jmst.2024.01.018
    703. Elda A. Flores-Contreras, Reyna Berenice González-González, José Juan Pablo Pizaña-Aranda, Lizeth Parra-Arroyo, Arath A. Rodríguez-Aguayo, Maricarmen Iñiguez-Moreno, Georgia María González-Meza, Rafael G. Araújo, Diana Ramírez-Gamboa, Roberto Parra-Saldívar, Elda M. Melchor-Martínez, Agricultural waste as a sustainable source for nanoparticle synthesis and their antimicrobial properties for food preservation, 2024, 6, 2673-3013, 10.3389/fnano.2024.1346069
    704. Asif Naeem, Zahid Naeem Qaisrani, Aziza Noor, Imran Hussain, Asif Raheem, ROUTE OF ADMINISTRATION OF NANOPARTICLES COMBATING A RESISTANT BACTERIUM., 2024, 21, 2312-7791, 01, 10.34016/pjbt.2024.21.01.861
    705. Asfa Rizvi, Bilal Ahmed, Shahid Umar, Mohd. Saghir Khan, Comprehensive Insights into Sorghum (Sorghum bicolor) Defense Mechanisms Unveiled: Plant Growth-Promoting Rhizobacteria in Combating Burkholderia-Induced Bacterial Leaf Stripe Disease, 2024, 2667064X, 100397, 10.1016/j.stress.2024.100397
    706. Aya M. Soliman, Ahmed M. K. El‐sagheir, Momen M. Thabet, Ahmed Faried Abdel Hakiem, Ahmed S. Aboraia, Synthesis, characterization, molecular modeling studies, and biological evaluation of metal piroxicam complexes (M = Ni(II), Pt(IV), Pd(II), Ag(I)) as antibacterial and anticancer agents, 2024, 85, 0272-4391, 10.1002/ddr.22156
    707. Nazia Tabassum, Fazlurrahman Khan, Geum-Jae Jeong, Dokyung Oh, Young-Mog Kim, Antibiofilm and antivirulence activities of laminarin-gold nanoparticles in standard and host-mimicking media, 2024, 108, 0175-7598, 10.1007/s00253-024-13050-4
    708. Abdelaziz Elgaml, Rami Elshazli, Shin-ichi Miyoshi, Editorial: The role of regulatory networks in virulence and antimicrobial resistance of microbial pathogens, 2024, 15, 1664-302X, 10.3389/fmicb.2024.1370093
    709. Vincent Ngunjiri Mwangi, Edwin Shigwenya Madivoli, Mourine Kangogo, Sammy Indire Wanakai, Walyambillah Waudo, Dennis Mwanza Nzilu, Antimicrobial surface coating as a pathway to curb resistance: preparation, mode of action and future perspective, 2024, 1547-0091, 10.1007/s11998-023-00879-z
    710. Aditya K. Padhi, Shweata Maurya, 2024, 18761623, 10.1016/bs.apcsb.2023.11.004
    711. Letao Bo, Haidong Sun, Yi-Dong Li, Jonathan Zhu, John N. D. Wurpel, Hanli Lin, Zhe-Sheng Chen, Combating antimicrobial resistance: the silent war, 2024, 15, 1663-9812, 10.3389/fphar.2024.1347750
    712. Jiaming Zhang, Qinqin Liu, Haoxia Zhao, Guiyu Li, Yunpeng Yi, Ruofeng Shang, Design and Synthesis of Pleuromutilin Derivatives as Antibacterial Agents Using Quantitative Structure–Activity Relationship Model, 2024, 25, 1422-0067, 2256, 10.3390/ijms25042256
    713. Eman A. Mazyed, Galal Magdy, Engy Elekhnawy, Marie Yammine, Christian Rolando, Mai H. ElNaggar, Formulation and characterization of quercetin-loaded Prunus armeniaca gum nanoparticles with enhanced anti-bacterial effect, 2024, 17732247, 105485, 10.1016/j.jddst.2024.105485
    714. Hayley C. Parkin, Steven T. G. Street, Brent Gowen, Luiz H. Da-Silva-Correa, Rebecca Hof, Heather L. Buckley, Ian Manners, Mechanism of Action and Design of Potent Antibacterial Block Copolymer Nanoparticles, 2024, 0002-7863, 10.1021/jacs.3c09033
    715. Anila Ashraf, Muhammad Altaf, Fozia Abasi, Muhammad Shahbaz, Tanveer Hussain, Md. Arshad Ali, Jaya Seelan Sathiya Seelan, Baber Ali, Maged Mostafa Mahmoud, Steve Harakeh, Muhammad Hamzah Saleem, Exploring the antimicrobial potential of biogenically synthesized graphene oxide nanoparticles against targeted bacterial and fungal pathogens, 2024, 13, 2191-9550, 10.1515/gps-2023-0130
    716. Sophie Hedges, Ludovic Pelligand, Liwei Chen, Kelyn Seow, Thuy Thi Hoang, Huong Quynh Luu, Son Thi Thanh Dang, Ngoc Thi Pham, Hoa Thi Thanh Pham, Yeong Cheng Cheah, Yulan Wang, Dominique Hurtaud-Pessel, Anne Conan, Guillaume Fournié, Damer Blake, Fiona Tomley, Patricia L. Conway, Antimicrobial residues in meat from chickens in Northeast Vietnam: analytical validation and pilot study for sampling optimisation, 2024, 1661-5751, 10.1007/s00003-024-01478-9
    717. Piotr Rzymski, Willis Gwenzi, Barbara Poniedziałek, Serghei Mangul, Andrzej Fal, Climate warming, environmental degradation and pollution as drivers of antibiotic resistance, 2024, 02697491, 123649, 10.1016/j.envpol.2024.123649
    718. Kubrat A. Oyinlola, Gbemisola E. Ogunleye, Augustina I. Balogun, Oluwarotimi Joseph, Comparative study: Garlic, ginger and turmeric as natural antimicrobials and bioactives, 2024, 120, 1996-7489, 10.17159/sajs.2024/14170
    719. Sudaarsan Aruna Senthil Kumar, Dhesiga Krishnan, Sowndarya Jothipandiyan, Ramyadevi Durai, B. Narayanan Vedha Hari, Paramasivam Nithyanand, Cell-free supernatants of probiotic consortia impede hyphal formation and disperse biofilms of vulvovaginal candidiasis causing Candida in an ex-vivo model, 2024, 117, 0003-6072, 10.1007/s10482-024-01929-1
    720. Jyoti Soni, Sristi Sinha, Rajesh Pandey, Understanding bacterial pathogenicity: a closer look at the journey of harmful microbes, 2024, 15, 1664-302X, 10.3389/fmicb.2024.1370818
    721. Umadevi Kizhakke Purakkel, Ganji Praveena, Valli Y. Madabhushi, Surender Singh Jadav, Reddy Shetty Prakasham, Saiprasad Goud Dasugari Varakala, Dharmarajan Sriram, Ewan W. Blanch, Subashani Maniam, Thiazolotriazoles As Anti-infectives: Design, Synthesis, Biological Evaluation and In Silico Studies, 2024, 2470-1343, 10.1021/acsomega.3c06324
    722. Evan B. Harris, Kenneth K. K. Ewool, Lucy C. Bowden, Jonatan Fierro, Daniel Johnson, McKay Meinzer, Sadie Tayler, Julianne H. Grose, Genomic and Proteomic Analysis of Six Vi01-like Phages Reveals Wide Host Range and Multiple Tail Spike Proteins, 2024, 16, 1999-4915, 289, 10.3390/v16020289
    723. Mohankumar Narayanan, Suganthi Srinivasan, Chackaravarthi Gnanasekaran, Govindan Ramachandran, Chenthis Kanisha Chelliah, Rajivgandhi Govindhan, Muthuchamy Maruthupandy, Franck Quero, Wen-Jun Li, Gasim Hayder, Jamal M. Khaled, Arulraj Arunachalam, Natesan Manoharan, Synthesis and characterization of marine seagrass (Cymodocea serrulata) mediated titanium dioxide nanoparticles for antibacterial, antibiofilm and antioxidant properties, 2024, 08824010, 106595, 10.1016/j.micpath.2024.106595
    724. Franciszek Bydalek, Gordon Webster, Ruth Barden, Andrew J. Weightman, Barbara Kasprzyk-Hordern, Jannis Wenk, Microbial Community and Antimicrobial Resistance Niche Differentiation in a Multistage, Surface Flow Constructed Wetland, 2024, 00431354, 121408, 10.1016/j.watres.2024.121408
    725. RuAngelie Edrada-Ebel, Amenay Michael, Fatemah Alsaleh, Hannah Binti Zaharuddin, 2024, Chapter 6, 978-981-99-5695-1, 161, 10.1007/978-981-99-5696-8_6
    726. Khanyisile Sheer Dhlamini, Cyril Tlou Selepe, Bathabile Ramalapa, Lesego Tshweu, Suprakas Sinha Ray, Reimagining Chitosan‐Based Antimicrobial Biomaterials to Mitigate Antibiotic Resistance and Alleviate Antibiotic Overuse: A Review, 2024, 1438-7492, 10.1002/mame.202400018
    727. Jennifer Halleran, Hannah Sylvester, Megan Jacob, Benjamin Callahan, Ronald Baynes, Derek Foster, Impact of florfenicol dosing regimen on the phenotypic and genotypic resistance of enteric bacteria in steers, 2024, 14, 2045-2322, 10.1038/s41598-024-55591-8
    728. Aditya Velidandi, N. Jayarambabu, P. Geetha, Varaprasad Kokkarachedu, 2024, Chapter 14, 978-3-031-50092-3, 305, 10.1007/978-3-031-50093-0_14
    729. G Chavez-Esquivel, H Cervantes-Cuevas, D E Cortes-Cordova, P Estrada de los Santos, L Huerta Arcos, Silver-doped graphite oxide composites used as antimicrobial agents against Staphylococcus aureus, Escherichia coli and Tatumella terrea evaluated by direct TLC bioautography, 2024, 5, 2632-959X, 015013, 10.1088/2632-959X/ad2998
    730. Serena Tuytschaevers, Leila Aden, Zacchaeus Greene, Chanei Nixon, Wade Shaw, Dillan Hatch, Girish Kumar, Renata Rezende Miranda, André O. Hudson, Feng Gao, Isolation, whole-genome sequencing, and annotation of two antibiotic-producing and antibiotic-resistant bacteria, Pantoea rodasii RIT 836 and Pseudomonas endophytica RIT 838, collected from the environment, 2024, 19, 1932-6203, e0293943, 10.1371/journal.pone.0293943
    731. Francisco Javier Álvarez-Martínez, Rocío Díaz-Puertas, Enrique Barrajón-Catalán, Vicente Micol, 2024, Chapter 706, 0171-2004, 10.1007/164_2024_706
    732. Aydın YEŞİLYURT, Seda BİRYOL, Ali SOYDİNÇ, Sevda İŞIK, Mehtap USTA, Determination of Antimicrobial Effects of Secondary Metabolites of Different Bacteria Belonging to the Genus Bacillus, 2024, 24, 2149-3367, 1, 10.35414/akufemubid.1348983
    733. Ernessto Mahizhchi, Diveyaa Sivakumar, Megala Jayaraman, Antimicrobial Resistance: Techniques to Fight AMR in Bacteria – A Review, 2024, 18, 09737510, 16, 10.22207/JPAM.18.1.53
    734. Thomas J. Walsh, Antonella Mencacci, Riccardo Paggi, Evangelia Douka, Charikleia Vrettou, Roger Smith, Oscar Guzman, Daniel D. Rhoads, Prospective observational pilot study of the T2Resistance panel in the T2Dx system for detection of resistance genes in bacterial bloodstream infections, 2024, 0095-1137, 10.1128/jcm.01296-23
    735. Ahmed Hagiga, Baljit Dheansa, Multi-resistant organisms in burn patients: Is this the end or a new beginning?, 2024, 03054179, 10.1016/j.burns.2024.02.024
    736. Naim Asyraf Rosli, Anis Rageh Al-Maleki, Mun Fai Loke, Sun Tee Tay, Mohd Salleh Rofiee, Lay Kek Teh, Mohd Zaki Salleh, Jamuna Vadivelu, Bashir Sajo Mienda, Exposure of Helicobacter pylori to clarithromycin in vitro resulting in the development of resistance and triggers metabolic reprogramming associated with virulence and pathogenicity, 2024, 19, 1932-6203, e0298434, 10.1371/journal.pone.0298434
    737. Martina Penati, Laura Musa, Laura Filippone Pavesi, Alessandro Guaraglia, Fernando Ulloa, Paolo Moroni, Renata Piccinini, Maria Filippa Addis, Multidrug-Resistant Extended-Spectrum Beta-Lactamase (ESBL)-Producing Escherichia coli in a Dairy Herd: Distribution and Antimicrobial Resistance Profiles, 2024, 13, 2079-6382, 241, 10.3390/antibiotics13030241
    738. Sibongile Mtimka, Priyen Pillay, Lusisizwe Kwezi, Ofentse Jacob Pooe, Tsepo Lebiletsa Tsekoa, An Exploratory Review of the Potential of Lytic Proteins and Bacteriophages for the Treatment of Tuberculosis, 2024, 12, 2076-2607, 570, 10.3390/microorganisms12030570
    739. Kusmiati Kusmiati, Asrul Fanani, Arif Nurkanto, Ismu Purnaningsih, Jendri Mamangkey, Indriati Ramadhani, Dian Alfian Nurcahyanto, Partomuan Simanjuntak, Fifi Afiati, Herman Irawan, Ade Lia Puteri, Muhammad Farrel Ewaldo, Ario Betha Juanssilfero, Profile and in silico analysis of metabolite compounds of the endophytic fungus Alternaria alternata K-10 from Drymoglossum piloselloides as antioxidants and antibacterials, 2024, 10, 24058440, e27978, 10.1016/j.heliyon.2024.e27978
    740. Lucia Maestre-Carballa, Vicente Navarro-López, Manuel Martinez-Garcia, City-scale monitoring of antibiotic resistance genes by digital PCR and metagenomics, 2024, 19, 2524-6372, 10.1186/s40793-024-00557-6
    741. Bona Yun, Xinyu Liao, Jinsong Feng, Tian Ding, Machine learning-enabled prediction of antimicrobial resistance in foodborne pathogens, 2024, 22, 1947-6337, 10.1080/19476337.2024.2324024
    742. Ahmed Mshari Thari, Khairallah A. S. Mohammed, Najwa M. J. Abu-Mejdad, Antimicrobial susceptibility of bacterial clinical specimens isolated from Al-Sader Teaching Hospital in Basra-Iraq, 2024, 2672-7277, 76, 10.35118/apjmbb.2024.032.1.08
    743. John Adewole Alara, Oluwaseun Ruth Alara, An Overview of the Global Alarming Increase of Multiple Drug Resistant: A Major Challenge in Clinical Diagnosis, 2024, 24, 18715265, 10.2174/1871526523666230725103902
    744. Anbazhagan Thirumalai, Koyeli Girigoswami, Karthick Harini, Pragya Pallavi, Pemula Gowtham, Agnishwar Girigoswami, A review of the current state of probiotic nanoencapsulation and its future prospects in biomedical applications, 2024, 57, 18788181, 103101, 10.1016/j.bcab.2024.103101
    745. Md Monir Hossain, Amir Hamza, Shakil Ahmed Polash, Mehedi Hasan Tushar, Masato Takikawa, Anuj Bhowmik Piash, Chaitali Dekiwadia, Tanushree Saha, Shinji Takeoka, Satya Ranjan Sarker, Green synthesis of silver nanoparticles using Phyllanthus emblica extract: investigation of antibacterial activity and biocompatibility in vivo, 2024, 2976-8713, 10.1039/D3PM00077J
    746. Maria Cabrera‐Aguas, Ngozi Chidi‐Egboka, Himal Kandel, Stephanie L. Watson, Antimicrobial resistance in ocular infection: A review, 2024, 1442-6404, 10.1111/ceo.14377
    747. Laura Bianchessi, Giulia De Bernardi, Martina Vigorelli, Paola Dall’Ara, Lauretta Turin, Bacteriophage Therapy in Companion and Farm Animals, 2024, 13, 2079-6382, 294, 10.3390/antibiotics13040294
    748. Sumit Durgapal, Bhuwan Chandra Joshi, Bhakti Sudha Pandey, Gauree Kukreti, Archana Dhyani, Akash Jain, Sayantan Mukhopadhyay, Minky Mukhija, Prabhjot Singh Bajwa, 2024, chapter 1, 9798369341391, 1, 10.4018/979-8-3693-4139-1.ch001
    749. Dewi Pertiwi, Rika Hartati, Elin Julianti, Irda Fidrianny, Antibacterial and antioxidant activities in various parts of Artocarpus lacucha Buch. Ham. ethanolic extract, 2024, 20, 2049-9434, 10.3892/br.2024.1755
    750. Sreyashi Ghosh, Mehmet A. Orman, Anne-Catrin Uhlemann, Exploring the links between SOS response, mutagenesis, and resistance during the recovery period, 2024, 0066-4804, 10.1128/aac.01462-23
    751. Luma Clarindo Lopes, Ashkan Koushanpour, Kolby Wiebe, Sabine Kuss, Antibiotic Resistance Detection in Pseudomonas aeruginosa: Recent Strategies, Advances, and Challenges, 2024, 2629-2742, 10.1002/anse.202300058
    752. Sampathkumar Ranganathan, Hemavathy Nagarajan, Siddhardha Busi, Dinakara Rao Ampasala, Jung-Kul Lee, 2024, Chapter 3, 978-981-99-8798-6, 79, 10.1007/978-981-99-8799-3_3
    753. B. Brindha, Mohammad K. Okla, S. Kokilavani, L. Sabariselvan, Saud S. Al-amri, Mostafa A. Abdel-Maksoud, G. Harini, Raida Alshuwaish, Waleed A. Alsakkaf, S. Sudheer Khan, Dynamic Ag-mediated electron transfer confined ZnO nanorods for boosted photocatalytic bacterial disinfection, 2024, 09596526, 141908, 10.1016/j.jclepro.2024.141908
    754. Chit Su Tinn, Tin Maung Hlaing, Bang-On Thepthien, 2024, 9780128012383, 10.1016/B978-0-323-99967-0.00202-7
    755. Manfredi di San Germano, J Krishnan, A systems framework for investigating the roles of multiple transporters and their impact on drug resistance, 2024, 16, 1757-9708, 10.1093/intbio/zyae007
    756. Priyanka Kriplani, Vishnu Mittal, Bhawna Chopra, Kumar Guarve, 2024, chapter 4, 9798369341391, 78, 10.4018/979-8-3693-4139-1.ch004
    757. Subhankar Das, Manjula Ishwara Kalyani, 2024, 9780443136597, 153, 10.1016/B978-0-443-13659-7.00018-7
    758. Rama Tyagi, Sudeshna Bhattacharjee, Neeraj Kumar, 2024, chapter 2, 9798369341391, 33, 10.4018/979-8-3693-4139-1.ch002
    759. Tao Zhang, Haiyan Xing, Miao Xiong, Mengqin Gu, Zhigang Xu, Lei Zhang, Yuejun Kang, Peng Xue, Carbon dots-based nanoclusters for sonodynamic therapy of bacterial infection enhanced by deep biofilm penetration and hypoxia alleviation, 2024, 13858947, 150819, 10.1016/j.cej.2024.150819
    760. Ankita Agrawal, Amiya Kumar Patel, 2024, Chapter 2, 978-981-99-8798-6, 33, 10.1007/978-981-99-8799-3_2
    761. KRUPA ROSE JOSE, K VIJAYAKUMAR, Antimicrobial resistance profiling of coagulase negative staphylococci isolated from bovine mastitis, 2024, 94, 2394-3327, 308, 10.56093/ijans.v94i4.129868
    762. Chrissy D. Eckstrand, Brandi K. Torrevillas, Rebecca M. Wolking, Marla Francis, Laura B. Goodman, Olgica Ceric, Trevor L. Alexander, Kevin R. Snekvik, Claire R. Burbick, Genomic characterization of antimicrobial resistance in 61 aquatic bacterial isolates, 2024, 1040-6387, 10.1177/10406387241241042
    763. Muhammad E. Prastiyanto, Arya Iswara, Afifah Khairunnisa, Fajar Sofyantoro, Abdul R. Siregar, Wulan U. Mafiroh, Jajar Setiawan, Fitri Nadifah, Anjar T. Wibowo, Wahyu A. Putri, Prevalence and antimicrobial resistance profiles of multidrug-resistant bacterial isolates from urinary tract infections in Indonesian patients: A cross-sectional study, 2024, 25901702, 100359, 10.1016/j.clinpr.2024.100359
    764. Orien L Tulp, PhD, MD, FACN, CNS, Will a re-emergence of ancient infectious diseases pose a new risk to humanity in the coming millennia?, 2024, 15, 23736372, 17, 10.15406/ghoa.2024.15.00572
    765. Rita Fernandes, Raquel Abreu, Isa Serrano, Roger Such, Encarnación Garcia-Vila, Sandy Quirós, Eva Cunha, Luís Tavares, Manuela Oliveira, Resistant Escherichia coli isolated from wild mammals from two rescue and rehabilitation centers in Costa Rica: characterization and public health relevance, 2024, 14, 2045-2322, 10.1038/s41598-024-57812-6
    766. David Vang, Aline Cristina Abreu Moreira-Souza, Nicholas Zusman, German Moncada, Harmony Matshik Dakafay, Homer Asadi, David M. Ojcius, Cassio Luiz Coutinho Almeida-da-Silva, Frankincense (Boswellia serrata) Extract Effects on Growth and Biofilm Formation of Porphyromonas gingivalis, and Its Intracellular Infection in Human Gingival Epithelial Cells, 2024, 46, 1467-3045, 2991, 10.3390/cimb46040187
    767. Yogesh Kumar, Farooq Ahmad Wani, Saiema Ahmedi, Anas Shamsi, Masood Nadeem, Nikhat Manzoor, Majid Rasool Kamli, Maqsood Ahmad Malik, Moshahid Alam Rizvi, Rajan Patel, In vitro antifungal activity, cytotoxicity and binding analysis of imidazolium based ionic liquids with fluconazole: DFT and spectroscopic study, 2024, 401, 01677322, 124631, 10.1016/j.molliq.2024.124631
    768. Balasubramanian Malaikozhundan, Sonaimuthu Mohandoss, Raman Krishnamoorthi, Palanichamy Vidhya Bharathi, Subramanian Palanisamy, Jayaraj Vinodhini, Enhanced bactericidal, antibiofilm and antioxidative response of Lawsonia inermis leaf extract synthesized ZnO NPs loaded with commercial antibiotic, 2024, 1615-7591, 10.1007/s00449-024-03000-9
    769. Rishita Dey, Saikat Saha, Sisir Nandi, Sabir Hossen Molla, Asmita Samadder, Exploring a new phyto-derived nanoparticle for targeting bacterial protein EF-Tu: an integrated approach to develop antimicrobial drug, 2024, 2308-0477, 1, 10.1080/23080477.2024.2338649
    770. Aarti Pustam, Jayaraj Jayaraman, Adesh Ramsubhag, Whole genome sequencing reveals complex resistome features of Klebsiella pneumoniae isolated from patients at major hospitals in Trinidad, West Indies, 2024, 22137165, 10.1016/j.jgar.2024.03.019
    771. Avinash Sharma, Akash K., Swati Kumari, Kartik Chauhan, Abija James, Riya Goel, Jay Singh, Rupak Nagraik, Deepak Kumar, Biogenic Zinc Oxide Nanoparticles: An Insight into the Advancements in Antimicrobial Resistance, 2024, 13, 2162-8769, 047002, 10.1149/2162-8777/ad397f
    772. Ashaimaa Y. Moussa, Endophytes: a uniquely tailored source of potential antibiotic adjuvants, 2024, 206, 0302-8933, 10.1007/s00203-024-03891-y
    773. Maytham Hussein, Muhammad Bilal Hassan Mahboob, Jessica R. Tait, James L. Grace, Véronique Montembault, Laurent Fontaine, John F. Quinn, Tony Velkov, Michael R. Whittaker, Cornelia B. Landersdorfer, Matthew F. Traxler, Providing insight into the mechanism of action of cationic lipidated oligomers using metabolomics, 2024, 2379-5077, 10.1128/msystems.00093-24
    774. Céline M. J. G. Lardenoije, Senna J. J. M. van Riel, Linsey J. F. Peters, Martine M. L. H. Wassen, Niels A. J. Cremers, Medical-Grade Honey as a Potential New Therapy for Bacterial Vaginosis, 2024, 13, 2079-6382, 368, 10.3390/antibiotics13040368
    775. Daniela Araújo, Ana Rita Silva, Rúben Fernandes, Patrícia Serra, Maria Margarida Barros, Ana Maria Campos, Ricardo Oliveira, Sónia Silva, Carina Almeida, Joana Castro, Emerging Approaches for Mitigating Biofilm-Formation-Associated Infections in Farm, Wild, and Companion Animals, 2024, 13, 2076-0817, 320, 10.3390/pathogens13040320
    776. Haleema Khanzada, Eglė Kumpikaitė, Anti-bacterial nanofibers and their biomedical applications – a review, 2024, 0040-5000, 1, 10.1080/00405000.2024.2332851
    777. Maximilian A. Beach, Umeka Nayanathara, Yanting Gao, Changhe Zhang, Yijun Xiong, Yufu Wang, Georgina K. Such, Polymeric Nanoparticles for Drug Delivery, 2024, 0009-2665, 10.1021/acs.chemrev.3c00705
    778. Heba S. Elsewedy, Tamer M. Shehata, Shaymaa M. Genedy, Khuzama M. Siddiq, Bushra Y. Asiri, Rehab A. Alshammari, Sarah I. Bukhari, Adeola T. Kola-Mustapha, Heba A. Ramadan, Wafaa E. Soliman, Enhancing the Topical Antibacterial Activity of Fusidic Acid via Embedding into Cinnamon Oil Nano-Lipid Carrier, 2024, 10, 2310-2861, 268, 10.3390/gels10040268
    779. Gene Philip Levee Ynion, Christian Jay Rosal, Arvin Zulueta, Angelo Ordanel, Christopher Marlowe Caipang, Challenges and Emerging Molecular Approaches in Combating Antimicrobial Resistance, 2024, 54, 1598-2467, 12, 10.4167/jbv.2024.54.1.012
    780. Rasha Mohamed Hassan, Heba Yehia, Mohammed F. El-Behairy, Aida Abdel-Sattar El-Azzouny, Mohamed Nabil Aboul-Enein, Design and synthesis of new quinazolinone derivatives: investigation of antimicrobial and biofilm inhibition effects, 2024, 1381-1991, 10.1007/s11030-024-10830-y
    781. Huilong Xin, Yuanyuan Liu, Yinan Xiao, Min Wen, Liyuan Sheng, Zhaojun Jia, Design and Nanoengineering of Photoactive Antimicrobials for Bioapplications: from Fundamentals to Advanced Strategies, 2024, 1616-301X, 10.1002/adfm.202402607
    782. Shruti O. Kushwaha, Santosh Kumar Sahu, Virendra Kumar Yadav, Mayuri C. Rathod, Dhaval Patel, Dipak Kumar Sahoo, Ashish Patel, Bacteriophages as a potential substitute for antibiotics: A comprehensive review, 2024, 42, 0263-6484, 10.1002/cbf.4022
    783. Hira Jabeen, Michael Beer, James Spencer, Marc W. van der Kamp, H. Adrian Bunzel, Adrian J. Mulholland, Electric Fields Are a Key Determinant of Carbapenemase Activity in Class A β-Lactamases, 2024, 2155-5435, 7166, 10.1021/acscatal.3c05302
    784. Umesh C. Halder, In Silico Drug Repurposing Endorse Amprenavir, Darunavir and Saquinavir to Target Enzymes of Multidrug Resistant Uropathogenic E. Coli, 2024, 0046-8991, 10.1007/s12088-024-01282-x
    785. Feiyang Chen, Jordan D. Skelly, Shing-Yun Chang, Jie Song, Triggered Release of Ampicillin from Metallic Implant Coatings for Combating Periprosthetic Infections, 2024, 1944-8244, 10.1021/acsami.4c06002
    786. Chloé O. Sebilleau, Steven J. Sucheck, Lipopeptide adjuvants for antibiotics and vaccines: the future step in the fight against multidrug-resistant and extensively drug-resistant pathogens, 2024, 203, 10.37349/eds.2024.00043
    787. Ilma Siddiqui, Ruchi Sankhwar, Abhishek Kumar, Ravi Kr. Gupta, GC-MS Analysis of Hospital Waste Soil and Isolation of Antimicrobial Agent Producing Bacteria, 2024, 29501946, 100079, 10.1016/j.microb.2024.100079
    788. Krittika Ralhan, Kavita A. Iyer, Leilani Lotti Diaz, Robert Bird, Ankush Maind, Qiongqiong Angela Zhou, Navigating Antibacterial Frontiers: A Panoramic Exploration of Antibacterial Landscapes, Resistance Mechanisms, and Emerging Therapeutic Strategies, 2024, 2373-8227, 10.1021/acsinfecdis.4c00115
    789. Isabela Santos Lopes, Jullio Kennedy Castro Soares, Lívia Soman de Medeiros, Lilia Coronato Courrol, Evaluation of ALA-Capped Silver, Cooper, and Silver-Copper Nanoparticles for Controlling Fungal Plant Pathogens, 2024, 08824010, 106672, 10.1016/j.micpath.2024.106672
    790. Tuba Unver, Ismet Gurhan, Chemical composition and antimicrobial activity of an apolar extract from Lactuca serriola L. leaves, 2024, 114, 03051978, 104832, 10.1016/j.bse.2024.104832
    791. Aminata Tigiedankay Koroma, Patrick Maada Bundu, Musa Sheriff, Brima Baryon, Brima Gamaga, Foday Sillah, Munis Lebbie, Daniel Ngobeh, Matilda Mattu Moiwo, Jefery Morrison, Abu Dim Din Sesay, Samba Kamara, Mustapha Jalloh, Haurace Nyandemoh, Momoh Massaquoi, Kadijatu Nabie Kamara, Joseph Sam Kanu, James Sylvester Squire, Jean Leonard Hakizimana, Adel Hussein Elduma, Gebrekrstos Negash Gebru, Behavioral practices towards antibiotic use among health care workers - Sierra Leone, 2021: a facility-based cross-sectional study, 2024, 47, 1937-8688, 10.11604/pamj.2024.47.63.39287
    792. Shikha Sharma, Abhishek Chauhan, Anuj Ranjan, Darin Mansor Mathkor, Shafiul Haque, Seema Ramniwas, Hardeep Singh Tuli, Tanu Jindal, Vikas Yadav, Emerging challenges in antimicrobial resistance: implications for pathogenic microorganisms, novel antibiotics, and their impact on sustainability, 2024, 15, 1664-302X, 10.3389/fmicb.2024.1403168
    793. Kurnia Nisa Kinasih, Yolla Rona Mustika, Yulianna Puspitasari, Wiwiek Tyasningsih, Alfiana Laili Dwi Agustin, Shendy Canadya Kurniawan, Abdullah Hasib, Yusac Kristanto Khoda Waruwu, Otto Sahat Martua Silaen, Molecular detection of Klebsiella pneumoniae producing extended-spectrum beta-lactamase isolated from bat feces from the Tanjung Ringgit bat cave, Lombok Island, Indonesia, 2024, 24558931, 133, 10.14202/IJOH.2024.133-140
    794. Narmin Hamaamin Hussen, Shokhan Jamal Hamid, Mohammed Nawzad Sabir, Aso Hameed Hasan, Sewara Jalal Mohammed, Aras Ahmed Kamal Shali, Novel Penicillin Derivatives Against Selected Multiple-drug Resistant Bacterial Strains: Design, Synthesis, Structural Analysis, In Silico and In Vitro Studies, 2024, 21, 15701794, 684, 10.2174/1570179420666230510104319
    795. Liza Laquian, Philip A. Efron, Antibiotic Use in the Surgical Intensive Care Unit, 2024, 00653411, 10.1016/j.yasu.2024.04.012
    796. Kaixin Hu, Fernando Meyer, Zhi-Luo Deng, Ehsaneddin Asgari, Tzu-Hao Kuo, Philipp C Münch, Alice C McHardy, Assessing computational predictions of antimicrobial resistance phenotypes from microbial genomes, 2024, 25, 1467-5463, 10.1093/bib/bbae206
    797. Ilya S Korotetskiy, Ardak B Jumagaziyeva, Sergey V Shilov, Tatyana V Kuznetsova, Auyes N Myrzabayeva, Zhanar A Iskakbayeva, Aleksandr I Ilin, Monique Joubert, Setshaba Taukobong, Oleg N Reva, Transcriptomics and Methylomics Study on the Effect of Iodine-Containing Drug FS-1 on Escherichia Coli ATCC BAA-196 , 2021, 16, 1746-0913, 1063, 10.2217/fmb-2020-0184
    798. Ana R. M. Ribeiro, Marta O. Teixeira, Elina Marinho, A. Francisca G. Silva, Susana P. G. Costa, Helena P. Felgueiras, 2024, Chapter 10, 978-981-97-2022-4, 251, 10.1007/978-981-97-2023-1_10
    799. Divya Chandramohan, Erica L Beck, Delvina Ford, Teri Hopkins, Steven D Dallas, Elizabeth Walter, Jose Cadena, A Case of New Delhi Metallo-ß-Lactamase-Producing Enterobacter and a Review of Cases in the United States From January 2009 to September 2022, 2024, 2168-8184, 10.7759/cureus.60200
    800. Randa Elsheikh, Abdelrahman M Makram, Multidrug-Resistant Organisms: The Silent Plight of Burn Patients, 2024, 1559-047X, 10.1093/jbcr/irae075
    801. Sheezma Nazir Shah, Mujtaba Aamir Bhat, Mudasir Ahmad Bhat, Arif Tasleem Jan, 2024, Chapter 1, 978-981-97-2022-4, 1, 10.1007/978-981-97-2023-1_1
    802. Iram Saba, Kaiser Wani, Khalid Mujasam Batoo, Suriya Rehman, Saif Hameed, 2024, Chapter 9, 978-981-97-2022-4, 231, 10.1007/978-981-97-2023-1_9
    803. Hossein Alishah Aratboni, Clarita Olvera, Marcela Ayala, Nanoformulations for lysozyme-based additives in animal feed: An alternative to fight antibiotic resistance spread, 2024, 13, 2191-9097, 10.1515/ntrev-2024-0015
    804. Fang Dong, Pawel Lojko, Andre Bazzone, Frank Bernhard, Irina Borodina, Transporter function characterization via continuous-exchange cell-free synthesis and solid supported membrane-based electrophysiology, 2024, 15675394, 108732, 10.1016/j.bioelechem.2024.108732
    805. Carmine Fusaro, Valentina Miranda-Madera, Nancy Serrano-Silva, Jaime E. Bernal, Karina Ríos-Montes, Francisco Erik González-Jiménez, Dennys Ojeda-Juárez, Yohanna Sarria-Guzmán, Antibiotic-Resistant Bacteria Isolated from Street Foods: A Systematic Review, 2024, 13, 2079-6382, 481, 10.3390/antibiotics13060481
    806. Maria Laura Tummino, Iriczalli Cruz-Maya, Alessio Varesano, Claudia Vineis, Vincenzo Guarino, Keratin/Copper Complex Electrospun Nanofibers for Antibacterial Treatments: Property Investigation and In Vitro Response, 2024, 17, 1996-1944, 2435, 10.3390/ma17102435
    807. Júlio César Sousa Prado, Guilherme Mendes Prado, Francisca Lidiane Linhares Aguiar, Andrea Maria Neves, Joice Farias do Nascimento, Flávia Oliveira Monteiro da Silva Abreu, Raquel Oliveira dos Santos Fontenelle, Nanoemulsions of plant-based bioactive compounds with antimicrobial applications: a review, 2024, 46, 2179-460X, e74325, 10.5902/2179460X74325
    808. Sanaa J. Almowallad, Leena S. Alqahtani, Synergistic antimicrobial action of chitosan-neem extracts nanoformulation as a promising strategy for overcoming multi-drug resistant bacteria, 2024, 01418130, 132337, 10.1016/j.ijbiomac.2024.132337
    809. Sahithya Selvakumar, Shubhi Singh, Priya Swaminathan, Detection and evaluation of susceptibility to antibiotics in non-hydrogen sulfide-producing antibiotic-resistant soil microbe: Pseudomonas guariconensis, 2024, 1618-1905, 10.1007/s10123-024-00537-3
    810. Roua M. Alkufeidy, Leen Ameer Altuwijri, Noura S. Aldosari, Nura Alsakabi, Turki M. Dawoud, Antimicrobial and synergistic properties of green tea catechins against microbial pathogens, 2024, 10183647, 103277, 10.1016/j.jksus.2024.103277
    811. Yixuan Wang, G. Balakrishnan, Microstructural, antifungal and photocatalytic activity of NiO–ZnO nanocomposite, 2024, 42, 2083-134X, 107, 10.2478/msp-2024-0006
    812. Talat Habeeb, Majed S. Aljohani, Rashad Kebeish, Asmaa Al-Badwy, Ali H. Bashal, Biogenic synthesis of CoO and ZnO nanoparticles using rosemary extract: Synergistic antimicrobial activity and insights from DFT simulations, 2024, 1313, 00222860, 138714, 10.1016/j.molstruc.2024.138714
    813. Simran Ohra, Ruchika Sharma, Anoop Kumar, Repurposing of drugs against bacterial infections: A pharmacovigilance‐based data mining approach, 2024, 85, 0272-4391, 10.1002/ddr.22211
    814. Lianzhi Yang, Pan Yu, Juanjuan Wang, Taixia Zhao, Yong Zhao, Yingjie Pan, Lanming Chen, Genomic and Transcriptomic Analyses Reveal Multiple Strategies for Vibrio parahaemolyticus to Tolerate Sub-Lethal Concentrations of Three Antibiotics, 2024, 13, 2304-8158, 1674, 10.3390/foods13111674
    815. Gagandeep Singh, Anita Rana, , Decoding antimicrobial resistance: unraveling molecular mechanisms and targeted strategies, 2024, 206, 0302-8933, 10.1007/s00203-024-03998-2
    816. Midhun Mathew, Aanya Verma, Godwin Geo Gigi, Harsh Patil, Arshan Shaikh, Cephalosporins in pediatrics: Navigating antimicrobial resistance impact and adverse effects – A comprehensive review, 2024, 10, 2581-4710, 122, 10.18231/j.ijced.2024.023
    817. Zhenle Cao, Muhammad Shahidul Islam, Jared Sisler, Kam C. Tam, Antimicrobial Assay of Metal Ions Using Yeast and Its Relevance to Food Preservation, 2024, 2692-1944, 10.1021/acsfoodscitech.4c00079
    818. Maria Anton, THE PERSPECTIVES OF WHOLE GENOME SEQUENCING IN STRENGTHENING THE OUTBREAK INVESTIGATIONS AND PUBLIC HEALTH SURVEILLANCE, 2023, 82, 12223891, 25, 10.54044/RAMI.2023.01.04
    819. Pushpa Ragini S, Rajkumar Banerjee, Calum J. Drummond, Charlotte E. Conn, Permanently Charged Cationic Lipids—Evolution from Excipients to Therapeutic Lipids, 2024, 2688-4046, 10.1002/smsc.202300270
    820. Charalampos Kotzamanidis, Andigoni Malousi, Anastasia Paraskeva, George Vafeas, Virginia Giantzi, Evaggelos Hatzigiannakis, Paschalis Dalampakis, Vasiliki Kinigopoulou, Ioannis Vrouhakis, Anastasios Zouboulis, Minas Yiangou, Antonios Zdragas, River waters in Greece: A reservoir for clinically relevant extended-spectrum-β-lactamases-producing Escherichia coli, 2024, 941, 00489697, 173554, 10.1016/j.scitotenv.2024.173554
    821. Érica Lima, Marta Leite, Beatriz Oliveira, Andreia Freitas, Antibiotics in eggs: An analytical approach based on low- and high-resolution mass spectrometry techniques, 2024, 133, 08891575, 106429, 10.1016/j.jfca.2024.106429
    822. Kendell Peterson, Maria Turos-Cabal, April D. Salvador, Isabel Palomo, Ashley J. Howell, Megan E. Vieira, Sean M. Greiner, Thibaut Barnoud, Jezabel Rodriguez-Blanco, Mechanistic insights into medulloblastoma relapse, 2024, 01637258, 108673, 10.1016/j.pharmthera.2024.108673
    823. Madhuri P. Rao, Sudheesh T. Sivanandan, Divya K. Nair, Madhu Ganesh, 2024, 9780443223242, 521, 10.1016/B978-0-443-22324-2.00022-9
    824. Petros Ioannou, Stella Baliou, Diamantis Kofteridis, Ewingella americana Infections in Humans—A Narrative Review, 2024, 13, 2079-6382, 559, 10.3390/antibiotics13060559
    825. Jirapat Dawan, Xinyu Liao, Tian Ding, Juhee Ahn, Phenotypic and Genotypic Responses of Foodborne Pathogens to Sublethal Concentrations of Lactic Acid and Sodium Chloride, 2024, 1076-6294, 10.1089/mdr.2024.0044
    826. Jintong Zhou, Mingyu Xia, Zhenghui Huang, Hang Qiao, Guang Yang, Yunan Qian, Peifeng Li, Zhaolun Zhang, Xinai Gao, Lubin Jiang, Jing Wang, Wei Li, Pengfei Fang, Structure-guided conversion from an anaplastic lymphoma kinase inhibitor into Plasmodium lysyl-tRNA synthetase selective inhibitors, 2024, 7, 2399-3642, 10.1038/s42003-024-06455-4
    827. Jared R. Mayers, Jack Varon, Ruixuan R. Zhou, Martin Daniel-Ivad, Courtney Beaulieu, Amrisha Bholse, Nathaniel R. Glasser, Franziska M. Lichtenauer, Julie Ng, Mayra Pinilla Vera, Curtis Huttenhower, Mark A. Perrella, Clary B. Clish, Sihai D. Zhao, Rebecca M. Baron, Emily P. Balskus, A metabolomics pipeline highlights microbial metabolism in bloodstream infections, 2024, 00928674, 10.1016/j.cell.2024.05.035
    828. Nasim Bakhtiyari, Safar Farajnia, Samaneh Ghasemali, Sahar Farajnia, Ali Pormohammad, Shabnam Saeidvafa, Strategies to Overcome Antimicrobial Resistance in Nosocomial Infections, A Review and Update, 2024, 24, 18715265, 10.2174/0118715265276529231214105423
    829. Md. Alamgir Hossain, Md. Kamrujjaman, Mechanisms and Possible Strategies to Fight Against the Antibiotic Resistance, 2023, 1, 18130070, 31, 10.3923/asb.2023.31.46
    830. Risky Hadı Wıbowo, Sipriyadi Sipriyadi, Welly Darwıs, Eddy Sukmawinata, Masrukhin Masrukhin, Mashudi Mashudi, Muhammad Asrıl, Thoriqul Hıdayah, Aldy Trıanda, Bioprospecting of Fragrant Ginger (Zingiber aromaticum) Endophytic Bacteria from Enggano Island, Indonesia as Antimicrobial Compounds Producer, 2024, 1308-7576, 263, 10.29133/yyutbd.1429698
    831. Edward H. Bertram, F. Edward Dudek, Addressing the problems of treatment failure in epilepsy: You cannot fix what you do not understand, 2024, 0013-9580, 10.1111/epi.18044
    832. Petros Ioannou, Alexandra Vorria, George Samonis, Cellulosimicrobium Infections in Humans—A Narrative Review, 2024, 13, 2079-6382, 562, 10.3390/antibiotics13060562
    833. Ahmed M. El-Khawaga, Shoaib Mukhtar, Shumaila Shahid, 2024, Chapter 8, 978-981-97-2760-5, 203, 10.1007/978-981-97-2761-2_8
    834. Kalpana Sagar, K. Priti, 2024, 9781394178933, 196, 10.1002/9781394178964.ch11
    835. Bienvenu Tsakem, Gang Li, Rémy Bertrand Teponno, Structures, biosynthesis and biological activities of benastatins, anthrabenzoxocinones and fredericamycins, 2024, 150, 00452068, 107572, 10.1016/j.bioorg.2024.107572
    836. Orlando Flores-Maldonado, Jorge Dávila-Aviña, Gloria M. González, Miguel A. Becerril-García, Ana L. Ríos-López, Antibacterial activity of gallic acid and methyl gallate against emerging non-fermenting bacilli, 2024, 0015-5632, 10.1007/s12223-024-01182-z
    837. Lori M. Estes Bright, Manjyot Kaur Chug, Stephen Thompson, Megan Brooks, Elizabeth J. Brisbois, Hitesh Handa, Analysis of the broad‐spectrum potential of nitric oxide for antibacterial activity against clinically isolated drug‐resistant bacteria, 2024, 112, 1552-4973, 10.1002/jbm.b.35442
    838. Andrea-Sarahí Balderrama-González, Hilda-Amelia Piñón-Castillo, Claudia-Adriana Ramírez-Valdespino, Reyna Reyes-Martínez, Hilda-Esperanza Esparza-Ponce, Effect of the AuNPs@amox system on antibiotic-resistant bacteria, 2024, 26, 1388-0764, 10.1007/s11051-024-06048-6
    839. Leena Bhadra, Preeti Dhiman, Ayushi Srivastava, Axita Patel, Poonam Ratrey, Alok Kumar, Bhaskar Datta, 2024, Chapter 9, 978-981-97-1911-2, 175, 10.1007/978-981-97-1912-9_9
    840. Silvia Kollerová, Lionel Jouvet, Julia Smelková, Sara Zunk-Parras, Alexandro Rodríguez-Rojas, Ulrich K. Steiner, Li Cui, Phenotypic resistant single-cell characteristics under recurring ampicillin antibiotic exposure in Escherichia coli , 2024, 2379-5077, 10.1128/msystems.00256-24
    841. Amani H. Al-Fadhli, Wafaa Yousef Jamal, Recent advances in gene-editing approaches for tackling antibiotic resistance threats: a review, 2024, 14, 2235-2988, 10.3389/fcimb.2024.1410115
    842. Roberto Arrigoni, Andrea Ballini, Emilio Jirillo, Luigi Santacroce, Current View on Major Natural Compounds Endowed with Antibacterial and Antiviral Effects, 2024, 13, 2079-6382, 603, 10.3390/antibiotics13070603
    843. Tuba Unver, Harun Uslu, Ismet Gurhan, Bunyamin Goktas, Screening of phenolic components and antimicrobial properties of Iris persica L. subsp. persica extracts by in vitro and in silico methods, 2024, 2048-7177, 10.1002/fsn3.4251
    844. Mohamed A. Salem, Maha M. Salama, Shahira M. Ezzat, 2024, 9780443160134, 297, 10.1016/B978-0-443-16013-4.00014-2
    845. Lizeth N. Raygoza-Alcantar, Leopoldo Díaz-Pérez, Verónica C. Rosas-Espinoza, Carla V. Sánchez-Hernández, Joicye Hérnandez-Zulueta, Flor Rodríguez-Gómez, Fabián A. Rodríguez-Zaragoza, In vitro antagonistic activity of Bacillus spp. and Pseudomonas putida M5 isolated from feces of the violet-crowned hummingbird (Ramosomyia violiceps) from an urban environment, 2024, 0334-5114, 10.1007/s13199-024-00998-0
    846. Lucia Maestre‐Carballa, Vicente Navarro‐López, Manuel Martinez‐Garcia, Metagenomic airborne resistome from urban hot spots through the One Health lens, 2024, 16, 1758-2229, 10.1111/1758-2229.13306
    847. Cezara Bucataru, Corina Ciobanasu, Antimicrobial Peptides: Opportunities and Challenges in Overcoming Resistance, 2024, 09445013, 127822, 10.1016/j.micres.2024.127822
    848. Asma Aktar, Shimul Bhuia, Raihan Chowdhury, Rubel Hasan, Asraful Islam Rakib, Sakib Al Hasan, Fatema Akter Sonia, Muhammad Torequl Islam, Therapeutic Promises of Bioactive Rosavin: A Comprehensive Review with Mechanistic Insight, 2024, 1612-1872, 10.1002/cbdv.202400286
    849. Qiqi He, Julie Meneely, Irene R. Grant, Jason Chin, Séamus Fanning, Chen Situ, Phytotherapeutic potential against MRSA: mechanisms, synergy, and therapeutic prospects, 2024, 19, 1749-8546, 10.1186/s13020-024-00960-8
    850. Ismaila Olatunji Sule, Insight into the Antibiotic Susceptibility Algorithm Procedures for Detecting Carbapenem-Resistant Enterobacter Cloacae, 2024, 2, 2786-8524, 230, 10.59324/ejmhr.2024.2(3).26
    851. Yuanfeng Li, Tieli Zhou, Fan Wu, Yaran Wang, Qunzan Lu, Yu Qi, Yizhou Zhan, Yong Liu, 2024, Chapter 7, 978-981-97-2842-8, 151, 10.1007/978-981-97-2843-5_7
    852. José Manuel Islas, Ruth Corona-Moreno, Jorge X. Velasco-Hernández, Multiple endemic equilibria in an environmentally-transmitted disease with three disease stages, 2024, 00255564, 109244, 10.1016/j.mbs.2024.109244
    853. Long He, Wenji Wang, Liman Ma, Dongguo Wang, Shanshan Long, Emergence of a clinical Klebsiella pneumoniae harboring an acrAB-tolC in chromosome and carrying the two repetitive tandem core structures for blaKPC-2 and blaCTX-M-65 in a plasmid, 2024, 14, 2235-2988, 10.3389/fcimb.2024.1410921
    854. Eric Ng’eno, Marlon E. Cobos, Samuel Kiplangat, Robert Mugoh, Alice Ouma, Godfrey Bigogo, Sylvia Omulo, A. Townsend Peterson, Mabel Kamweli Aworh, Long-term antibiotic exposure landscapes and resistant Escherichia coli colonization in a densely populated setting, 2024, 19, 1932-6203, e0302521, 10.1371/journal.pone.0302521
    855. Alok Sharma, Jasleen Kaur, Anuradha Kesharwani, Vipan Kumar Parihar, Antimicrobial Potential of Polyphenols: An Update on Alternative for Combating Antimicrobial Resistance, 2024, 20, 15734064, 576, 10.2174/0115734064277579240328142639
    856. Sirine Jaber, Yana Evstatieva, Veronica Nemska, Dilyana Nikolova, Emilia Naydenova, Nelly Georgieva, Dancho Danalev, Antimicrobial activity of (KLAKLAK)–NH2 analogs against pathogenic microbial strains, 2024, 8, 25902628, 100236, 10.1016/j.crbiot.2024.100236
    857. Suvendu Ghosh, Partha Sarathi Singha, Lakshmi Kanta Das, Debosree Ghosh, Systematic Review on Major Antiviral Phytocompounds from Common Medicinal Plants against SARS-CoV-2, 2024, 20, 15734064, 613, 10.2174/0115734064262843231120051452
    858. Li Chen, Mochezai Aku, Zhaobin Xia, Shiyu Yang, Danjiao Yang, Chaoxi Chen, Optimization of Extraction Process of Total Alkaloids from Thalictrum delavayi Franch. and Their Therapeutic Potential on Pulmonary Infection Caused by Klebsiella pneumoniae and Escherichia coli, 2024, 11, 2297-8739, 210, 10.3390/separations11070210
    859. Riya Gajendranath Upadhyay, Pradeep Kumar Singh, Strategies to Combat Drug Resistance: Innovations and Challenges: A Review, 2024, 21, 24562602, 537, 10.13005/bbra/3245
    860. Gyeong Gyu Song, Hyeonwoo Cho, Yeona Kim, Beomsoon Jang, Miru Lee, Kun Taek Park, Whole-Genome Sequencing-based Antimicrobial Resistance and Genetic Profile Analysis of Vibrio parahaemolyticus Isolated from Seafood in Korea, 2024, 39, 1229-1153, 231, 10.13103/JFHS.2024.39.3.231
    861. Shivangee Solanki, Hemanga Kumar Das, Antimicrobial resistance: Molecular drivers and underlying mechanisms, 2024, 3, 2949916X, 100122, 10.1016/j.glmedi.2024.100122
    862. Nur Fazlin Zafirah Zaine, Ainaa Nadiah Abd Halim, Rosmawati Saat, Vivien Jong Yi Mian, Nor Hisam Zamakshshari, Antibacterial activity of Garcinia spp. by molecular docking simulations: an overview, 2024, 1568-7767, 10.1007/s11101-024-09997-x
    863. Giulia Von Tönnemann Pilati, Gleidson Biasi Carvalho Salles, Beatriz Pereira Savi, Mariane Dahmer, Eduardo Correa Muniz, Vilmar Benetti Filho, Mariana Alves Elois, Doris Sobral Marques Souza, Gislaine Fongaro, Isolation and Characterization of Escherichia coli from Brazilian Broilers, 2024, 12, 2076-2607, 1463, 10.3390/microorganisms12071463
    864. Wenwen Li, Zhen Tao, Motan Zhou, Huilin Jiang, Liudi Wang, Bingjie Ji, Yongshan Zhao, Antibiotic adjuvants against multidrug-resistant Gram-negative bacteria: important component of future antimicrobial therapy, 2024, 287, 09445013, 127842, 10.1016/j.micres.2024.127842
    865. Rafaela Dias Oliveira, Carina Araújo, Cristina Almeida-Aguiar, In Vitro Antimicrobial Potential of Portuguese Propolis Extracts from Gerês against Pathogenic Microorganisms, 2024, 13, 2079-6382, 655, 10.3390/antibiotics13070655
    866. Sylvie E. Kandel, Brian C. Tooker, Jed N. Lampe, Drug metabolism of ciprofloxacin, ivacaftor, and raloxifene by Pseudomonas aeruginosa cytochrome P450 CYP107S1, 2024, 00219258, 107594, 10.1016/j.jbc.2024.107594
    867. Biplab Singha, Vinayak Singh, Vijay Soni, Alternative therapeutics to control antimicrobial resistance: a general perspective, 2024, 4, 2674-0338, 10.3389/fddsv.2024.1385460
    868. Bernhard Nagler, Thomas Staudinger, Peter Schellongowski, Paul Knoebl, Roman Brock, Andrea Kornfehl, Michael Schwameis, Harald Herkner, Jerrold H. Levy, Nina Buchtele, Incidence of heparin resistance and heparin failure in patients receiving extracorporeal membrane oxygenation: an exploratory retrospective analysis, 2024, 15387836, 10.1016/j.jtha.2024.06.008
    869. Lazar Chisavu, Flavia Chisavu, Luciana Marc, Adelina Mihaescu, Flaviu Bob, Monica Licker, Viviana Ivan, Adalbert Schiller, Bacterial Resistances and Sensibilities in a Tertiary Care Hospital in Romania—A Retrospective Analysis, 2024, 12, 2076-2607, 1517, 10.3390/microorganisms12081517
    870. E. Larcombe, M. E. Alexander, D. Snellgrove, F. L. Henriquez, K. A. Sloman, Current disease treatments for the ornamental pet fish trade and their associated problems, 2024, 1753-5123, 10.1111/raq.12948
    871. Nathalie E. Fakhoury, Samar Mansour, Mohammad Abdel-Halim, Mostafa M. Hamed, Martin Empting, Annette Boese, Brigitta Loretz, Claus-Michael Lehr, Salma N. Tammam, Nanoparticles in liposomes: a platform for increased antibiotic selectivity in multidrug resistant bacteria in respiratory tract infections, 2024, 2190-393X, 10.1007/s13346-024-01662-2
    872. Pankaj Kumar Giri, Shahil Alam, Madhav Dhakal, A comprehensive review on epigenetic and epitranscriptomic-mediated regulation of antibiotic resistance, 2024, 13, 2046-1402, 828, 10.12688/f1000research.148400.1
    873. Carolina dos Anjos, Yin Wang, Que Chi Truong‐Bolduc, Paul K. Bolduc, Matthew Liu, David C. Hooper, R. Rox Anderson, Tianhong Dai, Leon G. Leanse, Blue Light Compromises Bacterial β‐Lactamases Activity to Overcome β‐Lactam Resistance, 2024, 0196-8092, 10.1002/lsm.23819
    874. Rute G. Matos, Katie J. Simmons, Colin W. G. Fishwick, Kenneth J. McDowall, Cecília M. Arraiano, Identification of Ribonuclease Inhibitors for the Control of Pathogenic Bacteria, 2024, 25, 1422-0067, 8048, 10.3390/ijms25158048
    875. Mohammad Ahmad Wadaan, Almohannad Baabbad, Mamuye Busier Yesuf, Perumal Asaithambi, Kinetics analysis of PAHs degradation using SiO2–ZnO nanoparticles and evaluating their antibacterial and antibiofilm efficacy, 2024, 260, 00139351, 119669, 10.1016/j.envres.2024.119669
    876. Mark P. Khurana, Jacob Curran-Sebastian, Samir Bhatt, Gwenan M. Knight, Modelling the implementation of narrow versus broader spectrum antibiotics in the empiric treatment of E. coli bacteraemia, 2024, 14, 2045-2322, 10.1038/s41598-024-66193-9
    877. Davoodbasha MubarakAli, Kandasamy Saravanakumar, Archchana Ganeshalingam, Sugavaneswaran Siva Santosh, Shanali De Silva, Jung Up Park, Chang-Min Lee, Su-Hyeon Cho, Song-Rae Kim, Namki Cho, Gobika Thiripuranathar, SeonJu Park, Recent Progress in Multifunctional Stimuli-Responsive Combinational Drug Delivery Systems for the Treatment of Biofilm-Forming Bacterial Infections, 2024, 16, 1999-4923, 976, 10.3390/pharmaceutics16080976
    878. Irene Berger, Zvi G. Loewy, Antimicrobial Resistance and Novel Alternative Approaches to Conventional Antibiotics, 2024, 3, 2674-1334, 171, 10.3390/bacteria3030012
    879. Sanjeev Sharma, Ashok Kumar, Antimicrobial Resistance: A Global Health Challenge, 2024, 18, 2321-0435, 87, 10.4103/joa.joa_118_24
    880. Cut Soraya, Fitri Yunita Batubara, Saskia L. Nasroen, Subhaini Jakfar, Basri A. Gani, Role of Moringa oleifera irrigation solution on the cell metabolism change of Streptococcus mutans, 2024, 15, 2231-4040, 200, 10.4103/JAPTR.JAPTR_442_23
    881. Kishan Nandi Shoudho, Shihab Uddin, Md Mahamudul Hasan Rumon, Md Salman Shakil, Influence of Physicochemical Properties of Iron Oxide Nanoparticles on Their Antibacterial Activity, 2024, 2470-1343, 10.1021/acsomega.4c02822
    882. Olukayode Olugbenga Orole, Taiwo Adewumi, Adedotun Adefolalu, Biological assessment and radiological impact in Keana, North Central Nigeria: environmental implication and metabolites production, 2024, 196, 0167-6369, 10.1007/s10661-024-12919-1
    883. Emanuele Esposito, Antonino Pace, Andrea Affuso, Maria Oliviero, Doriana Iaccarino, Gianluigi Paduano, Fulvio Maffucci, Giovanna Fusco, Esterina De Carlo, Sandra Hochscheid, Fabio Di Nocera, Antibiotic Resistance of Bacteria Isolated from Clinical Samples and Organs of Rescued Loggerhead Sea Turtles (Caretta caretta) in Southern Italy, 2024, 14, 2076-2615, 2103, 10.3390/ani14142103
    884. Ajran Kabir, Bibek Lamichhane, Tasmia Habib, Alexis Adams, Hossam El-Sheikh Ali, Nathan M. Slovis, Mats H. T. Troedsson, Yosra A. Helmy, Antimicrobial Resistance in Equines: A Growing Threat to Horse Health and Beyond—A Comprehensive Review, 2024, 13, 2079-6382, 713, 10.3390/antibiotics13080713
    885. Elena Ponzo, Silvia De Gaetano, Angelina Midiri, Giuseppe Mancuso, Presti Giovanna, Danna Giuliana, Sebastiana Zummo, Carmelo Biondo, The Antimicrobial Resistance Pandemic Is Here: Implementation Challenges and the Need for the One Health Approach, 2024, 4, 2673-947X, 297, 10.3390/hygiene4030024
    886. Rauf Shiraliyev, Mehmet A Orman, Metabolic disruption impairs ribosomal protein levels, resulting in enhanced aminoglycoside tolerance, 2024, 13, 2050-084X, 10.7554/eLife.94903.3
    887. Nedy Ramírez, Fábio Cassola, Alessandra Gambero, Adilson Sartoratto, Laura Marcela Gómez Castellanos, Guilherme Ribeiro, Rodney Alexandre Ferreira Rodrigues, Marta Cristina Teixeira Duarte, Control of pathogenic bacterial biofilm associated with acne and the anti-inflammatory potential of an essential oil blend, 2024, 194, 08824010, 106834, 10.1016/j.micpath.2024.106834
    888. Ravi Kant, Naveen Kumar, Yashpal Singh Malik, Dean Everett, Daman Saluja, Thomas Launey, Rahul Kaushik, Critical Insights from Recent Outbreaks of Mycoplasma pneumoniae: Decoding the Challenges and Effective Interventions Strategies, 2024, 12019712, 107200, 10.1016/j.ijid.2024.107200
    889. Daniel Thakuma Tizhe, Israel Ogwuche Ogra, Shadrack Dangabar Apollos, Katumi Ohunene Enesi, Afiniki Yohanna, Raphael Aminu, Jacob Kwada Paghi Kwaga, Antimicrobial resistance as a global public health threat: the way forward, 2024, 2504-5695, 52, 10.21303/2504-5695.2024.003336
    890. Marko Malićanin, Ivana Karabegović, Natalija Đorđević, Stojan Mančić, Sandra Stamenković Stojanović, Duško Brković, Bojana Danilović, Influence of the Extraction Method on the Biological Potential of Solidago virgaurea L. Essential Oil and Hydrolates, 2024, 13, 2223-7747, 2187, 10.3390/plants13162187
    891. Andréa Lima Alves Ruislan, Marcela França Dias, Aline Daniela Lopes Júlio, Ubiana de Cássia Mourão Silva, Sergio Pagnin, Andrea Azevedo Veiga, Débora Godinho Zanetti, Vera Lúcia dos Santos, Effects of antimicrobials over sessile and planktonic microbiota associated with an industrial cooling water system, 2024, 0892-7014, 1, 10.1080/08927014.2024.2384436
    892. Shengwei Sun, Xueyingzi Chen, Mechanism-guided strategies for combating antibiotic resistance, 2024, 40, 0959-3993, 10.1007/s11274-024-04106-8
    893. Aniba Rafik, Dihmane Asmaa, Raqraq Habiba, Ressmi Amina, Nayme Kaotar, Timinouni Mohammed, Barguigua Abouddihaj, Molecular and phenotypic characterization of biofilm formation and antimicrobial resistance patterns of uropathogenic Staphylococcus haemolyticus isolates in Casablanca, Morocco., 2024, 07328893, 116483, 10.1016/j.diagmicrobio.2024.116483
    894. Divya Mehta, Sanjay Singh, Nanozymes and their biomolecular conjugates as next-generation antibacterial agents: A comprehensive review, 2024, 01418130, 134582, 10.1016/j.ijbiomac.2024.134582
    895. Milan Milijasevic, Slavica Veskovic-Moracanin, Jelena Babic Milijasevic, Jelena Petrovic, Ivan Nastasijevic, Antimicrobial Resistance in Aquaculture: Risk Mitigation within the One Health Context, 2024, 13, 2304-8158, 2448, 10.3390/foods13152448
    896. Tandel Jhanvi, Mori Krinal, Kamaliya Tamanna, Sujit Kumar, Martina Laishram, 2024, Chapter 12, 978-3-031-62461-2, 173, 10.1007/978-3-031-62462-9_12
    897. Wubetu Yihunie Belay, Melese Getachew, Bantayehu Addis Tegegne, Zigale Hibstu Teffera, Abebe Dagne, Tirsit Ketsela Zeleke, Rahel Belete Abebe, Abebaw Abie Gedif, Abebe Fenta, Getasew Yirdaw, Adane Tilahun, Yibeltal Aschale, Mechanism of antibacterial resistance, strategies and next-generation antimicrobials to contain antimicrobial resistance: a review, 2024, 15, 1663-9812, 10.3389/fphar.2024.1444781
    898. A Romero-Rodríguez, B Ruíz-Villafán, S Sánchez, D Paredes-Sabja, Is there a role for Intestinal Sporobiota in the Antimicrobial Resistance Crisis?, 2024, 09445013, 127870, 10.1016/j.micres.2024.127870
    899. Abubakar Mannir Rawayau, Aliyu Sani Yandoma, F Lawal Muhammad, Nasir Rufa'i, Ahmed Sani, A Halliru, Assessment of Proximate, Vitamins, In Vitro Antioxidant, and Functional Properties of Some Polyherbal Formulations as Prospective Botanical Candidates for Pharmaceutical Applications, 2024, 9, 2814-1822, 464, 10.47430/ujmr.2493.054
    900. Xaviera A. López-Cortés, José M. Manríquez-Troncoso, John Kandalaft-Letelier, Sara Cuadros-Orellana, Machine learning and matrix-assisted laser desorption/ionization time-of-flight mass spectra for antimicrobial resistance prediction: A systematic review of recent advancements and future development, 2024, 00219673, 465262, 10.1016/j.chroma.2024.465262
    901. Avani Panickar, Anand Manoharan, Anand Anbarasu, Sudha Ramaiah, Respiratory tract infections: an update on the complexity of bacterial diversity, therapeutic interventions and breakthroughs, 2024, 206, 0302-8933, 10.1007/s00203-024-04107-z
    902. Tannishtha Biswas, Mehnaz Ahmed, Susmita Mondal, Mixed species biofilm: Structure, challenge and its intricate involvement in hospital associated infections, 2024, 195, 08824010, 106866, 10.1016/j.micpath.2024.106866
    903. Essam M. Hussein, Ziad Moussa, Rami J. Obaid, Ahmad Abd‐El‐Aziz, Hatem M. Altass, Khaled Elbanna, Hussein H. Abulreesh, Meshal Almalki, Amrita Banerjee, Arpita Chattopadhyay, Samir Kumar Pal, Saleh A. Ahmed, Deep Eutectic Solvent (DES)‐Mediated Green Approach for Synthesis of Benzothiazole Tethered Pyrazoles: Antimicrobial Properties and Molecular Docking Insights, 2024, 9, 2365-6549, 10.1002/slct.202401009
    904. Soroush Heydari, Niloofar Masoumi, Erfan Esmaeeli, SeyedMohammad Ayyoubzadeh, Fatemeh Ghorbani-Bidkorpeh, Mahnaz Ahmadi, Artificial Intelligence in nanotechnology for treatment of diseases, 2024, 1061-186X, 1, 10.1080/1061186X.2024.2393417
    905. Nerea Martínez-López, Carlos Vilas, Míriam R. García, A birth–death model to understand bacterial antimicrobial heteroresistance from time-kill curves, 2024, 00255564, 109278, 10.1016/j.mbs.2024.109278
    906. Tamaraukepreye Catherine Odubo, Adams Ovie Iyiola, Bukola Omotomilola Adetola, Ayotunde Samuel Kolawole, Sylvester Chibueze Izah, Morufu Olalekan Raimi, Matthew Chidozie Ogwu, 2024, Chapter 3, 978-3-031-43198-2, 1109, 10.1007/978-3-031-43199-9_3
    907. Janus A, P.M. Deepa, Jess Vergis, R. Rajasekhar, Biju P. Habeeb, P. Vinu David, K.C. Bipin, Lali F. Anand, K. Vijayakumar, Green synthesized silver nanoparticles from Ocimum sanctum: A potent inhibitor of biofilm forming ability and efflux pumps in bacteria causing bovine mastitis, 2024, 195, 08824010, 106883, 10.1016/j.micpath.2024.106883
    908. A. Janus, P.M. Deepa, Jess Vergis, R. Rajasekhar, Biju.P. Habeeb, K.C. Bipin, P. Vinu David, Lali.F. Anand, R.L. Ratish, V.H. Shyma, K. Vijayakumar, Unravelling the Complex Mechanisms of Multidrug Resistance in Bovine Mastitis Pathogens: Insights into Antimicrobial Resistance Genes, Biofilm Dynamics, and Efflux Systems., 2024, 08824010, 106902, 10.1016/j.micpath.2024.106902
    909. Nagarjuna Prakash Dalbanjan, Arihant Jayawant Kadapure, Praveen Kumar S.K, A comprehensive review on latent role of stress proteins in antibiotic resistance, 2024, 4, 29501946, 100151, 10.1016/j.microb.2024.100151
    910. Heba W. Alhamdi, Hanan Khalaf Anazi, Fatma Alzahraa Mokhtar, Seham S. Elhawary, Serag Eldin I. Elbehairi, Mohammad Y. Alfaifi, Ali A. Shati, Lamiaa I. Fahmy, Engy Elekhnawy, Afnan Hassan, Walaa A. Negm, Sherif Ashraf Fahmy, Nabil Selim, Panicum maximum Jacq. mediated green synthesis of silver nanoparticles: synthesis, characterization, and biological activities supported by molecular docking , 2024, 52, 2169-1401, 411, 10.1080/21691401.2024.2395811
    911. Pavani Cherukupally, Claudio Lourenco, Cher Farrugia, Diana Marcela Castillo, Maja Sabalic-Schoener, 2025, 9780128239940, 209, 10.1016/B978-0-12-823994-0.00009-8
    912. Margaux Frigoli, Mikolaj P. Krupa, Geert Hooyberghs, Joseph W. Lowdon, Thomas J. Cleij, Hanne Diliën, Kasper Eersels, Bart van Grinsven, Electrochemical Sensors for Antibiotic Detection: A Focused Review with a Brief Overview of Commercial Technologies, 2024, 24, 1424-8220, 5576, 10.3390/s24175576
    913. Dina E. El-Ghwas, Heba Yehia, Antibacterial efficiency of natural products against multiple-drug-resistant clinical isolates, 2022, 21, 1687-4315, 432, 10.4103/epj.epj_48_22
    914. Merve Yildirim, Bunyamin Ozgeris, Arzu Gormez, The effect of novel β-lactam derivatives synthesized from substituted phenethylamines on resistance genes of MRSA isolates, 2024, 0021-8820, 10.1038/s41429-024-00769-5
    915. Federica Dell’Annunziata, Veronica Folliero, Roberta Della Marca, Francesca Palma, Giuseppina Sanna, Anna De Filippis, Pasquale Pagliano, Aldo Manzin, Gianluigi Franci, Massimiliano Galdiero, Sushil Nagar, Repurposing the Antibacterial Activity of the Drug Teniposide Against Gram‐Positive Bacteria, 2024, 2024, 1462-5814, 10.1155/2024/9389729
    916. Vincent Tu, Yue Ren, Ceylan Tanes, Sagori Mukhopadhyay, Scott G. Daniel, Hongzhe Li, Kyle Bittinger, Michael J. Imperiale, A quantitative approach to measure and predict microbiome response to antibiotics, 2024, 2379-5042, 10.1128/msphere.00488-24
    917. Marwan M. Sa'ed, Raphael D. Ayivi, Jianjun Wei, Sherine O. Obare, Gold nanoparticles antibacterial activity: Does the surface matter?, 2024, 62, 22150382, 100804, 10.1016/j.colcom.2024.100804
    918. Manya Aggarwal, Anushree Patra, Ishita Awasthi, Annu George, Simran Gagneja, Varsha Gupta, Neena Capalash, Prince Sharma, Drug repurposing against antibiotic resistant bacterial pathogens, 2024, 279, 02235234, 116833, 10.1016/j.ejmech.2024.116833
    919. Tugba Cebeci, Elif Seren Tanrıverdi, Barış Otlu, A first study of meat-borne enterococci from butcher shops: prevalence, virulence characteristics, antibiotic resistance and clonal relationship, 2024, 0165-7380, 10.1007/s11259-024-10516-8
    920. Vaishali Halwai, Rambir Singh, Sona Singh, Neha Jain, Sosan Xess, Poonam Sharma, Identification and Antimicrobial Susceptibility Patterns of Neisseria gonorrhoeae, Ureaplasma spp. and Mycoplasma spp. Isolated from Tribal Women, 2024, 18, 09737510, 1580, 10.22207/JPAM.18.3.07
    921. Kunle Okaiyeto, Maria Rosa Gigliobianco, Piera Di Martino, Biogenic Zinc Oxide Nanoparticles as a Promising Antibacterial Agent: Synthesis and Characterization, 2024, 25, 1422-0067, 9500, 10.3390/ijms25179500
    922. Anamika Singh, Mansi Tanwar, T.P. Singh, Sujata Sharma, Pradeep Sharma, An escape from ESKAPE pathogens: A comprehensive review on current and emerging therapeutics against antibiotic resistance, 2024, 01418130, 135253, 10.1016/j.ijbiomac.2024.135253
    923. Xi-Le Hu, Hui-Qi Gan, Wen-Zhen Gui, Kai-Cheng Yan, Jonathan L. Sessler, Dong Yi, He Tian, Xiao-Peng He, Superresolution imaging of antibiotic-induced structural disruption of bacteria enabled by photochromic glycomicelles, 2024, 121, 0027-8424, 10.1073/pnas.2408716121
    924. Priyanka Dash, Biswakanth Kar, Monalisa Gochhi, Goutam Ghosh, Vineet Kumar Rai, Chandan Das, Deepak Pradhan, Tushar Kanti Rajwar, Jitu Halder, Debasmita Dubey, Salim Manoharadas, Goutam Rath, Antimicrobial Properties of the Edible Pink Oyster Mushroom, Pleurotus eous: In-Vivo and In-Vitro Studies, 2024, 08824010, 106915, 10.1016/j.micpath.2024.106915
    925. Adriana Canedo Miranda, Cristiano Valim Bizarro, 2024, Chapter 4, 978-3-031-65985-0, 117, 10.1007/978-3-031-65986-7_4
    926. Amir Khorasani, Sharareh Moghim, Jeroen Wagemans, Rob Lavigne, Arezoo Mirzaei, Antibiotic profile classification of Proteus mirabilis using machine learning: An investigation into multidimensional radiomics features, 2024, 182, 00104825, 109131, 10.1016/j.compbiomed.2024.109131
    927. Dilfuza Aniyozova, Habibulla Akilov, Munirakhon Kasimova, Caterina Favaretti, Muborak Sadyrova, Zarina Egamberdieva, Laylo Botirova, Andreas Deckert, Antimicrobial resistance related knowledge, attitude and practice of general practitioners, patients and farmers: a cross-sectional study in Uzbekistan, 2024, 24058440, e37566, 10.1016/j.heliyon.2024.e37566
    928. Nana Gao, Jing Zhou, Ge Li, Runde Liu, Guoping Lu, Jilu Shen, Methodological Evaluation of Carbapenemase Detection by Different Methods, 2024, 73, 2544-4646, 383, 10.33073/pjm-2024-034
    929. Vandana Jhalora, Renu Bist, A Comprehensive Review of Molecular Mechanisms Leading to the Emergence of Multidrug Resistance in Bacteria, 2024, 0046-8991, 10.1007/s12088-024-01384-6
    930. Chandrima Bhattacharya, Mehmed Taha Dinc, Srijani Basu, Riddhi Chaudhuri, Chenlian Fu, Gresia Cervantes, Upasana Das Adhikari, Rupobrata Panja, Jake Qiu, Anusha Aditya, Christopher E. Mason, 2024, Chapter 6, 978-3-031-65985-0, 179, 10.1007/978-3-031-65986-7_6
    931. Themba Titus Sigudu, James Wabwire Oguttu, Daniel Nenene Qekwana, Antimicrobial Resistance of Staphylococcus spp. from Human Specimens Submitted to Diagnostic Laboratories in South Africa, 2012–2017, 2024, 12, 2076-2607, 1862, 10.3390/microorganisms12091862
    932. S. Suvetha, Arun Kumar Mani, Metallic nanocomposites − A prevailing tool to decipher the bacterial crosstalk, 2024, 1226086X, 10.1016/j.jiec.2024.09.044
    933. Agus Yulianto, Extraction of Active Compounds from Mangrove Snail Meat (Terebralia sulcata) as an Antibacterial Agent Against Escherichia coli, 2024, 1, 3063-5543, 8, 10.58920/aqlis0101229
    934. Manuela Oliveira, Wilson Antunes, Salete Mota, Áurea Madureira-Carvalho, Ricardo Jorge Dinis-Oliveira, Diana Dias da Silva, An Overview of the Recent Advances in Antimicrobial Resistance, 2024, 12, 2076-2607, 1920, 10.3390/microorganisms12091920
    935. Geetanjali Raikwar, Dharmender Kumar, Sumedha Mohan, Praveen Dahiya, Synergistic potential of essential oils with antibiotics for antimicrobial resistance with emphasis on mechanism of action: A review, 2024, 61, 18788181, 103384, 10.1016/j.bcab.2024.103384
    936. Min-Ju Kang, Do-Kyun Kim, Mechanisms of Escherichia coli inactivation by combined chlorogenic acid and ultraviolet-A (365 nm) treatment and its effects on DNA integrity, 2024, 09639969, 115132, 10.1016/j.foodres.2024.115132
    937. Anuradha Jeewantha Punchihewage-Don, Priyanka Nilmini Ranaweera, Salina Parveen, Defense mechanisms of Salmonella against antibiotics: a review, 2024, 3, 2813-2467, 10.3389/frabi.2024.1448796
    938. Katarina Grabrijan, Nika Strašek Benedik, Alen Krajnc, Krištof Bozovičar, Damijan Knez, Matic Proj, Irena Zdovc, Izidor Sosič, Carlos Contreras-Martel, Andréa Dessen, Martina Hrast Rambaher, Stanislav Gobec, Synthesis and biochemical evaluation of new 3-amido-4-substituted monocyclic ß-lactams as inhibitors of penicillin-binding protein(s), 2024, 74, 1846-9558, 423, 10.2478/acph-2024-0024
    939. Shagufta Roohi, Anjum Ara Mir, Tufail Ahmed, Fakhri-Zehra Khaja, Tabish Qayoom, Nargis Bali, A Four-Year Retrospective Study on Epidemiology, Bacteriology, and Antimicrobial Resistance of Bacterial Isolates from Burn Wounds in a Tertiary Care Hospital, 2024, 12, 2538-4430, 150, 10.61186/JoMMID.12.2.150
    940. Hannah Delp, Gabrielle A. Gibson, Sara A. Buckman, Aztreonam-avibactam for the treatment of intra-abdominal infections, 2024, 1465-6566, 10.1080/14656566.2024.2409950
    941. Kristanti Lestari, Febriansyah Nur Utomo, Mahendra Tri Arif Sampurna, Quantitative and qualitative analysis of antibiotic use among neonatal patients in teaching hospitals in Indonesia, 2024, 71, 2603-557X, 1, 10.3897/pharmacia.71.e130253
    942. M. A. Samad, A COMPREHENSIVE REVIEW OF ANTIMICROBIAL RESISTANCE BEGINNING FROM THE DISCOVERY OF THE FIRST ANTIBIOTIC UNTIL THE PRESENT-DAY SITUATION WITH ONE HEALTH APPROACH WITH SPECIAL EMPHASIS ON BANGLADESH, 2024, 5, 2664-2360, 1, 10.36111/jvmohr.2023.5(1-2).0035
    943. Arka Moitra, Abhinaba Chakraborty, Bomba Dam, CRISPR-Cas9 system: a potent tool to fight antibiotic resistance in bacteria, 2024, 29501946, 100184, 10.1016/j.microb.2024.100184
    944. R. Rajalakshmi, N. Mukesh Babu, A. Doss, R.P. Praveen Pole, T.P. Kumari Pushpa Rani, V. Mary Kensa, Eco-friendly synthesis and characterization of silver nanoparticles from an endemic plant and their antibacterial potency - A sustainable approach, 2024, 4, 29497469, 100070, 10.1016/j.cinorg.2024.100070
    945. Karthick Harini, Koyeli Girigoswami, Anbazhagan Thirumalai, Agnishwar Girigoswami, Polymer-Based Antimicrobial Peptide Mimetics for Treating Multi-drug Resistant Infections: Therapy and Toxicity Evaluation, 2024, 30, 1573-3904, 10.1007/s10989-024-10648-0
    946. Kaixiang Jia, Song Xue, Yangyang Du, Lianci Peng, Weifeng Chen, Xiaoying Yu, Xuefeng Cao, Rendong Fang, Zhiwei Li, Antimicrobial and Antioxidant Properties of Hawthorn Vinegar, 2024, 15, 2036-7481, 2048, 10.3390/microbiolres15040137
    947. Rabiya Tabbassum Khan, Vanshika Sharma, Sofia Sharief Khan, Shafaq Rasool, Prevention and potential remedies for antibiotic resistance: current research and future prospects, 2024, 15, 1664-302X, 10.3389/fmicb.2024.1455759
    948. Ranjit Kumar Nadella, Satyen Kumar Panda, Devananda Uchoi, Pankaj Kishore, Balakrishna Chintada, Madhu V.R., Minimol V.A., Madhusudana Rao Badireddy, Pani Prasad Kuricheti, Ram Prakash Raman, Mukteswar Prasad Mothadaka, Categorization of antibiotic resistant bacterial populations from Shrimp and its culture environment of Andhra Pradesh, India, 2025, 595, 00448486, 741702, 10.1016/j.aquaculture.2024.741702
    949. Eman A. Alwaleed, Nahaa M. Alotaibi, Abdallah Tegeldein Mansour, Mashaill A. Alghamdi, Asmaa S. Abdelgaliel, Assessment of the conceivable inhibitory activity of pathogenic microorganisms extracted from seaweed using phytochemicals, antioxidants, and in-silico molecular dynamic simulation, 2024, 14, 2045-2322, 10.1038/s41598-024-70620-2
    950. Taiwo Scholes Adewole, Oladiran Boniface Oladokun, Adenike Kuku, Host Defense Peptides: Exploiting an Innate Immune Component Against Infectious Diseases and Cancer, 2024, 30, 1573-3904, 10.1007/s10989-024-10655-1
    951. Vatsa Kapadia, Ashish Wadhwani, Rihana Begum, Sivasankaran Ponnusankar, Praveen Mohadeb, Medha Gujadhur, Piyush Kumar, A Step Towards Combating Antimicrobial Resistance: Global Prescriptive and Programmes – A Review, 2024, 21, 24562602, 877, 10.13005/bbra/3271
    952. Esa Karalliu, Kai Yeung Chung, Brett MacKinnon, Belete Haile, Pawel M. Beczkowski, Vanessa R. Barrs, Ibrahim Elsohaby, Omid Nekouei, Risk factors for antimicrobial-resistant Enterobacterales in dogs: a systematic review, 2024, 11, 2297-1769, 10.3389/fvets.2024.1447707
    953. Freshinta Jellia Wibisono, Dyah Ayu Widiasih, Hung Nguyen-Viet, Multidrug Resistance of Escherichia coli in cats and the Level of Understanding of Cat Owners on Antimicrobial Resistance, 2024, 0974-360X, 3855, 10.52711/0974-360X.2024.00598
    954. Roshan Sah, Manish Pal Singh, Kashmira J. Gohil, A Comprehensive Study of Allium Sativum Linn, 2024, 2, 26668629, 10.2174/0126668629259652231108112909
    955. Vishwani Jamwal, Tashi Palmo, Kuljit Singh, Understanding the mechanisms of antimicrobial resistance and potential therapeutic approaches against the Gram-negative pathogen Acinetobacter baumannii, 2024, 2632-8682, 10.1039/D4MD00449C
    956. K. E. Borovkova, Antimicrobial Resistance Development in vitro: Adaptive Laboratory Evolution Method (Review), 2024, 3034-3453, 10.30895/1991-2919-2024-656
    957. Zaakirah Delair, Michaela Schoeman, Brandon Reyneke, Atheesha Singh, Tobias George Barnard, Assessing the impact of Escherichia coli on recreational water safety using quantitative microbial risk assessment, 2024, 1477-8920, 10.2166/wh.2024.081
    958. Sujata Saha, Rishav Kar, Kunal Sikder, Dipak Manna, Ritesh Ranjan Pal, Soumyananda Chakraborti, Ali Hossain Khan, Sourav Barman, Amit Ranjan Maity, Arnab Basu, Deciphering the inhibitory mechanism of antimicrobial peptide pexiganan conjugated with sodium-alginate chitosan-cholesterol nanoparticle against the opportunistic pathogen Acinetobacter baumannii, 2024, 17732247, 106305, 10.1016/j.jddst.2024.106305
    959. Yolla Rona Mustika, Mustofa Helmi Effendi, Yulianna Puspitasari, Hani Plumeriastuti, Aswin Rafif Khairullah, Kurnia Nisa Kinasih, Identification of Escherichia coli Multidrug Resistance in Cattle in Abattoirs, 2024, 7, 2581-012X, 19, 10.20473/jmv.vol7.iss1.2024.19-32
    960. Hannah G Braun, Sumudu R Perera, Yannick DN Tremblay, Jenny-Lee Thomassin, Antimicrobial resistance in Klebsiella pneumoniae: an overview of common mechanisms and a current Canadian perspective, 2024, 0008-4166, 10.1139/cjm-2024-0032
    961. Giedrė Valdonė Sakalauskienė, Aurelija Radzevičienė, Antimicrobial Resistance: What Lies Beneath This Complex Phenomenon?, 2024, 14, 2075-4418, 2319, 10.3390/diagnostics14202319
    962. Subhojeet Biswas, Madhusmita Bal, Sanghamitra Pati, Ramakanta Rana, Sujata Dixit, Manoranjan Ranjit, Antibiotic resistance in toxigenic E. coli: a severe threat to global health, 2024, 1, 3004-8885, 10.1007/s44337-024-00102-x
    963. Naomi Oyenuga, José Francisco Cobo-Díaz, Avelino Alvarez-Ordóñez, Elena-Alexandra Alexa, Overview of Antimicrobial Resistant ESKAPEE Pathogens in Food Sources and Their Implications from a One Health Perspective, 2024, 12, 2076-2607, 2084, 10.3390/microorganisms12102084
    964. Kia Barry, Aubrey Mendonça, Gregory J. Phillips, Terri Boylston, Paulo Fortes-Da-Silva, Byron Brehm-Stecher, Vijay Juneja, Zifan Wan, Long-term-survival phase cells of Salmonella enteritidis ATCC 13076 exhibit significantly greater tolerance to atmospheric cold plasma treatment of shell eggs, 2024, 4, 2674-1121, 10.3389/frfst.2024.1442761
    965. Eveline Yulia Darmadi, Diana Soesilo, Antimicrobial activity of calcium hydroxide, calcium oxide, and mineral trioxide aggregate paste against α-Hemolytic Streptococcus, 2024, 14, 2722-8045, 24, 10.20473/cdj.v14i1.2024.24-28
    966. Dahye Noh, Hokyung Lee, Sangmin Lee, In-Cheol Sun, Hong Yeol Yoon, Copper-Based Nanomedicines for Cuproptosis-Mediated Effective Cancer Treatment, 2024, 28, 2055-7124, 10.34133/bmr.0094
    967. Sameer Ahmad, Kulsum Jan, Jatindra K. Sahu, Mehvish Habib, Shumaila Jan, Khalid Bashir, A Comprehensive Review on Recent Trends and Utilization of Algal β-Glucan for the Development of Nutraceuticals and Functional Foods, 2024, 8755-9129, 1, 10.1080/87559129.2024.2404222
    968. Sudhangshu Kumar Biswas, Md. Mehedi Hasan Sumon, Sabbir Ahmed, Rumana Akter Ruma, Anzana Parvin, Dipak Kumar Paul, Apurba Kumar Roy, Swee-Seong Tang, Beyond Antibiotics: Exploring the Potential of Bacteriophages and Phage Therapy, 2024, 2641-6530, 10.1089/phage.2024.0005
    969. Hafij Al Mahmud, Catherine A. Wakeman, Navigating collateral sensitivity: insights into the mechanisms and applications of antibiotic resistance trade-offs, 2024, 15, 1664-302X, 10.3389/fmicb.2024.1478789
    970. Cecilia Cagnotta, Alessia Zinzi, Francesca Gargano, Valerio Liguori, Maria Rosaria Campitiello, Alessandro Perrella, Annalisa Capuano, Concetta Rafaniello, Ugo Trama, Can Pharmacovigilance Data Represent a Potential Tool for Early Detection of the Antibiotic Resistance Phenomenon?, 2024, 3, 2813-0618, 350, 10.3390/pharma3040024
    971. Rania Itani, Hani M. J. Khojah, Rahaf Kibrit, Hamza Raychouni, Patricia Shuhaiber, Carole Dib, Mariam Hassan, Tareq L. Mukattash, Abdalla El-Lakany, Risk factors associated with multidrug-resistant Klebsiella pneumoniae infections: a multicenter observational study in Lebanese hospitals, 2024, 24, 1471-2458, 10.1186/s12889-024-20474-0
    972. Pansee Gamaleldin, Mustafa Alseqely, Benjamin A. Evans, Hoda Omar, Alaa Abouelfetouh, Comparison of genotypic features between two groups of antibiotic resistant Klebsiella pneumoniae clinical isolates obtained before and after the COVID-19 pandemic from Egypt, 2024, 25, 1471-2164, 10.1186/s12864-024-10661-z
    973. Sonia Mokni-Tlili, Anna Markowicz, Sławomir Sułowicz, Helmi Hamdi, Culture-based and molecular investigation of antibiotic and metal resistance in a semi-arid agricultural soil repeatedly amended with urban sewage sludge, 2024, 263, 00139351, 120182, 10.1016/j.envres.2024.120182
    974. D.I. Boyarintsev, I.V. Kuzminov, M.V. Orlova, New Aspects in the Mechanism of Action of 3-hydroxy-3-methylglutaryl- COA Reductase (HMG-CoA reductase): Cyclic Lactones - Potential Inhibitors of the Enzyme (Review), 2024, 20, 15734080, 164, 10.2174/0115734080298814240528092106
    975. Ray Silva de Almeida, Priscilla Ramos Freitas, Ana Carolina Justino de Araujo, Saulo Relison Tintino, Jaime Ribeiro-Filho, Gustavo Marinho Miranda, Gustavo Miguel Sigueira, Sheila Alves Gonçalves, Diogo Teixeira Carvalho, Thiago Belarmino de Souza, Laís Regina dos Santos Folquitto, Danielle Ferreira Dias, António Raposo, Ariana Saraiva, Heesup Han, Henrique Douglas Melo Coutinho, Liposomal formulation with thiazolic compounds against bacterial efflux pumps, 2024, 180, 07533322, 117600, 10.1016/j.biopha.2024.117600
    976. David A Jernigan, Induced Native Phage Cocktails for Multi-microbial Activation Syndrome in Treatment-Resistant Illnesses, 2024, 2168-8184, 10.7759/cureus.72587
    977. Wei Wang, Bichun Zhao, Hanyu Zhang, Zhaowei Jie, Can Hu, Hongling Guo, Ping Wang, Yajun Li, Jun Zhu, Hongcheng Mei, Jian Ye, Research progress and application of bacterial traceability technology, 2024, 365, 03790738, 112275, 10.1016/j.forsciint.2024.112275
    978. Lyndon N. A. Sackey, Augustine Okobeng, Priscilla Yawa Obidieh, Flora-Marie Mpaka Ngala, Emmanuel Bentum Otoo, Jeremiah Quartey, Joseph A. Bentil, David Azanu, Balaji Etikala, Risk Assessment of Pharmaceutical Contaminants in Pharmaceutical Wastewater, 2024, 2024, 2356-6140, 10.1155/2024/5538398
    979. Maargavi Singh, Chiranjay Mukhopadhyay, Pooja Nag, Kapil Sadani, 2024, Chapter 42, 978-981-97-5865-4, 591, 10.1007/978-981-97-5866-1_42
    980. Harihara Sujit Nair, Combating Antimicrobial Resistance by Resensitising Bacteria to Antibiotics Using CRISPR: A Narrative Review, 2024, 0976-0016, 10.1177/09760016241290651
    981. Tasnime Abdo Ahmad, Samar El Houjeiry, Souha S Kanj, Ghassan M Matar, Esber S Saba, From Forgotten Cure to Modern Medicine: The Resurgence of Bacteriophage Therapy, 2024, 22137165, 10.1016/j.jgar.2024.10.259
    982. Rinku Choubey, Moumita Chatterjee, Pramina Kumari Pandey, Abhijit Mishra, Bhaskar Datta, Coassembly of Cell-Penetrating Peptide Octaarginine with Acetazolamide: Emergent Interactions with E. coli, 2024, 2470-1343, 10.1021/acsomega.4c06800
    983. Shubham Barik, Shalini Kannoth, Mottakunja Deepthi, Mareena Jose, Devachandana C. Prabhu, Shemmy Sadanandan, Tony Grace, 2025, 9780323916318, 301, 10.1016/B978-0-323-91631-8.00016-0
    984. Akhtar Rasool, Thamaraiselvi Kanagaraj, Fransiska Sri Herwahyu Krismastuti, Green approach of cobalt sulfide nanoparticles from novel red stigma of Crocus sativus and multifaceted biomedical advancement, 2024, 13877003, 113417, 10.1016/j.inoche.2024.113417
    985. Deepansh Mody, Priyanka Joshi, Monika Antil, Rakesh K. Gupta, Vibha Gupta, Insights into Kinases of ESKAPE Pathogens for Therapeutic Interventions, 2024, 22, 18715257, 276, 10.2174/0118715257267497231128093529
    986. Raja Amir Hassan Kuchay, Novel and emerging therapeutics for antimicrobial resistance: A brief review, 2024, 1881-7831, 10.5582/ddt.2024.01063
    987. Gil Sander Próspero Gama, Alexandre Santos Pimenta, Francisco Marlon Carneiro Feijó, Caio Augusto Martins Aires, Rafael Rodolfo de Melo, Caio Sérgio dos Santos, Lúcio César Dantas de Medeiros, Thays Vieira da Costa Monteiro, Maíra Fasciotti, Priscila Lira de Medeiros, Maria Rita Macêdo de Morais, Tatiane Kelly Barbosa de Azevedo, Antimicrobial Impact of Wood Vinegar Produced Through Co-Pyrolysis of Eucalyptus Wood and Aromatic Herbs, 2024, 13, 2079-6382, 1056, 10.3390/antibiotics13111056
    988. Kalinga Pavan T. Silva, Anupama Khare, Antibiotic resistance mediated by gene amplifications, 2024, 2, 2731-8745, 10.1038/s44259-024-00052-5
    989. Cícera D. de Morais Oliveira‐Tintino, Francisco E. F. da Silva, Gilvandete M. P. Santiago, Francisco das C. L. Pinto, Otília D. L. Pessoa, Aluísio M. da Fonseca, Cícera L. R. Paulo, Hélcio S. dos Santos, Marcia M. Marinho, Jaqueline L. dos Santos, Talysson F. Moura, Priscilla R. Freitas, Ana C. J. de Araújo, Ray S. de Almeida, Saulo R. Tintino, Henrique D. M. Coutinho, Molecular Docking and Antibacterial Activity of Campesterol Derivatives Against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa Multiresistant Strains, 2024, 1612-1872, 10.1002/cbdv.202401073
    990. Janki V. Rojmala, Anjali B. Thakkar, Dhruti Joshi, Bhargav N. Waghela, Parth Thakor, Screening and identification of phytochemicals from Acorus calamus L. to overcome NDM-1 mediated resistance in Klebsiella pneumoniae using in silico approach, 2024, 10, 24058440, e40211, 10.1016/j.heliyon.2024.e40211
    991. Sheetal Negi, Sarika Sharma, Ready to Eat Food: A Reason for Enhancement in Multidrug Resistance in Humans, 2024, 14, 2228-5881, 504, 10.34172/apb.2024.023
    992. Gerben Marsman, Xuhui Zheng, Dora Čerina, Keenan A. Lacey, Menghan Liu, Daniel Humme, Christian Goosmann, Volker Brinkmann, C.J. Harbort, Victor J. Torres, Arturo Zychlinsky, Histone H1 kills MRSA, 2024, 43, 22111247, 114969, 10.1016/j.celrep.2024.114969
    993. Yungui Sun, Ying Hao, Zicheng Wang, Hui Wang, Yingli Gao, Isolation, characterization, and whole genome sequencing analysis of Aeromonas veronii from Channa argus in China, 2025, 49, 0165-7380, 10.1007/s11259-024-10594-8
    994. Islam I. Teiba, Emad H. El-Bilawy, Ibrahim A. Abouelsaad, Akram Ismael Shehata, Mayada Alhoshy, Yusuf Jibril Habib, Nermeen M. Abu-Elala, Nagwa EL-Khateeb, Elsayed B. Belal, Warda A. M. Hussain, The role of marine bacteria in modulating the environmental impact of heavy metals, microplastics, and pesticides: a comprehensive review, 2024, 1614-7499, 10.1007/s11356-024-35520-y
    995. Maša Zorman, Maja Kokot, Irena Zdovc, Lidija Senerovic, Mina Mandic, Nace Zidar, Andrej Emanuel Cotman, Martina Durcik, Lucija Peterlin Mašič, Nikola Minovski, Marko Anderluh, Martina Hrast Rambaher, Enhancing Antibacterial Efficacy: Combining Novel Bacterial Topoisomerase Inhibitors with Efflux Pump Inhibitors and Other Agents Against Gram-Negative Bacteria, 2024, 13, 2079-6382, 1081, 10.3390/antibiotics13111081
    996. I. A. Karpov, M. A. Lengina, A. M. Korkmazov, N. V. Kornova, V. I. Popadyuk, On the local treatment of exacerbation of tonsillopharyngitis, 2024, 2658-5790, 56, 10.21518/ms2024-485
    997. Mosisa Dejene, Kero Jemal, Getachew Tegegn, Muhdin Aliye, Lemma Teshome, Aman Dekebo, Antimicrobial Activity, Docking and ADMET Profiling of Salvia rosmarinus compounds on a Targeting Enzymes in Cervical Cancer, 2020, 0, 2769-2094, 1, 10.48130/opr-0024-0026
    998. Isabela Francisca de Jesus Borges Costa, João Vitor Rocha Reis, Tatiana Ungaretti Paleo Konno, Luzineide Wanderley Tinoco, Shaft Correa Pinto, Ivana Correa Ramos Leal, Michelle Frazão Muzitano, Antibacterial Activity of Glycosylated Flavonoids Isolated from Ocotea notata Leaves, 2024, 1612-1872, 10.1002/cbdv.202400677
    999. Ashapurna Sinha, Anupama Rani, Vaishali Mishra, Shiwa Chaubey, Farina Mujeeb, 2024, Chapter 30, 978-981-97-5271-3, 641, 10.1007/978-981-97-5272-0_30
    1000. Amit Lather, 2024, Chapter 4, 978-981-97-5271-3, 53, 10.1007/978-981-97-5272-0_4
    1001. Edson D. Hernández‐Velázquez, Angelica J. Granados‐López, Jesús Adrián López, César R. Solorio‐Alvarado, Multidrug Resistance Reversed by Maleimide Interactions. A Biological and Synthetic Overview for an Emerging Field, 2024, 1439-4227, 10.1002/cbic.202400640
    1002. Qipeng Cheng, Yanchu Cheung, Chen Xu, Edward Wai Chi Chan, Kin Fai Chan, Sheng Chen, Overall mutational scanning unveils the essential active residues for the mechanistic action of MCR-1, 2024, 09445013, 127982, 10.1016/j.micres.2024.127982
    1003. Rajendra Singh, Keugtae Kim, Environmental occurrence of antibiotic resistance, control measures and challenges in finding therapeutic management, 2024, 24056650, 100440, 10.1016/j.emcon.2024.100440
    1004. Sindhuprava Rana, Vibhor Joshi, Ganesh Chandra Sahoo, Maneesh Kumar, Krishna Pandey, 2024, Chapter 2, 978-981-97-5271-3, 25, 10.1007/978-981-97-5272-0_2
    1005. Adeleke Kazeem Atunnise, Ibukun Temitope Sossou, Peace Sekani Peters, Solomon Damilare Ajayi, Dumebi Anthony Elechukwu, TiOluwani Bamdele Salau, Olusegun Lateef Adebayo, Bamidele Adewale Salau, Bioactive compounds from fermented Vernonia amygdalina leaf: Potent antibiotics against multidrug-resistant Escherichia coli and Salmonella typhi, 2024, 12, 2193-9616, 10.1007/s40203-024-00277-2
    1006. Vishal Bhojyawal, Mansi Kesarwani, Sweety Gupta, 2024, Chapter 12, 978-981-97-5271-3, 261, 10.1007/978-981-97-5272-0_12
    1007. Masoomeh Naseri, Ali Niazi, Kowsar Bagherzadeh, Atisa Yazdanipour, Simultaneous Voltammetric Determination of Kanamycin and Ampicillin Using an Ultrasensitive Electrochemical Nanosensor with Partial Least Squares (PLS) and Orthogonal Signal Correction (OSC-PLS), 2024, 0003-2719, 1, 10.1080/00032719.2024.2430482
    1008. Jin Wook Oh, Min Kyoung Shin, Hye-Ran Park, Sejun Kim, Byungjo Lee, Jung Sun Yoo, Won-Jae Chi, Jung-Suk Sung, PA-Win2: In Silico-Based Discovery of a Novel Peptide with Dual Antibacterial and Anti-Biofilm Activity, 2024, 13, 2079-6382, 1113, 10.3390/antibiotics13121113
    1009. Aditya Kumar Pal, Dipankar Ghorai, Xueliang Ge, Biplab Sarkar, Amit Kumar Sahu, Vikas Chaudhary, Ruchi Jhawar, Suparna Sanyal, Mahavir Singh, Anirban Ghosh, Second messenger c-di-AMP regulates multiple antibiotic sensitivity pathways in Mycobacterium smegmatis by discrete mechanisms, 2024, 371, 1574-6968, 10.1093/femsle/fnae084
    1010. Sathish Kumar Konidala, Podila Naresh, Risy Namratha Jamullamudi, Kamma Harsha Sri, Richie Rashmin Bhandare, Afzal Basha Shaik, 2025, 9781394249169, 403, 10.1002/9781394249190.ch18
    1011. Mohammad Kashif, Mirza Sarwar Baig, Naidu Subbarao, 2025, 9780443222221, 21, 10.1016/B978-0-443-22222-1.00004-0
    1012. Chabula M. Stephen, Nwamaka H. Igbokwe, Abel O. Idowu, Chijioke E. Ezeobiora, Bioactivity of the ethanol extracts of Flabellaria paniculata, Rhapiostylis beninensis roots and Khaya ivorensis Bark Against Multidrug-Resistance Bacteria, 2024, 58, 0331-670X, 268, 10.51412/psnnjp.2024.25
    1013. Arti Kapil, Priyanka Sharma, Punit Kaur, 2025, 9780443222221, 3, 10.1016/B978-0-443-22222-1.00006-4
    1014. Joanna Ciol Harrison, Grace V. Morgan, Aditya Kuppravalli, Nicole Novak, Michael Farrell, Sienna Bircher, Emily Garner, Nicholas J. Ashbolt, Amy Pruden, Rebecca L. Muenich, Treavor H. Boyer, Clinton Williams, Warish Ahmed, Rasha Maal-Bared, Kerry A. Hamilton, Determinants of antimicrobial resistance in biosolids: A systematic review, database, and meta-analysis, 2024, 957, 00489697, 177455, 10.1016/j.scitotenv.2024.177455
    1015. Ishani Mishra, Shubham Aggarwal, Pravindra Kumar, 2025, 9780443222221, 429, 10.1016/B978-0-443-22222-1.00003-9
    1016. Sahithya Selvakumar, Shubhi Singh, Priya Swaminathan, Resensitization of Multi Drug-Resistant Aeromonas caviae with Exogenous Hydrogen Sulfide Potentiated Antibiotics, 2025, 82, 0343-8651, 10.1007/s00284-024-03985-2
    1017. Chia-Chen Pi, Yu-Chieh Cheng, Chun-Chia Chen, Jai-Wei Lee, Chao-Nan Lin, Ming-Tang Chiou, Hui-Wen Chen, Chiu-Hsia Chiu, Synergistic fermentation of Cordyceps militaris and herbal substrates boosts grower pig antioxidant and immune function, 2024, 20, 1746-6148, 10.1186/s12917-024-04338-8
    1018. Praveen Kumar Gaur, Shobhit Kumar, Nanocarrier-Mediated Dermal Drug Delivery System of Antimicrobial Agents for Targeting Skin and Soft Tissue Infections, 2024, 1540-658X, 10.1089/adt.2024.060
    1019. Harith K. Buniya, Nuha A. Mohammed, Dhyauldeen Aftan Al-Hayani, Antibiotic Resistance Genes Detection in Several Local Cyanobacteria Isolates, 2024, 24, 2300-7575, 568, 10.3390/limnolrev24040033
    1020. Yifei Wang, John T. Kalyvas, Jack D. Evans, Luis Toronjo-Urquiza, John R. Horsley, Andrew D. Abell, Expanding the therapeutic window of gramicidin S towards a safe and effective systemic treatment of methicillin-resistant S. aureus infections, 2025, 283, 02235234, 117128, 10.1016/j.ejmech.2024.117128
    1021. Youcef Bagdad, Maria Miteva, Recent Applications of Artificial Intelligence in Discovery of New Antibacterial Agents, 2024, Volume 17, 1178-6949, 139, 10.2147/AABC.S484321
    1022. Karem Ibrahem, Wafaa Alhazmi, Hanouf A. Niyazi, Hatoon A. Niyazi, Bandar Saleh, Tariq Ekhmimi, Jawahir A. Mokhtar, Dalya Attallah, Mohammed Bazuhair, Khalil Alkuwaity, Ahmad Sait, Mohammed Mufrrih, Mazen Ismail, Yousef Almoghrabi, Hussam Daghistani, Ohood Alharbi, Hisham Altayb, Abdelbagi Alfadil, An In vitro Investigation of the Potential Synergistic Effect of 3-Hydrazinoquinoxaline-2-Thiol and Thymoquinone’s against Methicillin Resistant Staphylococcus aureus (MRSA), 2024, 18, 09737510, 2837, 10.22207/JPAM.18.4.55
    1023. Kruthika Perumal, Priyamvadha Ramadorai, Priyadarshini Shanmugam, Lavanya Mohanam, Prevalence of Class I Integrons among Multidrug-resistant Gram-negative Bacterial Isolates from Tertiary Care Hospital, South India, 2024, 18, 09737510, 2758, 10.22207/JPAM.18.4.48
    1024. Hanan Raheem Hassooni, Raghad Ibrahim Ahmed, Zainab M. Alzubaidy, Adil Hassan Alhusseiny, Isolation and Molecular Identification of Acinetobacter baumannii From Urinary Tract Infection in Diyala Province, Iraq, 2024, 18, 1735-8612, 200, 10.30699/ijmm.18.3.200
    1025. Eberechi Phoebe Nnah, Jonathan Asante, Daniel Gyamfi Amoako, Akebe Luther King Abia, Sabiha Y. Essack, Antibiotic-resistant Escherichia coli (E. coli) at one health interfaces in Africa: A scoping review, 2025, 958, 00489697, 177580, 10.1016/j.scitotenv.2024.177580
    1026. Bridget A.B. Henson, Fucong Li, José Ausencio Álvarez-Huerta, Poornima G. Wedamulla, Arianna Valdes Palacios, Max R.M. Scott, David Thiam En Lim, W.M. Hayden Scott, Monica T.L. Villanueva, Emily Ye, Suzana K. Straus, Novel active Trp- and Arg-rich antimicrobial peptides with high solubility and low red blood cell toxicity designed using machine learning tools, 2024, 09248579, 107399, 10.1016/j.ijantimicag.2024.107399
    1027. Fábio M.S. Costa, M. Lúcia M.F.S. Saraiva, Marieta L.C. Passos, Novel fluoroquinolone-based organic salts: Pioneering solutions in targeting bacterial DNA gyrase, 2025, 417, 01677322, 126654, 10.1016/j.molliq.2024.126654
    1028. Lucinéia Gainski Danielski, Tanya Richards, Victoria Zhang, Jaqueline S. Generoso, Felipe Dal-Pizzol, Tatiana Barichello, Rodrigo Hasbun, 2025, 9780443191305, 115, 10.1016/B978-0-443-19130-5.00007-1
    1029. Anindita Behera, 2025, 9780443158971, 557, 10.1016/B978-0-443-15897-1.00031-5
    1030. Ruchi Yadav, Ekta Thakor, Bhumika Patel, 2024, 9780128096338, 10.1016/B978-0-323-95502-7.00271-2
    1031. Bofan Jia, Yang Zhao, Sirong Zhang, Jianchao Deng, Shengjun Chen, Chunsheng Li, Hui Huang, Yiqin Deng, Liwen Xu, Bo Qi, Xiao Hu, Yongqiang Zhao, Laihao Li, Sofia Priyadarsani Das, In Vitro Antibacterial and Postantibiotic Effects of Enrofloxacin Combined With Sulfamonomethoxine Against Pathogenic Bacteria of Yellow Catfish (Pelteobagrus fulvidraco), 2024, 2024, 1355-557X, 10.1155/are/9955725
    1032. Pratiksing Rajput, Kazi S. Nahar, Khondaker Miraz Rahman, Evaluation of Antibiotic Resistance Mechanisms in Gram-Positive Bacteria, 2024, 13, 2079-6382, 1197, 10.3390/antibiotics13121197
    1033. Diptikanta Acharya, Sagarika Satapathy, Sandhyarani Patra, Goutam Jha, Somanath Sahoo, T. Gayatri, 2024, Chapter 10, 978-981-97-9633-5, 235, 10.1007/978-981-97-9634-2_10
    1034. Job Mwale, Edwin O. Magomere, Brian Maina, Leon Otieno, Frank G. Onyambu, Ali Kassim, Lucy Muchiri, Phenotypic and genetic extended spectrum beta lactamase profiles of bacterial isolates from ICU in tertiary level hospital in Kenya, 2024, 12, 2046-1402, 469, 10.12688/f1000research.133298.2
    1035. Asmaa Abd Elhaleem, Sawsan A. Fouad, Sadia A. Hessein, Nadia A. M. Shmiess, Ghada E. Ahmed, Synthesis and antimicrobial evaluation of some novel heterocyclic compounds based on azo chromene moiety, 2024, 1735-207X, 10.1007/s13738-024-03138-z
    1036. Zina Alfahl, Alexandra Chueiri, Shaunagh Carolan, Gabriel Darcy, Nadia Hussain, Niamh Cahill, Louise O’Connor, Antimicrobial resistance detection methods in water environments: a scoping review, 2024, 1, 2755-1970, 10.1093/sumbio/qvae034
    1037. Mohamed M. Elsebaei, Hany G. Ezzat, Ahmed M. Helal, Mohamed H. El-Shershaby, Mohammed S. Abdulrahman, Moaz Alsedawy., Ahmed K. B. Aljohani, Mohammed Almaghrabi, Marwa Alsulaimany, Basmah Almohaywi, Read Alghamdi, Samar F. Miski, Arafa Musa, Hany E. A. Ahmed, Rational design and synthesis of novel phenyltriazole derivatives targeting MRSA cell wall biosynthesis, 2024, 14, 2046-2069, 39977, 10.1039/D4RA07367C
    1038. Annalisa Buonanno, Maria Michela Salvatore, Antonia Feola, Antonietta Siciliano, Rosa Bellavita, Lorenzo Emiliano Imbò, Marco Guida, Anna Andolfi, Rosario Nicoletti, Angela Maione, Annarita Falanga, Emilia Galdiero, Sphaeropsidin A Loaded in Liposomes to Reduce Its Cytotoxicity and Preserve Antifungal Activity Against Candida auris, 2024, 29, 1420-3049, 5949, 10.3390/molecules29245949
    1039. Priscilla Ramos Freitas, Ana Carolina Justino de Araújo, Isaac Moura Araújo, Ray Silva Almeida, João Arthur de Oliveira Borges, Clara Mariana Gonçalves Lima, Cícera Datiane Morais Oliveira-Tintino, Cícera Laura Roque Paulo, Gustavo Marinho Miranda, José Bezerra de Araújo-Neto, José Weverton Almeida-Bezerra, Igor José dos Santos Nascimento, João Xavier de Araújo-Júnior, Edeildo Ferreira da Silva-Júnior, Thiago Mendonça de Aquino, Francisco Jaime Bezerra Mendonca Junior, Emmanuel Silva Marinho, Hélcio Silva dos Santos, Irwin Rose Alencar de Menezes, Saulo Relison Tintino, Henrique Douglas Melo Coutinho, Evaluating Efflux Pump Inhibition in Staphylococcus aureus 1199B Strain Using Thiadiazine-Derived Compounds: In Vitro and In Silico Approaches, 2024, 03009084, 10.1016/j.biochi.2024.12.009
    1040. Jessica Master, Shekiel Sydney, Harsha Rajapaske, Malek Saffiddine, Vikiana Reyes, Richard W. Denton, A Facile Synthesis of Some Bioactive Isoxazoline Dicarboxylic Acids via Microwave-Assisted 1,3-Dipolar Cycloaddition Reaction, 2024, 5, 2624-781X, 1080, 10.3390/reactions5040057
    1041. Ioannis Baltas, Timothy Miles Rawson, Hamish Houston, Louis Grandjean, Gabriele Pollara, Antimicrobial resistance–attributable mortality: a patient-level analysis, 2024, 6, 2632-1823, 10.1093/jacamr/dlae202
    1042. Gallus P. Haule, Juma M. Hussein, Fulgence N. Mpenda, Occurrence and antimicrobial susceptibility of Enterobacteriaceae from public transport in Dar es Salaam, Tanzania., 2024, 5, 2706-9915, 36, 10.47419/bjbabs.v5i01.265
    1043. Ruwani K. Suraweera, Kirsten M. Spann, Timothy J. Wells, Nazrul Islam, Inhaled combined antibacterials against biofilm-forming antibiotic-resistant bacteria for the management of pulmonary bacterial infections, 2024, 17732247, 106555, 10.1016/j.jddst.2024.106555
    1044. Daniel Geleta, Gemeda Abebe, Tsion Tilahun, Alemseged Abdissa, Adane Mihret, Raffaele Joseph Cataldo, Netsanet Workneh, Abel Abera Negash, Getenet Beyene, Molecular and clinical insights into extended-spectrum β-lactamase genes of Klebsiella pneumoniae isolated from neonatal sepsis in Ethiopia, 2024, 24, 1471-2334, 10.1186/s12879-024-10344-w
    1045. Samta Manori, Avinash Gangal, Aakanksha Jain Kaushik, Vishwajeet Bachhar, Vibha Joshi, Manisha Duseja, Ramesh Chandra, Ravi Kumar Shukla, Radical-mediated photocatalytic dye degradation and antimicrobial properties of La2NiMnO6 nanoparticles, 2025, 1144-0546, 10.1039/D4NJ04437A
    1046. Jhoana P. Romero-Leiton, Alissen Peterson, Pablo Aguirre, Kamal Acharya, Bouchra Nasri, Assessing the impact of mutations and horizontal gene transfer on the antimicrobial resistance and its control: a mathematical model, 2025, 44, 2238-3603, 10.1007/s40314-024-03043-4
    1047. Sara García-Vela, Aurore Cournoyer, Zain Sánchez-Reinoso, Laurent Bazinet, Antimicrobial Peptides from Porcine Blood Cruor Hydrolysates as a Promising Source of Antifungal Activity, 2024, 14, 2304-8158, 8, 10.3390/foods14010008
    1048. Deepali Desai, Rabindra Nath Misra, Nageswari R Gandham, Nikunja Kumar Das, Sahjid Mukhida, Shahzad Mirza, First Report of Virulence Factors in Carbapenem-resistant Klebsiella pneumoniae from Maharashtra, India, 2024, 19, 0974-3901, 729, 10.4103/jdmimsu.jdmimsu_374_24
    1049. O. M. Aladejana, A. O. Ogunlade, O. A. Thonda, G. Obi, Plasmid Profile and Curing of Multiple Antibiotic Resistant Escherichia coli Isolated from Straw Colored Fruit Bats (Eidolon helvum ), 2024, 2756-4045, 5038, 10.48198/NJPAS/24.A10
    1050. Vaida Damulienė, Vilma Kaškonienė, Paulius Kaškonas, Rūta Mickienė, Audrius Maruška, Improved Antibacterial Properties of Fermented and Enzymatically Hydrolyzed Bee Pollen and Its Combined Effect with Antibiotics, 2024, 18, 1424-8247, 15, 10.3390/ph18010015
    1051. Linh Doan, Nam N. Lam, Khoa Tran, Khanh G. Huynh, Fruit derived silver nanoparticles synthesis for beginners – a review, 2025, 11, 2055-0324, 20, 10.1080/20550324.2024.2442270
    1052. Salwa A. Elsharabasy, Mariam T. Sayed, Anhar Abdel-Aziem, Novel coumarin linked pyrazoles, thiazoles, and thiadiazoles: synthetic strategies and in vitro antimicrobial investigation, 2024, 1756-8919, 1, 10.1080/17568919.2024.2444867
    1053. Vimarishi Koul, Akshi Sharma, Diksha Kumari, Vishwani Jamwal, Tashi Palmo, Kuljit Singh, Breaking the resistance: integrative approaches with novel therapeutics against Klebsiella pneumoniae, 2025, 207, 0302-8933, 10.1007/s00203-024-04205-y
    1054. Daohong Zhang, Deepak Kukkar, Poornima Bhatt, Ki-Hyun Kim, Kamalpreet Kaur, Jianlong Wang, Novel nanomaterials-based combating strategies against drug-resistant bacteria, 2024, 09277765, 114478, 10.1016/j.colsurfb.2024.114478
    1055. Eman Abdelsalam, Amal Mosad Ibrahim, Ahmed A. El-Rashedy, Mohamed S. Abdel-Aziz, Omnia Kutkat, Faten K. Abd EL-Hady, Combating COVID-19 and its co-infection by Aspergillus tamarii SP73-EGY using in vitro and in silico Studies, 2025, 15, 2045-2322, 10.1038/s41598-024-77854-0
    1056. Janki Ruparelia, Aniruddh Rabari, Chaitanya Kumar Jha, R. Z. Sayyed, 2024, Chapter 12, 978-3-031-75844-7, 273, 10.1007/978-3-031-75845-4_12
    1057. S. Amrutha, Paramita Das, Anjali Nayak, Supratip Laha, Sharmina Begum, Sakshi Bhardwaj, Synthesis and anti-microbial evaluation with in silico studies of novel 2-aminothiazole benzohydrazide derivatives, 2025, 11, 2314-7253, 10.1186/s43094-024-00759-2
    1058. Thiago Hideo Endo, Mariana Homem de Mello Santos, Sara Scandorieiro, Bruna Carolina Gonçalves, Eliana Carolina Vespero, Márcia Regina Eches Perugini, Wander Rogério Pavanelli, Gerson Nakazato, Renata Katsuko Takayama Kobayashi, Selective Serotonin Reuptake Inhibitors: Antimicrobial Activity Against ESKAPEE Bacteria and Mechanisms of Action, 2025, 14, 2079-6382, 51, 10.3390/antibiotics14010051
    1059. Urvashi Kesarwani, Ashutosh Kumar Dubey, Antibacterial efficacy of bone mimicking-hydroxyapatite nanoplates with varying morphology, 2025, 13877003, 113918, 10.1016/j.inoche.2025.113918
    1060. Hamed Tahmasebi, Neda Arjmand, Marzieh Monemi, Ali Babaeizad, Farnaz Alibabaei, Negar Alibabaei, Aisa Bahar, Valentyn Oksenych, Majid Eslami, From Cure to Crisis: Understanding the Evolution of Antibiotic-Resistant Bacteria in Human Microbiota, 2025, 15, 2218-273X, 93, 10.3390/biom15010093
    1061. Monica-Cornelia Sardaru, Irina Rosca, Simona Morariu, Elena-Laura Ursu, Alexandru Rotaru, Synergistic Antibacterial Action of Norfloxacin-Encapsulated G4 Hydrogels: The Role of Boronic Acid and Cyclodextrin, 2025, 11, 2310-2861, 35, 10.3390/gels11010035
    1062. Paula Cortés, Ekaterina Pokrant, Karina Yévenes, Aldo Maddaleno, Andrés Flores, María Belén Vargas, Lina Trincado, Matías Maturana, Lisette Lapierre, Javiera Cornejo, Antimicrobial Residues in Poultry Litter: Assessing the Association of Antimicrobial Persistence with Resistant Escherichia coli Strains, 2025, 14, 2079-6382, 89, 10.3390/antibiotics14010089
    1063. Akash Mishra, Anupam Jyoti, Krishna Aayush, Juhi Saxena, Kanika Sharma, Harnessing Nanoparticles to Overcome Antimicrobial Resistance: Promises and Challenges, 2025, 31, 13816128, 292, 10.2174/0113816128326718240809091654
    1064. Sharifa Ezat WP, M Norhidayah, Muhammad Nur Amir AR, Factors associated with multidrug-resistant organism (MDRO) mortality: an analysis from the national surveillance of multidrug-resistant organism, 2018-2022, 2025, 25, 1471-2334, 10.1186/s12879-024-10338-8
    1065. Seomin Kang, Jeong-Eun Han, Young-Sik Choi, In-Chul Jeong, Jin-Woo Bae, Isolation and characterization of a novel lytic phage K14-2 infecting diverse species of the genus Klebsiella and Raoultella, 2025, 15, 1664-302X, 10.3389/fmicb.2024.1491516
    1066. Emira D’Amico, Gitana Maria Aceto, Morena Petrini, Chiara Cinquini, Simonetta D’Ercole, Giovanna Iezzi, Tania Vanessa Pierfelice, How Will Nanomedicine Revolutionize Future Dentistry and Periodontal Therapy?, 2025, 26, 1422-0067, 592, 10.3390/ijms26020592
    1067. Claire Julie Akwongo, Luca Borrelli, Kurt Houf, Alessandro Fioretti, Maria Francesca Peruzy, Nicoletta Murru, Antimicrobial resistance in wild game mammals: a glimpse into the contamination of wild habitats in a systematic review and meta-analysis, 2025, 21, 1746-6148, 10.1186/s12917-024-04462-5
    1068. Arunima Singh, Yogesh Kumar Vishwakarma, Neelmani Bhardwaj, R. S. Singh, 2024, Chapter 15, 978-981-97-8738-8, 293, 10.1007/978-981-97-8739-5_15
    1069. Caglar Ersanli, Ioannis Skoufos, Konstantina Fotou, Athina Tzora, Yves Bayon, Despoina Mari, Eleftheria Sarafi, Konstantina Nikolaou, Dimitrios I. Zeugolis, Release Profile and Antibacterial Activity of Thymus sibthorpii Essential Oil-Incorporated, Optimally Stabilized Type I Collagen Hydrogels, 2025, 12, 2306-5354, 89, 10.3390/bioengineering12010089
    1070. Medarametla Venkatesh, Chappidi Hazarathaiah Yadav, Mavallur Varalakshmi, Substituted-1,3,4-oxadiazole Indole Derivatives: Design, Synthesis, Characterization, and Evaluation of the Antimicrobial and Anti-Inflammatory Activities, 2024, 60, 1070-4280, 2276, 10.1134/S1070428024110162
    1071. Esteban Zavaleta-Monestel, Carolina Rojas-Chinchilla, Jeimy Campos-Hernández, Ernesto Martínez-Vargas, Utility of Artificial Intelligence in Antibiotic Development: Accelerating Discovery in the Age of Resistance, 2025, 2168-8184, 10.7759/cureus.78296
    1072. Renata Morales-Márquez, Lucía Delgadillo-Ruiz, Alfredo Esparza-Orozco, Eladio Delgadillo-Ruiz, Rómulo Bañuelos-Valenzuela, Benjamín Valladares-Carranza, María Isabel Chávez-Ruvalcaba, Francisca Chávez-Ruvalcaba, Héctor Emmanuel Valtierra-Marín, Norma Angélica Gaytán-Saldaña, Marisa Mercado-Reyes, Luz Adriana Arias-Hernández, Evaluation of Larrea tridentata Extracts and Their Antimicrobial Effects on Strains of Clinical Interest, 2025, 26, 1422-0067, 1032, 10.3390/ijms26031032
    1073. Yingpeng Li, Gongshi Lin, Theerakamol Pengsakul, Qingpi Yan, Lixing Huang, Antibiotic Resistance in Vibrio parahaemolyticus: Mechanisms, Dissemination, and Global Public Health Challenges—A Comprehensive Review, 2025, 17, 1753-5123, 10.1111/raq.13010
    1074. Aiswarya M. Rajesh, Shraddha Subhash Pawar, Kruthi Doriya, Rambabu Dandela, Combating antibiotic resistance: mechanisms, challenges, and innovative approaches in antibacterial drug development, 2025, 10.37349/eds.2025.100887
    1075. 2022, 10.12794/metadc1985530
    1076. M. Sooraj, E. Manoj, Structural, spectral and theoretical features of mono and di-substituted novel hydrazones: In vitro antibacterial and anticancer implications, 2025, 00222860, 141664, 10.1016/j.molstruc.2025.141664
    1077. Artemijs Sceglovs, Ingus Skadins, Marco Chitto, Juta Kroica, Kristine Salma-Ancane, Failure or future? Exploring alternative antibacterials: a comparative analysis of antibiotics and naturally derived biopolymers, 2025, 16, 1664-302X, 10.3389/fmicb.2025.1526250
    1078. Bowon Jung, Eun Jin Heo, Dieu Linh Nguyen, Ui Joung Youn, Ki Hyun Kim, Boram Son, Seulah Lee, Antimicrobial Steroids from Poisonous Mushroom Gymnopilus orientispectabilis and Their Molecular Docking Studies, 2025, 12, 2297-8739, 23, 10.3390/separations12020023
    1079. Neha Yadav, Santosh K. Misra, Nitroaromatic Compounds Dictate Electrochemical Properties of Escherichia coli by Manipulating the Cellular Membrane, 2025, 1543-8384, 10.1021/acs.molpharmaceut.4c01537
    1080. Sabine Berteina-Raboin, Comprehensive Overview of Antibacterial Drugs and Natural Antibacterial Compounds Found in Food Plants, 2025, 14, 2079-6382, 185, 10.3390/antibiotics14020185
    1081. Frank V. Pellegrini, Emily A. Caflisch, Nicole A. Aulik, Verification of the Efficacy of the GTLS Antibiotic Cocktail on Frozen Bovine Semen, 2025, 00220302, 10.3168/jds.2024-25535
    1082. Lee Xianhao Song, Mechanisms of antimicrobial resistance, 2024, 123, 2791-0210, 734, 10.54097/a5hezm47
    1083. Subash Chandra Nayak, P. Bhagya Latha, Bharath Kandanattu, Unni Pympallil, Ankit Kumar, Harish Kumar Banga, The Oral Microbiome and Systemic Health: Bridging the Gap Between Dentistry and Medicine, 2025, 2168-8184, 10.7759/cureus.78918
    1084. Thandizo Kapatsa, Adriano Lubanga, Akim Bwanali, Gracian Harawa, Steward Mudenda, Pascal Chipewa, Mapeesho Kamayani, Tumaini Makole, Abdisalam Ali, Abdullahi Mohamed, Kim Tae Youn, Lorie Kim, Won Daniel, Matthew Kim, Tarek Chehab, Thomas Nyirenda, Behavioral and Socio-Economic Determinants of Antimicrobial Resistance in Sub-Saharan Africa: A Systematic Review, 2025, Volume 18, 1178-6973, 855, 10.2147/IDR.S503730
    1085. Grinsun Sharma, Shishir Paudel, Anisha Chalise, Biswash Sapkota, Nirmal Raj Marasine, Taklo Simeneh Yazie, Knowledge, Attitude, and Practice on Antibiotic Use and Resistance Among Undergraduates, Pokhara Metropolitan, Nepal, 2025, 2025, 2314-6133, 10.1155/bmri/9928264
    1086. Priyanka Chambial, Neelam Thakur, Prudhvi Lal Bhukya, Anbazhagan Subbaiyan, Umesh Kumar, Frontiers in superbug management: innovating approaches to combat antimicrobial resistance, 2025, 207, 0302-8933, 10.1007/s00203-025-04262-x
    1087. Roderich D. Süssmuth, Marcel Kulike‐Koczula, Peng Gao, Simone Kosol, Fighting Antimicrobial Resistance: Innovative Drugs in Antibacterial Research, 2025, 1433-7851, 10.1002/anie.202414325
    1088. Roderich D. Süssmuth, Marcel Kulike‐Koczula, Peng Gao, Simone Kosol, Innovative Wirkstoffe aus der antibakteriellen Forschung im Kampf gegen mikrobielle Resistenzen, 2025, 0044-8249, 10.1002/ange.202414325
    1089. Susan Jyakhwo, Andrei Dmitrenko, Vladimir V. Vinogradov, Computer-Aided Discovery of Synergistic Drug–Nanoparticle Combinations for Enhanced Antimicrobial Activity, 2025, 1944-8244, 10.1021/acsami.4c21133
    1090. Richard Kolade Omole, Nkem Torimiro, Oluwole Isaac Adeyemi, Muthupandian Saravanan, Elizabeth Oladoyin Agboluaje, May P. Xiong, Reama Chinedu George, Enhanced Antibacterial Efficacy of Lysinibacillus fusiformis-Mediated Bimetallic Silver-gold Nanocomposites Against Multidrug-resistant Chronic Wound Bacterial Pathogens, 2025, 29501946, 100275, 10.1016/j.microb.2025.100275
    1091. Diana Tangdan Ampulembang, Irda Handayani, Nursin Abdul Kadir, Bacterial Identification and Antibiotic Sensitivity Tests of COVID-19 Patients at ICU Wahidin Sudirohusodo Hospital, 2025, 31, 2477-4685, 155, 10.24293/ijcpml.v31i2.2275
    1092. Ramses Gallegos-Monterrosa, Jimena I. Cid-Uribe, Gustavo Delgado-Prudencio, Deyanira Pérez-Morales, María M. Banda, Alexis Téllez-Galván, Edson N. Carcamo-Noriega, Ulises Garza-Ramos, Richard N. Zare, Lourival D. Possani, Víctor H. Bustamante, Blue benzoquinone from scorpion venom shows bactericidal activity against drug-resistant strains of the priority pathogen Acinetobacter baumannii, 2025, 0021-8820, 10.1038/s41429-025-00809-8
    1093. Xuewei Zou, Bai Xie, Therapeutic Mechanisms of Phenothiazine Drugs: A Mini-Review of Advances in Cancer Treatment and Antibiotic Resistance, 2025, 24, 1726-6890, 10.5812/ijpr-157923
    1094. Sarah Raquel de Annunzio, Bruna de Lima Moraes, Marcelo Assis, Paula Aboud Barbugli, Vinícius Henrique Ferreira Pereira de Oliveira, Elson Longo, Carlos Eduardo Vergani, Antimicrobial activity and biocompatibility of alpha-silver tungstate nanoparticles, 2025, 11, 24058440, e42648, 10.1016/j.heliyon.2025.e42648
    1095. Habiba lawal, Shamsaldeen Ibrahim Saeed, Mohammed Sani Gaddafi, Nor Fadhilah Kamaruzzaman, Guilherme Dilarri, Green Nanotechnology: Naturally Sourced Nanoparticles as Antibiofilm and Antivirulence Agents Against Infectious Diseases, 2025, 2025, 1687-918X, 10.1155/ijm/8746754
    1096. Manisha Aswal, Nirpendra Singh, Neelja Singhal, Manish Kumar, An integrated proteo-transcriptomics approach reveals novel drug targets against multidrug resistant Escherichia coli, 2025, 16, 1664-302X, 10.3389/fmicb.2025.1531739
    1097. Michela Galgano, Francesco Pellegrini, Elisabetta Catalano, Loredana Capozzi, Laura Del Sambro, Alessio Sposato, Maria Stella Lucente, Violetta Iris Vasinioti, Cristiana Catella, Amienwanlen Eugene Odigie, Maria Tempesta, Annamaria Pratelli, Paolo Capozza, Acquired Bacterial Resistance to Antibiotics and Resistance Genes: From Past to Future, 2025, 14, 2079-6382, 222, 10.3390/antibiotics14030222
    1098. Sadman Sakib, Nesha May O. Andoy, Jessica Y. C. Yang, Anna Galang, Ruby May A. Sullan, Shan Zou, Antimicrobial and anti-inflammatory effects of polyethyleneimine-modified polydopamine nanoparticles on a burn-injured skin model, 2025, 2047-4830, 10.1039/D4BM01530D
    1099. Ina Gajic, Nina Tomic, Bojana Lukovic, Milos Jovicevic, Dusan Kekic, Milos Petrovic, Marko Jankovic, Anika Trudic, Dragana Mitic Culafic, Marina Milenkovic, Natasa Opavski, A Comprehensive Overview of Antibacterial Agents for Combating Multidrug-Resistant Bacteria: The Current Landscape, Development, Future Opportunities, and Challenges, 2025, 14, 2079-6382, 221, 10.3390/antibiotics14030221
    1100. Arijit Sengupta, Joshua Stoltenberg, Mary R. Coveyou, Maria C. Perakis, Alexander Kuiken, The role of solketal as a building block for the synthesis of nonhemolytic acrylate-based cationic binary copolymers with antibacterial activity against Bacillus subtilis and Micrococcus luteus., 2025, 211, 13815148, 106211, 10.1016/j.reactfunctpolym.2025.106211
    1101. Hassan Mivehchi, Aisan Eskandari-Yaghbastlo, Parnian Pour Bahrami, Anis Elhami, Farbod Faghihinia, Seyedeh Tabasom Nejati, Kimia Sadat Kazemi, Mohsen Nabi Afjadi, Exploring the role of oral bacteria in oral cancer: a narrative review, 2025, 16, 2730-6011, 10.1007/s12672-025-01998-2
    1102. Timothy Kench, Nasima Sultana Chowdhury, Khondaker Miraz Rahman, Ramon Vilar, Discovery of Phototoxic Metal Complexes with Antibacterial Properties via a Combinatorial Approach, 2025, 0020-1669, 10.1021/acs.inorgchem.4c05414
    1103. Cicera Laura Roque Paulo, Priscilla Ramos Freitas Alexandre, Ana Carolina Ferreira Araujo, Ray Silva Almeida, Emílio Sousa Albuquerque, Cícera Datiane de Morais Oliveira-Tintino, Igor J. S. Nascimento, João Xavier Araújo-Júnior, Edeildo Ferreira da Silva-Junior, Thiago Mendonça de Aquino, Francisco Jaime Bezerra Mendonça-Junior, José Bezerra de Araújo-Neto, Maria Karollyna do Nascimento Silva Leandro, Irwin Rose Alencar de Menezes, Henrique Douglas Melo Coutinho, Janaina Esmeraldo Rocha, Evaluation of the Efflux Pump Inhibition Activity of Thiadiazine-Derived Compounds Against the Staphylococcus aureus 1199B Strain, 2025, 18, 1424-8247, 323, 10.3390/ph18030323
    1104. Joana F. Couceiro, Rodrigo Costa, Tina Keller-Costa, 2025, Chapter 15, 978-3-031-76691-6, 215, 10.1007/978-3-031-76692-3_15
    1105. Melissa Santibañez, Alejandra M. Rincon-Ponte, Gabriela Sastre Perez, Antimicrobial Stewardship Principles for Critically Ill Patients, 2025, 36, 1559-7768, 5, 10.4037/aacnacc2025715
    1106. Anshika Gupta, Akriti Verma, Kalpana Katiyar, Phytochemical-based drug designing against efflux-pump of ESKAPE pathogen to combat multidrug-resistant: an in silico study , 2025, 0739-1102, 1, 10.1080/07391102.2025.2472401
    1107. Juste Ouindgueta Bonkoungou Isidore, Edith Malatala Nikiema Marguerite, Garba Zakaria, Bako Evariste, Belem Souleymane, Soma Djifahamaï, Bintou Josiane Diarra Fatimata, Sibiri Zoma Barthélémy, Gampene Modeste, Siourimè Somda Namwin, Sore Souleymane, Barro Nicolas, Detection of blaCTX-M, blaTEM, and blaSHV genes in ESBL-producing enterobacterales from poultry farms in the peri-urban area of Ouagadougou, Burkina Faso, 2025, 17, 2141-2308, 14, 10.5897/JMA2024.0472
    1108. Mohammad A. Obeid, Hanin Alyamani, Abdelrahman Alenaizat, Tutku Tunç, Alaa A. Aljabali, Manal M. Alsaadi, Nanomaterial-Based Drug Delivery Systems in Overcoming Bacterial Resistance: Current Review, 2025, 08824010, 107455, 10.1016/j.micpath.2025.107455
    1109. Francisco Bernardo Dácio Araújo, Jaqueline Barbosa de Almeida, Elias Kahllyl da Silva Moraes, Ilidio Antônio Barbosa Formoso Junior, Diniz Soares Cantuária, Resistência bacteriana ao uso de antibiótico: mecanismos, desafios e estratégias de enfrentamento , 2025, 16, 2178-9010, e4709, 10.7769/gesec.v16i3.4709
    1110. Miriam Reverter, Sarahi Vega-Heredia, Philip J. Warburton, 2025, Chapter 2, 978-981-97-7319-0, 17, 10.1007/978-981-97-7320-6_2
    1111. Mahya Yasemi, Amir Jalali, Mohammad Asadzadeh, Majid Komijani, Organophosphate pesticides and their potential in the change of microbial population and frequency of antibiotic resistance genes in aquatic environments, 2025, 376, 00456535, 144296, 10.1016/j.chemosphere.2025.144296
    1112. Dinara T. Nurpeisova, Anastassiya A. Mashentseva, Fatima Abuova, Saida H. Aleskhanova, Murat Barsbay, Highly Efficient CuO/Cu@PC Composite Membranes for the Photocatalytic Degradation and Sorption of Roxithromycin from Aqueous Solutions, 2025, 2590048X, 100677, 10.1016/j.rinma.2025.100677
    1113. Jacob Moran, Kevin B. Wood, From Fluctuations and Disorder to Scaling and Control: The Emergence of Resistance in Microbial Communities, 2025, 16, 1947-5454, 297, 10.1146/annurev-conmatphys-042924-110923
    1114. Jakub Jagielski, Karolina Dydak, Kaja Jaskot, Dmytro Soloviov, Maciej Kozak, Grzegorz Nowaczyk, Antibacterial lipid liquid crystalline nanoparticles – synthesis and optimization by central composite design, 2025, 53, 2169-1401, 69, 10.1080/21691401.2025.2472928
    1115. Kathirvel Brindhadevi, Arivalagan Pugazhendhi, Enhancing biohydrogen production through microbial fermentation with the addition of nanometal ions, 2025, 215, 13640321, 115552, 10.1016/j.rser.2025.115552
    1116. Shoshana C. Williams, Madeline B. Chosy, Carolyn K. Jons, Changxin Dong, Alexander N. Prossnitz, Xinyu Liu, Hector Lopez Hernandez, Lynette Cegelski, Eric A. Appel, Polyacrylamide-Based Antimicrobial Copolymers to Replace or Rescue Antibiotics, 2025, 2374-7943, 10.1021/acscentsci.4c01973
    1117. Subramanian Sundaramoorthy, 2025, 9781119791645, 295, 10.1002/9781119792192.ch11
    1118. Natalie Naidoo, Oliver T. Zishiri, Presence, Pathogenicity, Antibiotic Resistance, and Virulence Factors of Escherichia coli: A Review, 2025, 4, 2674-1334, 16, 10.3390/bacteria4010016
    1119. Debolina Chatterjee, Karthikeyan Sivashanmugam, Unraveling the Complex Antimicrobial Resistance Gene Network of Pseudomonas aeruginosa using Systems Biology ApproachUnraveling the Complex Antimicrobial Resistance Gene Network of Pseudomonas aeruginosa using Systems Biology Approach, 2025, 19, 09737510, 106, 10.22207/JPAM.19.1.01
    1120. Ritisha Dey, Domonique Olivia Valle, Abhijit Chakraborty, Kimberly A. Mayer, Jagadeesh Kumar Uppala, Anish Chakraborty, Shama Mirza, Troy Skwor, Steven Forst, Madhusudan Dey, Quorum sensing regulators and non-ribosomal peptide synthetases govern antibacterial secretions in Xenorhabdus szentirmaii, 2025, 16, 1664-302X, 10.3389/fmicb.2025.1560663
    1121. Ze Liang, Zijian Liang, Hang‐Wei Hu, Kate Howell, Zhongxiang Fang, Pangzhen Zhang, Food substances alter gut resistome: Mechanisms, health impacts, and food components, 2025, 24, 1541-4337, 10.1111/1541-4337.70143
    1122. Raphaël Charron, Pierre Lemée, Antoine Huguet, Ornella Minlong, Marine Boulanger, Paméla Houée, Christophe Soumet, Romain Briandet, Arnaud Bridier, Strain-dependent emergence of aminoglycoside resistance in Escherichia coli biofilms, 2025, 9, 25902075, 100273, 10.1016/j.bioflm.2025.100273
    1123. Rajpal Tyagi, Anuj Maurya, 2025, Chapter 13, 978-3-031-80624-7, 291, 10.1007/978-3-031-80625-4_13
    1124. Biel Garcias, Mar Batalla, Anna Vidal, Inma Durán, Laila Darwich, Trends in Antimicrobial Resistance of Canine Otitis Pathogens in the Iberian Peninsula (2010–2021), 2025, 14, 2079-6382, 328, 10.3390/antibiotics14040328
    1125. Ebenezer Aborah, Matthew Ayitah, Kwesi Felix Boafo, Anely Ortiz-Alegria, Manjusha Lekshmi, Chandrashekar K. Dhanush, Sanath Kumar, Manuel F. Varela, Multidrug resistance and major facilitator superfamily antimicrobial efflux pumps of the ESKAPEE pathogen Staphylococcus aureus, 2025, 10.37349/eds.2025.100897
    1126. Afrah Siddique, Muhammad Hubab, Abdul Rashid P. Rasheela, Raniya Samad, Mohammad Al-Ghouti, Sami Sayadi, Nabil Zouari, Microplastics and their role in the emergence of antibiotic resistance in bacteria as a threat for the environment, 2025, 25901826, 10.1016/j.enceco.2025.03.006
    1127. Elise L. Bezold, Kevin P.C. Minbiole, William M. Wuest, Not all disinfectants are created equal: the importance of mechanistic understanding to drive research forward, 2025, 1746-0913, 1, 10.1080/17460913.2025.2480946
    1128. Mariana Sousa, Idalina Machado, Lúcia C. Simões, Manuel Simões, Biocides as Drivers of Antibiotic Resistance: A Critical Review of Environmental Implications and Public Health Risks, 2025, 26664984, 100557, 10.1016/j.ese.2025.100557
    1129. Ana Beatriz Monteiro de Medeiros, Laíza Andrade Soares Diniz, Isaque de Sousa Galdino, Laís Eleutério Dias, Rafael Diego Barbosa Soares, André Vieira Diniz, Fernanda Kelen da Silva, Priscila Antão dos Santos, Fernanda Eduarda das Neves Martins, Angela Carolina Medeiros Alves Simões, Gustavo Ferro Barros, Júllia Raissa Souza Leite, Janaína Carla Prazeres Lima, Antimicrobial Resistance and One Health: Companion Animals as Reservoirs of Bacteria and Resistance Genes in Brazil, 2025, 19, 1981-982X, e011721, 10.24857/rgsa.v19n3-114
    1130. Khouloud Rouzi, Imane El Houssni, Njabulo J. Gumede, Ali Alsalme, Afaf Oulmidi, Miloud El Karbane, Mustapha Bouatia, Khalid Karrouchi, Novel 1,3,4‐Oxadiazole Acetamide Derivatives as Potential Antimicrobial Agents: Design, Synthesis, Biological Evaluation, and Molecular Modelling Studies, 2025, 10, 2365-6549, 10.1002/slct.202500076
    1131. Samradhi Singh, Mona Kriti, Anamika K.S, Poonam Sharma, Namrata Pal, Devojit Kumar Sarma, Rajnarayan Tiwari, Manoj Kumar, A one health approach addressing poultry-associated antimicrobial resistance: Human, animal and environmental perspectives, 2025, 7, 29501946, 100309, 10.1016/j.microb.2025.100309
    1132. Amitrajit Pal, Dattatray Pawar, Akhilesh Sharma, Faropenem for the management of infectious diseases – A systematic review of in vitro susceptibility tests and clinical studies, 2025, 0, 0974-7826, 1, 10.25259/JLP_215_2024
    1133. Sajith Sathyamoorthy, Aswathy Venugopal, M. J. Lenin, Shreya Tirkey, Murugan Sevanan, 2025, 9781394271610, 35, 10.1002/9781394271641.ch2
    1134. Manasés González-Cortazar, David Osvaldo Salinas-Sánchez, Maribel Herrera-Ruiz, Paulina Hernández-Hernández, Alejandro Zamilpa, Enrique Jiménez-Ferrer, Beatriz E. Utrera-Hernández, Ma. Dolores Pérez-García, Ana S. Gutiérrez-Roman, Ever A. Ble-González, Chemical Profile Analysis of Prosopis laevigata Extracts and Their Topical Anti-Inflammatory and Antibacterial Activities, 2025, 14, 2223-7747, 1118, 10.3390/plants14071118
    1135. Gideon Sadikiel Mmbando, Ombeni Ally, Shedrack Reuben Kitimu, The current use of nanotechnology in the fight against antimicrobial resistance: promising approaches to global health challenge, 2025, 27, 1388-0764, 10.1007/s11051-025-06290-6
    1136. Ibrahim Jantan, Ade Sri Rohani, Abdi Wira Septama, Nur Aini Khairunnisa, Halimah Raina Nasution, Diding Pradita, Rony Abdi Syahputra, Fadli Mubaroq Nasution, Madeline Hana Tasya Siburian, Mechanistic insights into the antimicrobial activity of plant-based immunomodulators: A narrative review, 2025, 21, 26661543, 101872, 10.1016/j.jafr.2025.101872
    1137. Shalini Shriwastav, Narinder Kaur, Mahmudul Hassan, Shakeel Ahmed Mohammed, Samrat Chauhan, Divya Mittal, Shahbaz Aman, Ayesha Bibi, Antimicrobial peptides: a promising frontier to combat antibiotic resistant pathogens, 2025, 87, 2049-0801, 2118, 10.1097/MS9.0000000000003106
    1138. Michela Mosca, Andrea Gyorffy, Marcella Milito, Camilla Di Ruggiero, Alessandra De Carolis, Marco Pietropaoli, Luigi Giannetti, Francesco Necci, Francesca Marini, Daniele Smedile, Manuela Iurescia, Alessia Franco, Antonio Battisti, Pasquale Rombolà, Marcella Guarducci, Giovanni Formato, Antibiotic Use in Beekeeping: Implications for Health and Environment from a One-Health Perspective, 2025, 14, 2079-6382, 359, 10.3390/antibiotics14040359
    1139. Sajad Ali Laghari, Qudratullah Kalwar, Muhammad Mohsen Rahimoon, Abdul Saboor, Fazul U Rahman Soomro, Fayaz Hussain, Taj Muhammad, Mansoor Ahmed Soomro, Atta U Rahman Soomro, Global Antimicrobial Resistance: Strategies and Challenges, 2025, 2790-4385, 10, 10.54393/mjz.v6i1.146
    1140. Hovhanes Ghazaryan, The effect of the medicinal composition “Eflornithine-Armenicum” on the progression of the inflammatory process in an experimentally induced aerobic wound, 2025, 1829-0825, 31, 10.56936/18290825-1.v19.2025-31
    1141. Arto Zilfyan, Stepan Avagyan, Armen Muradyan, The role of resident bacterial-fungal interactions in biofilm formation during wound infections: Does biofilm formation in ecological niches contribute to normal functioning in vertebrate mammals?, 2025, 1829-0825, 50, 10.56936/18290825-1.v19.2025-50
    1142. Arghyadeep Bhattacharjee, Debolina Chatterjee, Tapti Sengupta, 2025, Chapter 18, 978-981-96-1884-2, 393, 10.1007/978-981-96-1885-9_18
    1143. Rabiu Bako, Abdullahi Yunusa Idris, Asma’u Nasiru Hamza, Gbonjubola O. Adeshina, Musa Abdullahi Garba, 2024, Synthesis, Characterization, and In-Silico Studies of Some Novel Phenylhydrazone Derivatives as Potential Agents for Antimicrobial Activities, 112, 10.3390/ecsoc-28-20254
    1144. Yongtao Xu, Dan Li, Ying Yuan, Fei Fang, Beidou Xi, Wenbing Tan, Antibiotic Resistance Occurrence and Ecological Impact in Landfill Leachate: A Review on Compound Effect of Antibiotics and Non-antibiotics, 2025, 24056650, 100508, 10.1016/j.emcon.2025.100508
    1145. Ting He, Xiao Li, Rosario del Carmen Flores-Vallejo, Ana-Maria Radu, Jan Maarten van Dijl, Kristina Haslinger, The endophytic fungus Cosmosporella sp. VM-42 from Vinca minor is a source of bioactive compounds with potent activity against drug-resistant bacteria, 2025, 26665174, 100390, 10.1016/j.crmicr.2025.100390
    1146. Ghazala Muteeb, Raisa Nazir Ahmed Kazi, Mohammad Aatif, Asim Azhar, Mohamed El Oirdi, Mohd Farhan, Antimicrobial Resistance: Linking Molecular Mechanisms to Public Health Impact, 2025, 24725552, 100232, 10.1016/j.slasd.2025.100232
    1147. Inês B. Carvalho, Sandra Branco, Marta Laranjo, Maria Cristina Queiroga, Elisa Bettencourt, Characteristics of the Mare-Uterine-Culture-Based Bacterial Composition Using Practical Clinical Evaluation Methods, 2025, 14, 2076-0817, 357, 10.3390/pathogens14040357
    1148. Raúl Campillo, Ivo García-Penas, Noelia López, Ana Sánchez, Alberto Fau, Diego Gómez, Daniel Berdejo, Diego García-Gonzalo, Rafael Pagán, Ciprofloxacin-resistant Salmonella Typhimurium demonstrates cross-tolerance to heat treatments in liquid food matrices, 2025, 09639969, 116330, 10.1016/j.foodres.2025.116330
    1149. Mahsa Niknam, Leila Sadeghi, Gholamreza Zarrini, Isolation and characterization of antimicrobial peptides from Lactobacillus: Exploring mechanisms of action, 2025, 204, 08824010, 107537, 10.1016/j.micpath.2025.107537
    1150. Deborah Albarella, Paola Dall’Ara, Luciana Rossi, Lauretta Turin, Bacteriophage Therapy in Freshwater and Saltwater Aquaculture Species, 2025, 13, 2076-2607, 831, 10.3390/microorganisms13040831
    1151. Clinton G. L. Veale, Adrienne L. Edkins, Genetic Variation in Drug Targets: Are We Ready for the Era of Precision Medicinal Chemistry?, 2025, 1948-5875, 10.1021/acsmedchemlett.5c00153
    1152. Hanna B. Koltunova, Kostiantyn P. Chyzh, Olena V. Rudenko, Mikhailo Yu. Antomonov, Antibiotic Resistance in Patients with Infective Endocarditis, 2025, 33, 2664-5971, 77, 10.63181/ujcvs.2025.33(1).77-88
    1153. Md Rehan, Juber Akhtar, Anas Islam, Mohammad Irfan Khan, Asad Ahmad, Mohammad Ahmad, 2025, 10.5772/intechopen.1009429
    1154. Shengwei Sun, Emerging antibiotic resistance by various novel proteins/enzymes, 2025, 0934-9723, 10.1007/s10096-025-05126-4
    1155. Sadaf Fazeli, Fatemeh Rafiee, Atousa Ferdousi, Biosynthesis of Copper Nanoparticles using Artemisia biennis Willd Plant Extract for Antibacterial and Anti-Biofilm Activities, 2025, 11, 1010-6448, 63, 10.61186/iem.11.1.63
    1156. Desislava Staneva, Awad I. Said, Petar Grozdanov, Ivanka Nikolova, Radostina Stoyanova, Albena Jordanova, Ivo Grabchev, Light-driven self-sterilizing cotton fabric and drug delivery: improvement of the antimicrobial activity of 4-sulfo-1,8-naphthalimide via its dendrimer and metallic dendrimer formation, 2025, 1474-905X, 10.1007/s43630-025-00710-1
    1157. Amir Elalouf, Hadas Elalouf, Ariel Rosenfeld, Hanan Maoz, Artificial intelligence in drug resistance management, 2025, 15, 2190-572X, 10.1007/s13205-025-04282-w
    1158. Rhythm Sharma, Dinesh Lakhanpal, Acinetobacter baumannii: A Comprehensive Review of Global Epidemiology, Clinical Implications, Host Interactions, Mechanisms of Antimicrobial Resistance and Mitigation Strategies, 2025, 08824010, 107605, 10.1016/j.micpath.2025.107605
    1159. Hou Dingding, Sher Muhammad, Irfan Manzoor, Sana Abdul Ghaffar, Hissah Abdulrahman Alodaini, Nadine MS. Moubayed, Ashraf Atef Hatamleh, Xu Songxiao, Subtractive proteomics and reverse-vaccinology approaches for novel drug targets and designing a chimeric vaccine against Ruminococcus gnavus strain RJX1120, 2025, 16, 1664-3224, 10.3389/fimmu.2025.1555741
    1160. Rasool Esmaili Derke, Ebrahim Rahimi, Amir Shakerian, Faham Khamesipour, Prevalence, virulence factors, and antibiotic resistance of Staphylococcus aureus in seafood products, 2025, 25, 1471-2334, 10.1186/s12879-025-10870-1
    1161. Laliteshwari Bhardwaj, Anand Kumar Pandey, Bhavana Pandey, Suresh Kumar Dubey, Shotgun Metagenome Reveals Herbicidal Influence on Antimicrobial Resistance and Pollutant Degradation in Rice Field Soils, 2025, 236, 0049-6979, 10.1007/s11270-025-07988-y
    1162. Mumtaj Bano Miya, Ashutosh Ashutosh, Maulishree Maulishree, Dhananjay Dey, Vandana Pathak, Ekta Khare, Komal Kalani, Poonam Chaturvedi, Vimal Singh, Pankaj Chaturvedi, Anuradha Kalani, Accelerated diabetic wound healing using a chitosan-based nanomembrane incorporating nanovesicles from Aloe barbadensis, Azadirachta indica, and Zingiber officinale, 2025, 01418130, 143169, 10.1016/j.ijbiomac.2025.143169
    1163. Chinmaya Jena, Soham Deolankar, Nishad Matange, J Yang, Alternate genetic paths of adaptation to spectinomycin in Escherichia coli , 2025, 1943-2631, 10.1093/genetics/iyaf069
    1164. Ngozi M. Ngige, Pascal C. Aleke, Philip F. Uzor, Green Synthesis of Silver Nanoparticles Using the Leaf Extract of Pentaclethra macrophylla: Characterization and Evaluation of Their Antimicrobial Activities, 2024, 3, 2955-1226, 298, 10.26538/tjpps/v3i5.1
    1165. Talita Jessica Mnisi, Mashilo Mash Matotoka, Ofentse Mazimba, Wanda Shekwa, Peter Masoko, Bioassay-Guided Isolation of Antibacterial and Anti-Biofilm Compounds from Peltophorum africanum Sond. Stem and Mechanisms of Active Fractions Against Nosocomial Pathogens, 2025, 03788741, 119876, 10.1016/j.jep.2025.119876
    1166. Bismark Dabuo, Abudu Abubakari, Frances Ellen Sankah, Hannah Aryeley Aryee, Jiong Yu, Antibiotics and Antimicrobial Resistance Genes in a Gut Microbiota as a Reservoir—A Review, 2025, 2025, 2755-1652, 10.1155/agm3/6574751
    1167. Peerawit Chongrattanameteekul, Natpasit Rattanaworapanit, Kanruethai Wongsawan, Phongsakorn Chuammitri, Thosaporn Anuntakulnatee, Suriwan Veerathong, Raktham Mektrirat, Antimicrobial resistance and etiological dynamics affected by tropical climate variability on year-round diagnosis of upper respiratory infections in companion rabbits with snuffles, 2025, 15, 2045-2322, 10.1038/s41598-025-97690-0
    1168. Corina Ciobanasu, Bacterial Extracellular Vesicles and Antimicrobial Peptides: A Synergistic Approach to Overcome Antimicrobial Resistance, 2025, 14, 2079-6382, 414, 10.3390/antibiotics14040414
    1169. Mikayel Ginovyan, Silvard Tadevosyan, Anahit Shirvanyan, Anush Babayan, Barbara Kusznierewicz, Izabela Koss-Mikołajczyk, Marika Mróz, Agnieszka Bartoszek, Naira Sahakyan, The potential of blackcurrant, fig, and grape leaf extracts in the development of new preparations for overcoming antibiotic resistance and enhancing the efficacy of chemotherapeutic agents, 2025, 25, 2662-7671, 10.1186/s12906-025-04859-1
    1170. Courtney M. Tubb, Marco Tubb, Jonathan Hooijer, Rispah Chomba, Jeremy Nel, Carbapenem-resistant Enterobacterales (CRE) colonisation as a predictor for subsequent CRE infection: A retrospective surveillance study, 2025, 40, 2313-1810, 10.4102/sajid.v40i1.687
    1171. Luis Augusto Ebert, Julio Cesar Schlemper, Márcia Regina Pelisser, Felipe Vásquez-Ponce, Joaquim Olinto Branco, Edison Barbieri, Detection of Pathogenic Bacteria Isolated from Larus dominicanus on the Coast of Brazil, 2025, 41, 0749-0208, 10.2112/JCOASTRES-D-24-00038.1
    1172. Patrick Othuke Akpoghelie, Great Iruoghene Edo, Alice Njolke Mafe, Endurance Fegor Isoje, Ufuoma Augustina Igbuku, Ali B. M. Ali, Emad Yousif, Joseph Oghenewogaga Owheruo, Splendour Oberhiri Oberhiri, Arthur Efeoghene Athan Essaghah, Dina S. Ahmed, Huzaifa Umar, Ahmed A. Alamiery, Food, Health, and Environmental Impact of Lactic Acid Bacteria: The Superbacteria for Posterity, 2025, 1867-1306, 10.1007/s12602-025-10546-x
    1173. Tanumoy Sarkar, Vignesh Shanmugam Rajalakshmi, Ronima K R, Rajkumar P. Thummer, Sunanda Chatterjee, Serum-Stable, Cationic, α-Helical AMPs to Combat Infections of ESKAPE Pathogens and C. albicans, 2025, 2576-6422, 10.1021/acsabm.5c00126
    1174. Nichole K. Stewart, Marta Toth, Monolekha Bhattacharya, Clyde A. Smith, Sergei B. Vakulenko, Robert A. Bonomo, Evolution of carbapenemase activity in the class C β-lactamase ADC-1, 2025, 2150-7511, 10.1128/mbio.00185-25
    1175. Rangan Mitra, Suparna Ghosh, Goutam Mukherjee, Avik Acharya Chowdhury, 2025, Chapter 11, 978-3-031-51157-8, 57, 10.1007/978-3-031-51158-5_11
    1176. Ali A. Dashti, Mehrez M. Jadaon, Extended-Spectrum Beta-Lactamases (ESBLs) Gene Mutations in Kuwait: How Much Do We Know? Not Much!, 2025, 4, 2674-1334, 22, 10.3390/bacteria4020022
    1177. Mohammad Ali Ghasemzadeh, Boshra Mirhosseini-Eshkevari, Ali Javadi, MIL-53(Fe) with immobilized sulfo-modified carbon quantum dots as a novel and dual-function Brønsted-Lewis acid catalyst for the synthesis of tetrazoles and triazoles and their in vitro evaluation as antibacterial agents, 2025, 13877003, 114612, 10.1016/j.inoche.2025.114612
    1178. Vishwajeet Bachhar, Vibha Joshi, Anita Bhatia, Tanmay Rom, Manisha Duseja, Ravi K. Shukla, Green synthesis of AgFe bimetallic nanoparticles from Calyptocarpus vialis plant extract for enhanced catalytic reduction of 4-NP, antioxidant and antibacterial activities, 2025, 13, 22133437, 116829, 10.1016/j.jece.2025.116829
    1179. Rogério Melloni, Brenda Mayra Fernandes de Carvalho, Mariléia Andrade, Karina da Costa Sassi Bortoloti, Paulo Sérgio Marques, Quality of springs water and resistance profile of aerobic bacteria to antimicrobials under different land-use areas in the José Pereira River micro-basin (Itajubá – MG, Brazil), 2025, 18, 1981-4127, 89, 10.24979/ambiente.v18i1.1442
    1180. Onyansaniba K. Ntim, Bismark Opoku-Asare, Eric S. Donkor, A Systematic Review of Antimicrobial Stewardship Interventions Implemented in Intensive Care Units, 2025, 01956701, 10.1016/j.jhin.2025.04.020
    1181. C. Valli Nachiyar, Swetha Sunkar, Jayshree Nellore, K. Renugadevi, S. Karthick Raja Namasivayam, M. Bavanilatha, P. Prakash, D. Prabavathy, S. Sudha, Microbial disease resistance mechanisms with special reference to quorum sensing and quorum quenching: a review, 2025, 2, 3004-8907, 10.1007/s44340-025-00017-y
    1182. Naji Naseef Pathoor, Vijetha Valsa, Pitchaipillai Sankar Ganesh, Rajesh Kanna Gopal, From resistance to treatment: the ongoing struggle with Acinetobacter baumannii , 2025, 1040-841X, 1, 10.1080/1040841X.2025.2497791
    1183. Ah-Ran Lee, Martin John Woodward, Caroline Rymer, Prevalence and Characterisation of Antimicrobial Resistance, Virulence Factors and Multilocus Sequence Typing (MLST) of Escherichia coli Isolated from Broiler Caeca, 2025, 15, 2076-2615, 1353, 10.3390/ani15101353
    1184. Bruna Lourenço Crippa, Rafaela da Silva Rodrigues, Rafaela de Melo Tavares, Rafaela Martins Morasi, Jaqueline Milagres de Almeida, Ricardo Seiti Yamatogi, Nathália Cristina Cirone Silva, Why Non-aureus Staphylococcus (NAS) isolated from bovine milk should be a concern for the rise of superbugs, 2025, 29501946, 100376, 10.1016/j.microb.2025.100376
    1185. Omar V Pabón-Rodríguez, Daniela Buitrago-Angel, Jesús D Quintana-Moreno, Gloria A Casas-Bedoya, Liliana Serna-Cock, Cristian Torres-León, Antibiotic resistance profiles of non-pathogenic Escherichia coli in pig farms in Colombia, 2025, 38, 01200690, 10.17533/udea.rccp.v38n2a4
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4157) PDF downloads(328) Cited by(21)

Figures and Tables

Figures(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog