Loading [Contrib]/a11y/accessibility-menu.js
Research article

A novel semi-supervised multi-view clustering framework for screening Parkinson's disease

  • Received: 20 January 2020 Accepted: 26 April 2020 Published: 30 April 2020
  • In recent years, there are many research cases for the diagnosis of Parkinson's disease (PD) with the brain magnetic resonance imaging (MRI) by utilizing the traditional unsupervised machine learning methods and the supervised deep learning models. However, unsupervised learning methods are not good at extracting accurate features among MRIs and it is difficult to collect enough data in the field of PD to satisfy the need of training deep learning models. Moreover, most of the existing studies are based on single-view MRI data, of which data characteristics are not sufficient enough. In this paper, therefore, in order to tackle the drawbacks mentioned above, we propose a novel semi-supervised learning framework called Semi-supervised Multi-view learning Clustering architecture technology (SMC). The model firstly introduces the sliding window method to grasp different features, and then uses the dimensionality reduction algorithms of Linear Discriminant Analysis (LDA) to process the data with different features. Finally, the traditional single-view clustering and multi-view clustering methods are employed on multiple feature views to obtain the results. Experiments show that our proposed method is superior to the state-of-art unsupervised learning models on the clustering effect. As a result, it may be noted that, our work could contribute to improving the effectiveness of identifying PD by previous labeled and subsequent unlabeled medical MRI data in the realistic medical environment.

    Citation: Xiaobo Zhang, Donghai Zhai, Yan Yang, Yiling Zhang, Chunlin Wang. A novel semi-supervised multi-view clustering framework for screening Parkinson's disease[J]. Mathematical Biosciences and Engineering, 2020, 17(4): 3395-3411. doi: 10.3934/mbe.2020192

    Related Papers:

    [1] Novi Sylvia, Husni Husin, Abrar Muslim, Yunardi, Aden Syahrullah, Hary Purnomo, Rozanna Dewi, Yazid Bindar . Design and performance of a cyclone separator integrated with a bottom ash bed for the removal of fine particulate matter in a palm oil mill: A simulation study. AIMS Environmental Science, 2023, 10(3): 341-355. doi: 10.3934/environsci.2023020
    [2] Robert Russell Monteith Paterson . Depletion of Indonesian oil palm plantations implied from modeling oil palm mortality and Ganoderma boninense rot under future climate. AIMS Environmental Science, 2020, 7(5): 366-379. doi: 10.3934/environsci.2020024
    [3] Carmen Gutiérrez-Bouzán, Valentina Buscio . Combining electrochemistry and UV for the simultaneous wastewater decolorization and reduction of salinity. AIMS Environmental Science, 2018, 5(2): 96-104. doi: 10.3934/environsci.2018.2.96
    [4] Xiaojun Liu, Ikbel Souli, Mohamad-Amr Chamaa, Thomas Lendormi, Claire Sabourin, Yves Lemée, Virginie Boy, Nizar Chaira, Ali Ferchichi, Pascal Morançais, Jean-Louis Lanoisellé . Effect of thermal pretreatment at 70 °C for one hour (EU hygienization conditions) of various organic wastes on methane production under mesophilic anaerobic digestion. AIMS Environmental Science, 2018, 5(2): 117-129. doi: 10.3934/environsci.2018.2.117
    [5] Tuan Syaripah Najihah, Mohd Hafiz Ibrahim, Nurul Amalina Mohd Zain, Rosimah Nulit, Puteri Edaroyati Megat Wahab . Activity of the oil palm seedlings exposed to a different rate of potassium fertilizer under water stress condition. AIMS Environmental Science, 2020, 7(1): 46-68. doi: 10.3934/environsci.2020004
    [6] Novi Sylvia, Aden Syahrullah Tarigan, Rozanna Dewi, Yunardi Yunardi, Yazid Bindar, Mutia Reza . A simulation study of CO2 gas adsorption with bottom ash adsorbent from palm oil mill waste using computational fluid dynamic (CFD). AIMS Environmental Science, 2024, 11(3): 444-456. doi: 10.3934/environsci.2024022
    [7] Ankit Srivastava, T.C. Prathna . Urban water resource management: experience from the revival of Rajokri lake in Delhi. AIMS Environmental Science, 2021, 8(5): 421-434. doi: 10.3934/environsci.2021027
    [8] Jianfeng Wen, Yanjin Liu, Yunjie Tu and Mark W. LeChevallier . Energy and chemical efficient nitrogen removal at a full-scale MBR water reuse facility. AIMS Environmental Science, 2015, 2(1): 42-55. doi: 10.3934/environsci.2015.1.42
    [9] Huixuan Li, Cuizhen Wang, Yuqin Jiang, Andrew Hug, Yingru Li . Spatial assessment of sewage discharge with urbanization in 2004–2014, Beijing, China. AIMS Environmental Science, 2016, 3(4): 842-857. doi: 10.3934/environsci.2016.4.842
    [10] Weijie Liu, Yan Hao, Jihong Jiang, Cong Liu, Aihua Zhu, Jingrong Zhu, Zhen Dong . Biopolymeric flocculant extracted from potato residues using alkaline extraction method and its application in removing coal fly ash from ash-flushing wastewater generated from coal fired power plant. AIMS Environmental Science, 2017, 4(1): 27-41. doi: 10.3934/environsci.2017.1.27
  • In recent years, there are many research cases for the diagnosis of Parkinson's disease (PD) with the brain magnetic resonance imaging (MRI) by utilizing the traditional unsupervised machine learning methods and the supervised deep learning models. However, unsupervised learning methods are not good at extracting accurate features among MRIs and it is difficult to collect enough data in the field of PD to satisfy the need of training deep learning models. Moreover, most of the existing studies are based on single-view MRI data, of which data characteristics are not sufficient enough. In this paper, therefore, in order to tackle the drawbacks mentioned above, we propose a novel semi-supervised learning framework called Semi-supervised Multi-view learning Clustering architecture technology (SMC). The model firstly introduces the sliding window method to grasp different features, and then uses the dimensionality reduction algorithms of Linear Discriminant Analysis (LDA) to process the data with different features. Finally, the traditional single-view clustering and multi-view clustering methods are employed on multiple feature views to obtain the results. Experiments show that our proposed method is superior to the state-of-art unsupervised learning models on the clustering effect. As a result, it may be noted that, our work could contribute to improving the effectiveness of identifying PD by previous labeled and subsequent unlabeled medical MRI data in the realistic medical environment.





    [1] C. W. Tsai, R. T. Tsai, S. P. Liu, C. S. Chen, M. C. Tasi, S. H. Chien, et al., Neuroprotective effects of betulin in pharmacological and transgenic Caenorhabditis elegans models of parkinsons disease, Cell Transplant., 26 (2018), 1903-1918.
    [2] R. E. Burke, K. O'Malley, Axon degeneration in parkinson's disease, Exp. Neurol., 246 (2013), 72-83. doi: 10.1016/j.expneurol.2012.01.011
    [3] C. P. Weingarten, M. H. Sundman, P. Hickey, N. K. Chen, Neuroimaging of parkinson's disease: Expanding views, Neurosci. Biobehav. Rev., 59 (2015), 16-52. doi: 10.1016/j.neubiorev.2015.09.007
    [4] Y. Kim, S. M. Cheon, C. Youm, M. Son, J. W. Kim, Depression and posture in patients with parkinsons disease, Gait Posture, 61 (2018), 81-85. doi: 10.1016/j.gaitpost.2017.12.026
    [5] R. Martínez-Fernández, R. Rodríguez-Rojas, M. del Álamo, F. Hernández-Fernández, J. A. Pineda-Pardo, M. Dileone, et al., Focused ultrasound subthalamotomy in patients with asymmetric Parkinson's disease: A pilot study, Lancet Neurol., 17 (2018), 54-63. doi: 10.1016/S1474-4422(17)30403-9
    [6] D. Frosini, M. Cosottini, D. Volterrani, R. Ceravolo, Neuroimaging in parkinson's disease: Focus on substantia nigra and nigro-striatal projection, Curr. Opin. Neurol., 30 (2017), 416-426. doi: 10.1097/WCO.0000000000000463
    [7] K. Marek, D. Jennings, S. Lasch, A. Siderowf, C. Tanner, T Simuni, et al., The Parkinson progression marker initiative (PPMI), Prog. Neurobiol., 95 (2011), 629-635. doi: 10.1016/j.pneurobio.2011.09.005
    [8] J. Shi, Z. Xue, Y. Dai, B. Peng, Y. Dong, Q. Zhang, et al., Cascaded multi-column RVFL+ classifier for single-modal neuroimaging-based diagnosis of Parkinson's disease, IEEE Trans. Biomed. Eng., 66 (2018), 2362-2371.
    [9] B. Peng, S. Wang, Z. Zhou, Y. Liu, B. Tong, T. Zhang, et al., A multilevel-roi-features-based machine learning method for detection of morphometric biomarkers in parkinsons disease, Neurosci. Lett., 651 (2017), 88-94. doi: 10.1016/j.neulet.2017.04.034
    [10] R. Prashanth, S. D. Roy, P. K. Mandal, S. Ghosh, High-accuracy classification of parkinson's disease through shape analysis and surface fitting in 123I-Ioflupane SPECT imaging, IEEE J. Biomed. Health Inf., 21 (2017), 794-802. doi: 10.1109/JBHI.2016.2547901
    [11] F. P. Oliveira, M. Castelo-Branco, Computer-aided diagnosis of Parkinson's disease based on [123I] FP-CIT SPECT binding potential images, using the voxels-as-features approach and support vector machines, J. Neural Eng., 12 (2015), 026008. doi: 10.1088/1741-2560/12/2/026008
    [12] G. Garraux, C. Phillips, J. Schrouff, A. Kreisler, C. Lemaire, C. Degueldre, et al., Multiclass classification of FDG PET scans for the distinction between Parkinson's disease and atypical parkinsonian syndromes, NeuroImage Clin., 2 (2013), 883-893. doi: 10.1016/j.nicl.2013.06.004
    [13] D. Long, J. Wang, M. Xuan, Q Gu, X. Xu, D. Kong, et al., Automatic classification of early Parkinson's disease with multi-modal MR imaging, Plos One, 7 (2012), e47714. doi: 10.1371/journal.pone.0047714
    [14] A. Abos, H. C. Baggio, B. Segura, A. I. García-Díaz, Y. Compta, M. J. Martí, et al., Discriminating cognitive status in Parkinson's disease through functional connectomics and machine learning, Sci. Rep., 7 (2017), 45347. doi: 10.1038/srep45347
    [15] H. Lei, Z. Huang, F. Zhou, A. Elazab, E. Tan, H. Li, et al., Parkinson's disease diagnosis via joint learning from multiple modalities and relations, IEEE J. Biomed. Health Inf., 23 (2019), 1437-1449. doi: 10.1109/JBHI.2018.2868420
    [16] E. Adeli, F. Shi, L. An, C. Y. Wee, G. Wu, T. Wang, et al., Joint feature-sample selection and robust diagnosis of Parkinson's disease from MRI data, NeuroImage, 141 (2016), 206-219. doi: 10.1016/j.neuroimage.2016.05.054
    [17] E. Adeli, G. Wu, B. Saghafi, L. An, F. Shi, D. Shen, Kernel-based joint feature selection and max-margin classification for early diagnosis of parkinsons disease, Sci. Rep., 7 (2017), 41069. doi: 10.1038/srep41069
    [18] X. Cai, F. Nie, H. Huang, Multi-view k-means clustering on big data, Proceedings of the 23rd International Joint Conference on Artificial Intelligence, 2013. Available from: https://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/viewPaper/6979.
    [19] R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection, Proceedings of the 14th International Joint conference on Artificial Intelligence, 1995, 1137-1143. Available from: https://www.researchgate.net/profile/Ron_Kohavi/publication/2352264_A_Study_of_Cross-Validation_and_Bootstrap_for_Accuracy_Estimation_and_Model_Selection/links/02e7e51bcc14c5e91c000000.pdf.
    [20] S. Balakrishnama, A. Ganapathiraju, Linear discriminant analysis-a brief tutorial, Inst. Signal Inf. Process., 18 (1998), 1-8.
    [21] F. Samaria, F. Fallside, Face identification and feature extraction using hidden markov models, Olivetti Research Limited, (1993).
    [22] N. Vlassis, A. Likas, A greedy EM algorithm for Gaussian mixture learning, Neural Process. Lett., 15 (2002), 77-87. doi: 10.1023/A:1013844811137
    [23] D. Steinley, K-means clustering: A half-century synthesis, Br. J. Math. Stat. Psychol., 59 (2006), 1-34. doi: 10.1348/000711005X48266
    [24] H. S. Park, C. H. Jun, A simple and fast algorithm for K-medoids clustering, Expert Syst. Appl., 36 (2009), 3336-3341. doi: 10.1016/j.eswa.2008.01.039
    [25] T. Kurita, An efficient agglomerative clustering algorithm using a heap, Pattern Recognit., 24 (1991), 205-209. doi: 10.1016/0031-3203(91)90062-A
    [26] T. Zhang, R. Ramakrishnan, M. Livny, BIRCH: An efficient data clustering method for very large databases, ACM Sigmod Rec., 25 (1996), 103-114. doi: 10.1145/235968.233324
    [27] U. Von Luxburg, A tutorial on spectral clustering, Stat. Comput., 17 (2007), 395-416. doi: 10.1007/s11222-007-9033-z
    [28] N. Wang, H. Yang, C. Li, G. Fan, X. Luo, Using 'swallow-tail' sign and putaminal hypointensity as biomarkers to distinguish multiple system atrophy from idiopathic Parkinson's disease: A susceptibility-weighted imaging study, Eur. Radiol., 27 (2017), 3174-3180. doi: 10.1007/s00330-017-4743-x
    [29] K. Machhale, H. B. Nandpuru, V Kapuret, L. Kosta, MRI brain cancer classification using hybrid classifier (SVM-KNN), 2015 International Conference on Industrial Instrumentation and Control (ICIC), 2015, 60-65. Available from: https://ieeexplore.ieee.org/abstract/document/7150592.
    [30] P. Refaeilzadeh, L. Tang, H. Liu, Cross-validation, E. Database Sys., 5 (2009), 532-538.
    [31] M. Kirby, Geometric data analysis: An empirical approach to dimensionality reduction and the study of patterns, John Wiley Sons, Inc., New York, NY, USA, 2001.
    [32] K. Honda, H. Ichihashi, Fuzzy local independent component analysis with external criteria and its application to knowledge discovery in databases, Int. J. Approximate Reasoning, 42 (2006), 159-173. doi: 10.1016/j.ijar.2005.10.011
    [33] D. Donoho, V. Stodden, When does non-negative matrix factorization give a correct decomposition into parts?, Proceedings of the 16th International Conference on Neural Information Processing Systems, 2003, 1141-1148. Available from: http://papers.nips.cc/paper/2463-when-does-non-negative-matrix-factorization-give-a-correct-decomposition-into-parts.pdf.
    [34] A. Tharwat, Principal component analysis-a tutorial, Inderscience Enterprises Ltd, 3 (2016), 197-240.
    [35] T. Hastie, R. Tibshirani, Discriminant analysis by Gaussian mixtures, J. R. Stat. Soc. Series B, 58 (1996), 155-176.
    [36] G. E. Hinton, R. R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science, 313 (2006), 504-507. doi: 10.1126/science.1127647
    [37] S. Mika, G. Ratsch, J. Weston, B. Scholkopf, K. R. Mullers, Fisher discriminant analysis with kernels, Proceedings of the 1999 IEEE Signal Processing Society Workshop, Madison, 1999, 41-48. Available from: https://ieeexplore.ieee.org/abstract/document/788121.
    [38] Y. Yang, H. Wang, Multi-view clustering: A survey, Big Data Mining Anal., 1 (2018), 83-107. doi: 10.26599/BDMA.2018.9020003
    [39] U. Maulik, S. Bandyopadhyay, Performance evaluation of some clustering algorithms and validity indices, IEEE Trans. Pattern Anal. Mach. Intell., 24 (2002), 1650-1654. doi: 10.1109/TPAMI.2002.1114856
  • This article has been cited by:

    1. Cruz Vargas-De-León, Noé Chan Chí, Eric Ávila Vales, Global analysis of virus dynamics model with logistic mitosis, cure rate and delay in virus production, 2015, 38, 01704214, 646, 10.1002/mma.3096
    2. Bruno Buonomo, Analysis of a malaria model with mosquito host choice and bed-net control, 2015, 08, 1793-5245, 1550077, 10.1142/S1793524515500771
    3. Bruno Buonomo, Cruz Vargas-De-León, Effects of Mosquitoes Host Choice on Optimal Intervention Strategies for Malaria Control, 2014, 132, 0167-8019, 127, 10.1007/s10440-014-9894-z
    4. J. F. GÓMEZ-AGUILAR, T. CÓRDOVA-FRAGA, THABET ABDELJAWAD, AZIZ KHAN, HASIB KHAN, ANALYSIS OF FRACTAL–FRACTIONAL MALARIA TRANSMISSION MODEL, 2020, 28, 0218-348X, 2040041, 10.1142/S0218348X20400411
    5. Lourdes Esteva, Cristobal Vargas, Cruz Vargas de León, The role of asymptomatics and dogs on leishmaniasis propagation, 2017, 293, 00255564, 46, 10.1016/j.mbs.2017.08.006
    6. Xiaomei Feng, Shigui Ruan, Zhidong Teng, Kai Wang, Stability and backward bifurcation in a malaria transmission model with applications to the control of malaria in China, 2015, 266, 00255564, 52, 10.1016/j.mbs.2015.05.005
    7. Bruno Buonomo, Cruz Vargas-De-León, Stability and bifurcation analysis of a vector-bias model of malaria transmission, 2013, 242, 00255564, 59, 10.1016/j.mbs.2012.12.001
    8. Zhiting Xu, Yiyi Zhang, Traveling wave phenomena of a diffusive and vector-bias malaria model, 2015, 14, 1534-0392, 923, 10.3934/cpaa.2015.14.923
    9. Xia Wang, Yuming Chen, Shengqiang Liu, Global dynamics of a vector-borne disease model with infection ages and general incidence rates, 2018, 37, 0101-8205, 4055, 10.1007/s40314-017-0560-8
    10. Edwin Setiawan Nugraha, Janson Naiborhu, Nuning Nuraini, 2017, 1825, 0094-243X, 020015, 10.1063/1.4978984
    11. Yangyang Shi, Hongyong Zhao, Analysis of a two-strain malaria transmission model with spatial heterogeneity and vector-bias, 2021, 82, 0303-6812, 10.1007/s00285-021-01577-3
    12. Zhiting Xu, Yiyi Zhang, Spatial dynamics of a time-delayed reaction and diffusion malaria model, 2015, 80, 0272-4960, 1124, 10.1093/imamat/hxu044
    13. Xia Wang, Yuming Chen, Shengqiang Liu, Dynamics of an age‐structured host‐vector model for malaria transmission, 2018, 41, 0170-4214, 1966, 10.1002/mma.4723
    14. Li-Ming Cai, Xue-Zhi Li, Bin Fang, Shigui Ruan, Global properties of vector–host disease models with time delays, 2017, 74, 0303-6812, 1397, 10.1007/s00285-016-1047-8
    15. Chunyue Wang, Jinliang Wang, Analysis of a malaria epidemic model with age structure and spatial diffusion, 2021, 72, 0044-2275, 10.1007/s00033-021-01511-z
    16. Cruz Vargas-De-León, Stability analysis of a model for HBV infection with cure of infected cells and intracellular delay, 2012, 219, 00963003, 389, 10.1016/j.amc.2012.06.029
    17. Li-Ming Cai, Maia Martcheva, Xue-Zhi Li, Competitive exclusion in a vector–host epidemic model with distributed delay†, 2013, 7, 1751-3758, 47, 10.1080/17513758.2013.772253
    18. Zhenguo Bai, Rui Peng, Xiao-Qiang Zhao, A reaction–diffusion malaria model with seasonality and incubation period, 2018, 77, 0303-6812, 201, 10.1007/s00285-017-1193-7
    19. H. Abboubakar, B. Buonomo, N. Chitnis, Modelling the effects of malaria infection on mosquito biting behaviour and attractiveness of humans, 2016, 65, 0035-5038, 329, 10.1007/s11587-016-0293-9
    20. Xia Wang, Yuming Chen, Maia Martcheva, Libin Rong, Asymptotic analysis of a vector-borne disease model with the age of infection, 2020, 14, 1751-3758, 332, 10.1080/17513758.2020.1745912
    21. Willem Takken, Niels O. Verhulst, Host Preferences of Blood-Feeding Mosquitoes, 2013, 58, 0066-4170, 433, 10.1146/annurev-ento-120811-153618
    22. Cruz Vargas-De-León, Lourdes Esteva, Andrei Korobeinikov, Age-dependency in host-vector models: The global analysis, 2014, 243, 00963003, 969, 10.1016/j.amc.2014.06.042
    23. Dan Tian, Haitao Song, Global dynamics of a Vector-Borne disease model with two delays and nonlinear transmission rate, 2017, 40, 01704214, 6411, 10.1002/mma.4464
    24. Zhiting Xu, On the global attractivity of a nonlocal and vector-bias malaria model, 2021, 121, 08939659, 107459, 10.1016/j.aml.2021.107459
    25. Peter Rashkov, Modeling repellent-based interventions for control of vector-borne diseases with constraints on extent and duration, 2022, 19, 1551-0018, 4038, 10.3934/mbe.2022185
    26. Sanaa Moussa Salman, A singularly perturbed vector‐bias malaria model incorporating bed net control, 2022, 0170-4214, 10.1002/mma.8822
    27. Alian Li-Martín, Ramón Reyes-Carreto, Cruz Vargas-De-León, Dynamics of a dengue disease transmission model with two-stage structure in the human population, 2022, 20, 1551-0018, 955, 10.3934/mbe.2023044
    28. Samiran Ghosh, Vitaly Volpert, Malay Banerjee, An Epidemic Model with Time-Distributed Recovery and Death Rates, 2022, 84, 0092-8240, 10.1007/s11538-022-01028-0
    29. Thongchai Botmart, Qusain Hiader, Zulqurnain Sabir, Muhammad Asif Zahoor Raja, Wajaree Weera, Stochastic Investigations for the Fractional Vector-Host Diseased Based Saturated Function of Treatment Model, 2023, 74, 1546-2226, 559, 10.32604/cmc.2023.031871
    30. María Guadalupe Vázquez-Peña, Cruz Vargas-De-León, Jorge Fernando Camacho-Pérez, Jorge Velázquez-Castro, Analysis and Bayesian estimation of a model for Chikungunya dynamics with relapse: An outbreak in Acapulco, Mexico, 2023, 20, 1551-0018, 18123, 10.3934/mbe.2023805
    31. Jinliang Wang, Hao Qu, Desheng Ji, Analysis of a reaction–diffusion dengue model with vector bias on a growing domain, 2023, 0003-6811, 1, 10.1080/00036811.2023.2281506
    32. Iffatricia Haura Febiriana, Abdullah Hasan Hassan, Dipo Aldila, Qiankun Song, Enhancing Malaria Control Strategy: Optimal Control and Cost-Effectiveness Analysis on the Impact of Vector Bias on the Efficacy of Mosquito Repellent and Hospitalization, 2024, 2024, 1687-0042, 1, 10.1155/2024/9943698
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4994) PDF downloads(355) Cited by(6)

Article outline

Figures and Tables

Figures(8)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog