Using drinking data and pharmacokinetic modeling to calibrate transport model and blind deconvolution based data analysis software for transdermal alcohol biosensors

  • Received: 01 September 2015 Accepted: 29 June 2018 Published: 01 July 2016
  • MSC : 34 (Ordinary Differential Equations), 35 (Partial Differential Equations), 49 (Optimization), 92 (Biology), 93 (Systems Theory).

  • Alcohol researchers/clinicians have two ways to collect subject /patient field data, standard-drink self-report and the breath analyzer, neither of which is passive or accurate because active subject participation is required. Transdermal alcohol sensors have been developed to measure transdermal alcohol concentration (TAC), but they are used primarily as abstinence monitors because converting TAC into more meaningful blood/breath alcohol concentration (BAC/BrAC) is difficult. In this paper, BAC/BrAC is estimated from TAC by first calibrating forward distributed parameter-based convolution models for ethanol transport from the blood through the skin using patient-collected drinking data for a single drinking episode and a nonlinear pharmacokinetic metabolic absorption/elimination model to estimate BAC. TAC and estimated BAC are then used to fit the forward convolution filter. Nonlinear least squares with adjoint-based gradient computation are used to fit both models. Calibration results are compared with those obtained using BAC/BrAC from alcohol challenges and from standard, linear, metabolic absorption, and zero order kinetics-based elimination models, by considering peak BAC, time of peak, and area under the BAC curve. Our models (with population parameters) could be included in a smart phone app that makes it convenient for the subject/patient to enter drinking data for a single episode in the field.

    Citation: Zheng Dai, I.G. Rosen, Chuming Wang, Nancy Barnett, Susan E. Luczak. Using drinking data and pharmacokinetic modeling to calibrate transport model and blind deconvolution based data analysis software for transdermal alcohol biosensors[J]. Mathematical Biosciences and Engineering, 2016, 13(5): 911-934. doi: 10.3934/mbe.2016023

    Related Papers:

    [1] Lernik Asserian, Susan E. Luczak, I. G. Rosen . Computation of nonparametric, mixed effects, maximum likelihood, biosensor data based-estimators for the distributions of random parameters in an abstract parabolic model for the transdermal transport of alcohol. Mathematical Biosciences and Engineering, 2023, 20(11): 20345-20377. doi: 10.3934/mbe.2023900
    [2] Keenan Hawekotte, Susan E. Luczak, I. G. Rosen . Deconvolving breath alcohol concentration from biosensor measured transdermal alcohol level under uncertainty: a Bayesian approach. Mathematical Biosciences and Engineering, 2021, 18(5): 6739-6770. doi: 10.3934/mbe.2021335
    [3] Gigi Thomas, Edward M. Lungu . A two-sex model for the influence of heavy alcohol consumption on the spread of HIV/AIDS. Mathematical Biosciences and Engineering, 2010, 7(4): 871-904. doi: 10.3934/mbe.2010.7.871
    [4] Salih Djillali, Soufiane Bentout, Tarik Mohammed Touaoula, Abdessamad Tridane . Global dynamics of alcoholism epidemic model with distributed delays. Mathematical Biosciences and Engineering, 2021, 18(6): 8245-8256. doi: 10.3934/mbe.2021409
    [5] Hai-Feng Huo, Shuang-Lin Jing, Xun-Yang Wang, Hong Xiang . Modelling and analysis of an alcoholism model with treatment and effect of Twitter. Mathematical Biosciences and Engineering, 2019, 16(5): 3561-3622. doi: 10.3934/mbe.2019179
    [6] Ridouan Bani, Rasheed Hameed, Steve Szymanowski, Priscilla Greenwood, Christopher M. Kribs-Zaleta, Anuj Mubayi . Influence of environmental factors on college alcohol drinking patterns. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1281-1300. doi: 10.3934/mbe.2013.10.1281
    [7] Peixian Zhuang, Xinghao Ding, Jinming Duan . Subspace-based non-blind deconvolution. Mathematical Biosciences and Engineering, 2019, 16(4): 2202-2218. doi: 10.3934/mbe.2019108
    [8] Biyun Hong, Yang Zhang . Research on the influence of attention and emotion of tea drinkers based on artificial neural network. Mathematical Biosciences and Engineering, 2021, 18(4): 3423-3434. doi: 10.3934/mbe.2021171
    [9] Colette Calmelet, John Hotchkiss, Philip Crooke . A mathematical model for antibiotic control of bacteria in peritoneal dialysis associated peritonitis. Mathematical Biosciences and Engineering, 2014, 11(6): 1449-1464. doi: 10.3934/mbe.2014.11.1449
    [10] Piotr Klejment . Application of supervised machine learning as a method for identifying DEM contact law parameters. Mathematical Biosciences and Engineering, 2021, 18(6): 7490-7505. doi: 10.3934/mbe.2021370
  • Alcohol researchers/clinicians have two ways to collect subject /patient field data, standard-drink self-report and the breath analyzer, neither of which is passive or accurate because active subject participation is required. Transdermal alcohol sensors have been developed to measure transdermal alcohol concentration (TAC), but they are used primarily as abstinence monitors because converting TAC into more meaningful blood/breath alcohol concentration (BAC/BrAC) is difficult. In this paper, BAC/BrAC is estimated from TAC by first calibrating forward distributed parameter-based convolution models for ethanol transport from the blood through the skin using patient-collected drinking data for a single drinking episode and a nonlinear pharmacokinetic metabolic absorption/elimination model to estimate BAC. TAC and estimated BAC are then used to fit the forward convolution filter. Nonlinear least squares with adjoint-based gradient computation are used to fit both models. Calibration results are compared with those obtained using BAC/BrAC from alcohol challenges and from standard, linear, metabolic absorption, and zero order kinetics-based elimination models, by considering peak BAC, time of peak, and area under the BAC curve. Our models (with population parameters) could be included in a smart phone app that makes it convenient for the subject/patient to enter drinking data for a single episode in the field.


    [1] Academic Press, New York, 1975.
    [2] Journal of Applied Physiology, 100 (2006), 649-655.
    [3] Control Theory and Advanced Technology, 4 (1988), 73-90.
    [4] Birkhauser, Boston, 1989.
    [5] J. Mathematical Systems, Estimation and Control, 7 (1997), 1-34.
    [6] Athena Scientific, Nashua, NH, 1999.
    [7] Addison-Wesley, Reading, PA, 1977.
    [8] Journal of Studies on Alcohol, 63 (2002), 762-766.
    [9] Holt Rinehart and Winston, New York, 1970.
    [10] SIAM J. Control and Optimization, 24 (1986), 797-816.
    [11] Exp Clin Psychopharm, 203 (2012), 73-381.
    [12] Applied Mathematics and Computation, 196 (2008), 724-743.
    [13] Society for Industrial and Applied Mathematics, Philadelphia, 2005.
    [14] Journal of the Forensic Science Society, 26 (1986), 249-252.
    [15] Automatica, 24 (1988), 517-529.
    [16] The Electronic Journal of Mathematics and Technology, 1 (2007), 232-244.
    [17] ACER, 38 (2014), 2517-2522.
    [18] Psychopharmacology , 232 (2015), 115-123.
    [19] ACER.
    [20] American Mathematical Society, Providence, 1957.
    [21] Journal of Studies on Alcohol, 66 (2005), 130-138.
    [22] Second Edition, Springer, Berlin, 1976.
    [23] Journal of Chemical Education, 67 (1990), 259-261.
    [24] Siam Journal on Control and Optimization, 48 (2010), 3191-3223.
    [25] Journal of the Forensic Science Society, 26 (1986), 19-27.
    [26] Annals of Statistics, 28 (2000), 1279-1301.
    [27] Springer-Verlag, New York, 1971.
    [28] Alcohol and Alcoholism, 50 (2015), 1-8.
    [29] International Federation of Automatic Control, (2013), 473-478.
    [30] Alcohol Clin Exp Res, 33 (2009), 703-711.
    [31] Addictive Behaviors, 4 (1979), 55-60.
    [32] Advances in Applied Mathematics, 16 (1995), 321-375.
    [33] Department of Transportation, Washington, D.C, 1994.
    [34] Springer-Verlag, New York, 1980.
    [35] Springer-Verlag, New York, 1983.
    [36] SIAM J. Control and Optimization, 25 (1987), 121-144.
    [37] Applied Math and Computation, 231 (2014), 357-376.
    [38] Proceedings of 2013 SIAM Conference on Control and its Applications, 2013.
    [39] Alcohol Clin Exp Res, 30 (2006), 26-33.
    [40] Prentice Hall, Englewood Cliffs, NJ, 1973.
    [41] London, Pitman, 1977.
    [42] Humana Press, Totowa, NJ, 1992.
    [43] Cambridge University Press, Cambridge, 2005.
    [44] Addiction, 98S (2003), 78-80.
    [45] Humana Press, Totowa, NJ, 1992.
    [46] Pitman, London, 1979.
    [47] Birkhauser, Basel, 2009.
    [48] Research Communications in Chemical Pathology and Pharmacology, 4 (1972), 61-76.
    [49] American Journal of Clinical Nutrition, 33 (1980), 27-39.
    [50] Journal of Studies on Alcohol, 42 (1981), 547-556.
    [51] Annu Proc Assoc Adv Automot Med, 51 (2007), 449-464.
    [52] Biomedical Sciences Instrumentation, 44 (2007), 361-366.
    [53] Cambridge University Press, Cambridge, 1987.
  • This article has been cited by:

    1. Yan Wang, Daniel J. Fridberg, Robert F. Leeman, Robert L. Cook, Eric C. Porges, Wrist-worn alcohol biosensors: Strengths, limitations, and future directions, 2019, 81, 07418329, 83, 10.1016/j.alcohol.2018.08.013
    2. John D. Roache, Tara E. Karns-Wright, Martin Goros, Nathalie Hill-Kapturczak, Charles W. Mathias, Donald M. Dougherty, Processing transdermal alcohol concentration (TAC) data to detect low-level drinking, 2019, 81, 07418329, 101, 10.1016/j.alcohol.2018.08.014
    3. Melike Sirlanci, I. Gary Rosen, Tamara L. Wall, Susan E. Luczak, Applying a novel population-based model approach to estimating breath alcohol concentration (BrAC) from transdermal alcohol concentration (TAC) biosensor data, 2019, 81, 07418329, 117, 10.1016/j.alcohol.2018.09.005
    4. Jian Li, Susan E. Luczak, I. G. Rosen, Comparing a distributed parameter model-based system identification technique with more conventional methods for inverse problems, 2019, 27, 0928-0219, 703, 10.1515/jiip-2018-0006
    5. Alastair van Heerden, Mark Tomlinson, Sarah Skeen, Charles Parry, Kendal Bryant, Mary Jane Rotheram-Borus, Innovation at the Intersection of Alcohol and HIV Research, 2017, 21, 1090-7165, 274, 10.1007/s10461-017-1926-z
    6. Melike Sirlanci, Susan Luczak, I. G. Rosen, 2017, Approximation and convergence in the estimation of random parameters in linear holomorphic semigroups generated by regularly dissipative operators, 978-1-5090-5992-8, 3171, 10.23919/ACC.2017.7963435
    7. Kelly Egmond, Cassandra J. C. Wright, Michael Livingston, Emmanuel Kuntsche, Wearable Transdermal Alcohol Monitors: A Systematic Review of Detection Validity, and Relationship Between Transdermal and Breath Alcohol Concentration and Influencing Factors, 2020, 44, 0145-6008, 1918, 10.1111/acer.14432
    8. Christian S. Hendershot, Christina N. Nona, A Review of Developmental Considerations in Human Laboratory Alcohol Research, 2017, 4, 2196-2952, 364, 10.1007/s40429-017-0173-8
    9. Nancy P. Barnett, Mark A. Celio, Jennifer W. Tidey, James G. Murphy, Suzanne M. Colby, Robert M. Swift, A preliminary randomized controlled trial of contingency management for alcohol use reduction using a transdermal alcohol sensor, 2017, 112, 0965-2140, 1025, 10.1111/add.13767
    10. Melike Sirlanci, I G Rosen, Susan E Luczak, Catharine E Fairbairn, Konrad Bresin, Dahyeon Kang, Deconvolving the input to random abstract parabolic systems: a population model-based approach to estimating blood/breath alcohol concentration from transdermal alcohol biosensor data, 2018, 34, 0266-5611, 125006, 10.1088/1361-6420/aae791
    11. Susan E. Luczak, Ashley L. Hawkins, Zheng Dai, Raphael Wichmann, Chunming Wang, I.Gary Rosen, Obtaining continuous BrAC/BAC estimates in the field: A hybrid system integrating transdermal alcohol biosensor, Intellidrink smartphone app, and BrAC Estimator software tools, 2018, 83, 03064603, 48, 10.1016/j.addbeh.2017.11.038
    12. Melike Sirlanci, Susan E. Luczak, Catharine E. Fairbairn, Dahyeon Kang, Ruoxi Pan, Xin Yu, I. Gary Rosen, Estimating the distribution of random parameters in a diffusion equation forward model for a transdermal alcohol biosensor, 2019, 106, 00051098, 101, 10.1016/j.automatica.2019.04.026
    13. Sina Kianersi, Maya Luetke, Jon Agley, Ruth Gassman, Christina Ludema, Molly Rosenberg, Validation of transdermal alcohol concentration data collected using wearable alcohol monitors: A systematic review and meta-analysis, 2020, 216, 03768716, 108304, 10.1016/j.drugalcdep.2020.108304
    14. Catharine E. Fairbairn, I. Gary Rosen, Susan E. Luczak, Walter J. Venerable, Estimating the quantity and time course of alcohol consumption from transdermal alcohol sensor data: A combined laboratory-ambulatory study, 2019, 81, 07418329, 111, 10.1016/j.alcohol.2018.08.015
    15. John D. Clapp, Danielle R. Madden, Sheila Pakdaman, Drinking with Friends: Measuring the Two-week Ecology of Drinking Behaviors, 2022, 46, 1087-3244, 96, 10.5993/AJHB.46.2.1
    16. Clemens Oszkinat, Susan E. Luczak, I. G. Rosen, 2022, Physics-Informed Learning: Distributed Parameter Systems, Hidden Markov Models, and the Viterbi Algorithm, 978-1-6654-5196-3, 266, 10.23919/ACC53348.2022.9867145
    17. Baichen Li, R. Scott Downen, Quan Dong, Nam Tran, Maxine LeSaux, Andrew C. Meltzer, Zhenyu Li, A Discreet Wearable IoT Sensor for Continuous Transdermal Alcohol Monitoring—Challenges and Opportunities, 2021, 21, 1530-437X, 5322, 10.1109/JSEN.2020.3030254
    18. Clemens Oszkinat, Susan E. Luczak, I. Gary Rosen, An abstract parabolic system-based physics-informed long short-term memory network for estimating breath alcohol concentration from transdermal alcohol biosensor data, 2022, 34, 0941-0643, 18933, 10.1007/s00521-022-07505-w
    19. Mengsha Yao, Susan E. Luczak, I. Gary Rosen, Tracking and blind deconvolution of blood alcohol concentration from transdermal alcohol biosensor data: A population model-based LQG approach in Hilbert space, 2023, 147, 00051098, 110699, 10.1016/j.automatica.2022.110699
    20. Keenan Hawekotte, Susan E. Luczak, I. G. Rosen, Deconvolving breath alcohol concentration from biosensor measured transdermal alcohol level under uncertainty: a Bayesian approach, 2021, 18, 1551-0018, 6739, 10.3934/mbe.2021335
    21. Clemens Oszkinat, Tianlan Shao, Chunming Wang, I G Rosen, Allison D Rosen, Emily B Saldich, Susan E Luczak, Blood and breath alcohol concentration from transdermal alcohol biosensor data: estimation and uncertainty quantification via forward and inverse filtering for a covariate-dependent, physics-informed, hidden Markov model* , 2022, 38, 0266-5611, 055002, 10.1088/1361-6420/ac5ac7
    22. Mengsha Yao, Susan E. Luczak, Emily B. Saldich, I. Gary Rosen, A population model‐based linear‐quadratic Gaussian compensator for the control of intravenously infused alcohol studies and withdrawal symptom prophylaxis using transdermal sensing, 2022, 0143-2087, 10.1002/oca.2934
    23. Bob M. Lansdorp, Flux-Type versus Concentration-Type Sensors in Transdermal Measurements, 2023, 13, 2079-6374, 845, 10.3390/bios13090845
    24. Kyla-Rose Walden, Emily B. Saldich, Georgia Wong, Haoxing Liu, Chunming Wang, I. Gary Rosen, Susan E. Luczak, 2023, 79, 9780443193866, 271, 10.1016/bs.plm.2023.06.002
    25. Clemens Oszkinat, Susan E. Luczak, I. G. Rosen, Uncertainty Quantification in Estimating Blood Alcohol Concentration From Transdermal Alcohol Level With Physics-Informed Neural Networks, 2023, 34, 2162-237X, 8094, 10.1109/TNNLS.2022.3140726
    26. Lernik Asserian, Susan E. Luczak, I. G. Rosen, Computation of nonparametric, mixed effects, maximum likelihood, biosensor data based-estimators for the distributions of random parameters in an abstract parabolic model for the transdermal transport of alcohol, 2023, 20, 1551-0018, 20345, 10.3934/mbe.2023900
    27. J.M. Maestre, P. Chanfreut, L. Aarons, Constrained numerical deconvolution using orthogonal polynomials, 2024, 24058440, e24762, 10.1016/j.heliyon.2024.e24762
    28. Mengsha Yao, Maria Allayioti, Emily B. Saldich, Georgia Y. Wong, Chunming Wang, Susan E. Luczak, I. G. Rosen, Real-time recursive estimation of, and uncertainty quantification for, breath alcohol concentration via LQ tracking control-based inverse filtering of transdermal alcohol biosensor signals, 2024, 2, 2994-7669, 38, 10.3934/ammc.2024003
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3559) PDF downloads(577) Cited by(28)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog