Research article Special Issues

Numerical prediction of thrombosis risk in left atrium under atrial fibrillation

  • Received: 24 August 2019 Accepted: 14 January 2020 Published: 10 February 2020
  • The remodeling of the left atrial morphology and function caused by atrial fibrillation (AF) can exacerbate thrombosis in the left atrium (LA) even spike up the risk of stroke within AF patients. This study explored the effect of the AF on hemodynamic and thrombosis in LA. We reconstructed the patient-specific anatomical shape of the LA and considered the non-Newtonian property of the blood. The thrombus model was applied in the LA models to simulate thrombosis. Our results indicate that AF can aggravate thrombosis which mainly occurs in the left atrial appendage (LAA). Thrombosis first forms on the LAA wall then expands toward the internal LAA. The proposed computational model also shows the potential application of numerical analyses to help assess the risk of thrombosis in AF patients.

    Citation: Yan Wang, Yonghui Qiao, Yankai Mao, Chenyang Jiang, Jianren Fan, Kun Luo. Numerical prediction of thrombosis risk in left atrium under atrial fibrillation[J]. Mathematical Biosciences and Engineering, 2020, 17(3): 2348-2360. doi: 10.3934/mbe.2020125

    Related Papers:

  • The remodeling of the left atrial morphology and function caused by atrial fibrillation (AF) can exacerbate thrombosis in the left atrium (LA) even spike up the risk of stroke within AF patients. This study explored the effect of the AF on hemodynamic and thrombosis in LA. We reconstructed the patient-specific anatomical shape of the LA and considered the non-Newtonian property of the blood. The thrombus model was applied in the LA models to simulate thrombosis. Our results indicate that AF can aggravate thrombosis which mainly occurs in the left atrial appendage (LAA). Thrombosis first forms on the LAA wall then expands toward the internal LAA. The proposed computational model also shows the potential application of numerical analyses to help assess the risk of thrombosis in AF patients.


    加载中


    [1] T. J. Wang, J. M. Massaro, D. Levy, R. S. Vasan, P. A. Wolf, R. B. D'Agostino, et al., A risk score for predicting stroke or death in individuals with new-onset atrial fibrillation in the communitythe framingham heart study, JAMA, 290 (2003), 1049-1056.
    [2] C. Alberto, G. F. Miguel Angel, S. Horst, M. Patrizio, B. Pasquale, S. Marco, et al., Prevalence of extra-appendage thrombosis in non-valvular atrial fibrillation and atrial flutter in patients undergoing cardioversion: A large transoesophageal echo study, EuroIntervention, 15 (2019), e225-e230.
    [3] N. Al-Saady, O. Obel, A. Camm, Left atrial appendage: Structure, function, and role in thromboembolism, Heart, 82 (1999), 547-554.
    [4] Y. Y. Lam, B. P. Yan, S. K. Doshi, A. Li, D. Zhang, M. G. Kaya, et al., Preclinical evaluation of a new left atrial appendage occluder (lifetech lambreTM device) in a canine model, Int. J. Cardiol., 168 (2013), 3996-4001.
    [5] J. D. Moss, Left atrial appendage exclusion for prevention of stroke in atrial fibrillation: Review of minimally invasive approaches, Curr. Cardiol. Rep., 16 (2014), 448.
    [6] D. K. Gupta, A. M. Shah, R. P. Giugliano, C. T. Ruff, E. M. Antman, L. T. Grip, et al., Left atrial structure and function in atrial fibrillation: Engage af-timi 48, Eur. Heart J., 35 (2014), 1457-1465.
    [7] G. M. Bosi, A. Cook, R. Rai, L. J. Menezes, S. Schievano, R. Torii, et al., Computational fluid dynamic analysis of the left atrial appendage to predict thrombosis risk, Front. Cardiov. Med., 5 (2018), 34.
    [8] A. Masci, M. Alessandrini, L. Luca Ded, D. Forti, F. Menghini, C. Tomasi, et al., Development of a computational fluid dynamics model of the left atrium in atrial fibrillation on a patient specific basis, Computing, 44 (2017), 1.
    [9] L. T. Zhang, M. Gay, Characterizing left atrial appendage functions in sinus rhythm and atrial fibrillation using computational models, J. Biomech., 41 (2008), 2515-2523.
    [10] R. Koizumi, K. Funamoto, T. Hayase, Y. Kanke, M. Shibata, Y. Shiraishi, et al., Numerical analysis of hemodynamic changes in the left atrium due to atrial fibrillation, J. Biomech., 48 (2015), 472-478.
    [11] C. Chnafa, S. Mendez, F. Nicoud, Image-based large-eddy simulation in a realistic left heart, Comput. Fluid., 94 (2014), 173-187.
    [12] A. Masci, L. Barone, L. Dede, M. Fedele, C. Tomasi, A. Quarteroni, et al., The impact of left atrium appendage morphology on stroke risk assessment in atrial fibrillation: A computational fluid dynamics study, Front. Physiol., 9 (2018), 1938.
    [13] F. J. H. Gijsen, E. Allanic, F. N. van de Vosse, J. D. Janssen, The influence of the non-newtonian properties of blood on the flow in large arteries: Unsteady flow in a 90° curved tube, J. Biomech., 32 (1999), 705-713.
    [14] F. J. H. Gijsen, F. N. van de Vosse, J. D. Janssen, The influence of the non-newtonian properties of blood on the flow in large arteries: Steady flow in a carotid bifurcation model, J. Biomech., 32 (1999), 601-608.
    [15] C. Menichini, X. Y. Xu, Mathematical modeling of thrombus formation in idealized models of aortic dissection: Initial findings and potential applications, J. Math. Biol., 73(2016), 1205-1226.
    [16] M. Anand, K. Rajagopal, K. Rajagopal, A model incorporating some of the mechanical and biochemical factors underlying clot formation and dissolution in flowing blood, J. Theoret. Med., 5 (2003), 183-218.
    [17] International Organization for Standardization, Iso 5840-1: 2015 cardiovascular implants-cardiac valve prostheses part 1: General requirements, Geneva, Switzerland: International Organization for Standardization, (2015), 5840-5841
    [18] S. Gautam, R. John, Interatrial electrical dissociation after catheter-based ablation for atrial fibrillation and flutter, Circulat. Arrhythm. Electrophysiol., 4 (2011), e26-28.
    [19] J. O. Taylor, K. P. Witmer, T. Neuberger, B. A. Craven, R. S. Meyer, S. Deutsch, et al., In vitro quantification of time dependent thrombus size using magnetic resonance imaging and computational simulations of thrombus surface shear stresses, J. Biomech. Eng., 136 (2014).
    [20] C. Menichini, Z. Cheng, R. G. Gibbs, X. Y. Xu, Predicting false lumen thrombosis in patient-specific models of aortic dissection, J. R. Soc. Interface, 13 (2016).
    [21] C. E. Chiang, K. Okumura, S. Zhang, T. F. Chao, C. W. Siu, T. Wei Lim, et al., 2017 consensus of the asia pacific heart rhythm society on stroke prevention in atrial fibrillation, J. Arrhythm., 33 (2017), 345-367.
    [22] L. H. Li, C. S. Sheng, B. C. Hu, Q. F. Huang, W. F. Zeng, G. L. Li, et al., The prevalence, incidence, management and risks of atrial fibrillation in an elderly chinese population: A prospective study, BMC Cardiovasc. Disord., 15 (2015), 31.
    [23] I. Dentamaro, D. Vestito, E. Michelotto, D. De Santis, V. Ostuni, C. Cadeddu, et al., Evaluation of left atrial appendage function and thrombi in patients with atrial fibrillation: From transthoracic to real time 3d transesophageal echocardiography, Int. J. Cardiovasc. Imag., 33 (2017), 491-498.
    [24] W. S. Nesbitt, E. Westein, F. J. Tovar-Lopez, E. Tolouei, A. Mitchell, J. Fu, et al., A shear gradient-dependent platelet aggregation mechanism drives thrombus formation, Nat. Med., 15 (2009), 665.
    [25] B. Savage, E. Saldívar, Z. M. Ruggeri, Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von willebrand factor, Cell, 84 (1996), 289-297.
    [26] L. Feng, H. Gao, B. E. Griffith, S. A. Niederer, X. Luo, Analysis of a coupled fluid-structure interaction model of the left atrium and mitral valve, Int. J. Numer. Method Biomed. Eng., 0(2019), e3254.
    [27] T. Otani, A. Al-Issa, A. Pourmorteza, E. R. McVeigh, S. Wada, H. Ashikaga, A computational framework for personalized blood flow analysis in the human left atrium, Ann. Biomed. Eng., 44 (2016), 3284-3294.
    [28] R. Beigel, N. C. Wunderlich, S. Y. Ho, R. Arsanjani, R. J. Siegel, The left atrial appendage: Anatomy, function, and noninvasive evaluation, JACC Cardiovasc. Imag., 7(2014), 1251-1265.
    [29] E. N. Sorensen, G. W. Burgreen, W. R. Wagner, J. F. Antaki, Computational simulation of platelet deposition and activation: I. Model development and properties, Ann. Biomed. Eng., 27(1999), 436-448.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5096) PDF downloads(607) Cited by(16)

Article outline

Figures and Tables

Figures(7)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog