Citation: Massimiliano Tamborrino. Approximation of the first passage time density of a Wiener process to an exponentially decaying boundary by two-piecewise linear threshold. Application to neuronal spiking activity[J]. Mathematical Biosciences and Engineering, 2016, 13(3): 613-629. doi: 10.3934/mbe.2016011
[1] | Giuseppe D'Onofrio, Enrica Pirozzi . Successive spike times predicted by a stochastic neuronal model with a variable input signal. Mathematical Biosciences and Engineering, 2016, 13(3): 495-507. doi: 10.3934/mbe.2016003 |
[2] | Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Maria Francesca Carfora . Gauss-diffusion processes for modeling the dynamics of a couple of interacting neurons. Mathematical Biosciences and Engineering, 2014, 11(2): 189-201. doi: 10.3934/mbe.2014.11.189 |
[3] | Sven Blankenburg, Benjamin Lindner . The effect of positive interspike interval correlations on neuronal information transmission. Mathematical Biosciences and Engineering, 2016, 13(3): 461-481. doi: 10.3934/mbe.2016001 |
[4] | Achilleas Koutsou, Jacob Kanev, Maria Economidou, Chris Christodoulou . Integrator or coincidence detector --- what shapes the relation of stimulus synchrony and the operational mode of a neuron?. Mathematical Biosciences and Engineering, 2016, 13(3): 521-535. doi: 10.3934/mbe.2016005 |
[5] | Hideaki Kim, Shigeru Shinomoto . Estimating nonstationary inputs from a single spike train based on a neuron model with adaptation. Mathematical Biosciences and Engineering, 2014, 11(1): 49-62. doi: 10.3934/mbe.2014.11.49 |
[6] | Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Maria Francesca Carfora . A simple algorithm to generate firing times for leaky integrate-and-fire neuronal model. Mathematical Biosciences and Engineering, 2014, 11(1): 1-10. doi: 10.3934/mbe.2014.11.1 |
[7] | Nikita Ratanov . A two-state neuronal model with alternating exponential excitation. Mathematical Biosciences and Engineering, 2019, 16(5): 3411-3434. doi: 10.3934/mbe.2019171 |
[8] | Frederik Riis Mikkelsen . A model based rule for selecting spiking thresholds in neuron models. Mathematical Biosciences and Engineering, 2016, 13(3): 569-578. doi: 10.3934/mbe.2016008 |
[9] | Roberta Sirovich, Luisa Testa . A new firing paradigm for integrate and fire stochastic neuronal models. Mathematical Biosciences and Engineering, 2016, 13(3): 597-611. doi: 10.3934/mbe.2016010 |
[10] | Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Maria Francesca Carfora . A leaky integrate-and-fire model with adaptation for the generation of a spike train. Mathematical Biosciences and Engineering, 2016, 13(3): 483-493. doi: 10.3934/mbe.2016002 |
[1] | Ric. Mat., 50 (2001), 283-301. |
[2] | Stoch. Models, 21 (2005), 967-980. |
[3] | J. Appl. Probab., 42 (2005), 82-92. |
[4] | Math. Biosci. Eng., 11 (2014), 1-10. |
[5] | Adv. in Appl. Probab., 19 (1987), 784-800. |
[6] | Math. Biosci., 29 (1976), 219-234. |
[7] | J. Neurosci., 21 (2001), 5328-5343. |
[8] | Neural Comput., 15 (2003), 253-278. |
[9] | Phys. Rev. Lett., 85 (2000), 1576-1579. |
[10] | Marcel Dekker, New York, 1989. |
[11] | CRC Press, 1977. |
[12] | Biophys. J., 4 (1964), 41-68. |
[13] | Commun. Stat. Simulat., 28 (1999), 1135-1163. |
[14] | Methodol. Comput. App. Probab., 3 (2001), 215-231. |
[15] | Wiley/VCH, Weinheim, 1993. |
[16] | Biol. Cybern., 99 (2008), 237-239. |
[17] | Front. Comput. Neurosci., 3 (2009), 1-11. |
[18] | J. Stat. Phys., 117 (2004), 703-737. |
[19] | J. Theor. Biol., 232 (2005), 505-521. |
[20] | Stat. Probabil. Lett., 80 (2010), 277-284. |
[21] | Physica A, 390 (2011), 1841-1852. |
[22] | J. Appl. Probab., 36 (1999), 1019-1030. |
[23] | J. Appl. Probab., 38 (2001), 152-164. |
[24] | R Foundation for Statistical Computing, Vienna, Austria, 2014. |
[25] | J. Math. Anal. Appl., 54 (1976), 185-199. |
[26] | Lecture notes in Biomathematics, 14, Springer Verlag, Berlin, 1977. |
[27] | Math. Japonica, 50 (1999), 247-322. |
[28] | in Stochastic Biomathematical Models, Lecture Notes in Mathematics, 2058, Springer Berlin Heidelberg, 2013, 99-148. |
[29] | J. Comput. Appl. Math., 296 (2016), 275-292. |
[30] | Adv. Appl. Probab., 46 (2014), 186-202. |
[31] | J. Appl. Probab., 29 (1992), 448-453. |
[32] | Neural Comput., 11 (1999), 935-951. |
[33] | J. Stat. Phys., 140 (2010), 1130-1156. |
[34] | Lifetime Data Anal., 21 (2015), 331-352. |
[35] | Biol. Cybernet., 30 (1978), 115-123. |
[36] | Cambridge University Press, Cambridge, 1988. |
[37] | J. Appl. Probab., 21 (1984), 695-709. |
[38] | Phys. Rev. E, 83 (2011), 021102. |
[39] | J. App. Probab., 34 (1997), 54-65. |
[40] | Methodol. Comput. Appl. Probab., 9 (2007), 21-40. |
[41] | Ann. Appl. Probab., 19 (2009), 1319-1346. |
1. | Chih-Chun Tsai, Chien-Tai Lin, N. Balakrishnan, 2017, Chapter 6, 978-981-10-5193-7, 105, 10.1007/978-981-10-5194-4_6 | |
2. | Ryota Kobayashi, Katsunori Kitano, Impact of slow K+ currents on spike generation can be described by an adaptive threshold model, 2016, 40, 0929-5313, 347, 10.1007/s10827-016-0601-0 | |
3. | Lubomir Kostal, Petr Lansky, Michael Stiber, Statistics of inverse interspike intervals: The instantaneous firing rate revisited, 2018, 28, 1054-1500, 106305, 10.1063/1.5036831 | |
4. | Wilhelm Braun, Rüdiger Thul, Sign changes as a universal concept in first-passage-time calculations, 2017, 95, 2470-0045, 10.1103/PhysRevE.95.012114 | |
5. | Lubomir Kostal, Kristyna Kovacova, Estimation of firing rate from instantaneous interspike intervals, 2024, 01680102, 10.1016/j.neures.2024.06.006 |