Efficient information transfer by Poisson neurons

  • Received: 01 March 2015 Accepted: 29 June 2018 Published: 01 January 2016
  • MSC : Primary: 62B10, 62P10; Secondary: 60G55.

  • Recently, it has been suggested that certain neurons with Poissonianspiking statistics may communicate by discontinuously switchingbetween two levels of firing intensity. Such a situation resembles inmany ways the optimal information transmission protocol for thecontinuous-time Poisson channel known from information theory. In thiscontribution we employ the classical information-theoretic results toanalyze the efficiency of such a transmission from differentperspectives, emphasising the neurobiological viewpoint. We addressboth the ultimate limits, in terms of the information capacity undermetabolic cost constraints, and the achievable bounds on performanceat rates below capacity with fixed decoding error probability. Indoing so we discuss optimal values of experimentally measurablequantities that can be compared with the actual neuronal recordings ina future effort.

    Citation: Lubomir Kostal, Shigeru Shinomoto. Efficient information transfer by Poisson neurons[J]. Mathematical Biosciences and Engineering, 2016, 13(3): 509-520. doi: 10.3934/mbe.2016004

    Related Papers:

    [1] Marie Levakova . Effect of spontaneous activity on stimulus detection in a simple neuronal model. Mathematical Biosciences and Engineering, 2016, 13(3): 551-568. doi: 10.3934/mbe.2016007
    [2] Hideaki Kim, Shigeru Shinomoto . Estimating nonstationary inputs from a single spike train based on a neuron model with adaptation. Mathematical Biosciences and Engineering, 2014, 11(1): 49-62. doi: 10.3934/mbe.2014.11.49
    [3] János Végh, Ádám József Berki . Revisiting neural information, computing and linking capacity. Mathematical Biosciences and Engineering, 2023, 20(7): 12380-12403. doi: 10.3934/mbe.2023551
    [4] Andrey Olypher, Jean Vaillant . On the properties of input-to-output transformations in neuronal networks. Mathematical Biosciences and Engineering, 2016, 13(3): 579-596. doi: 10.3934/mbe.2016009
    [5] Kseniia Kravchuk, Alexander Vidybida . Non-Markovian spiking statistics of a neuron with delayed feedback in presence of refractoriness. Mathematical Biosciences and Engineering, 2014, 11(1): 81-104. doi: 10.3934/mbe.2014.11.81
    [6] Gayathri Vivekanandhan, Hamid Reza Abdolmohammadi, Hayder Natiq, Karthikeyan Rajagopal, Sajad Jafari, Hamidreza Namazi . Dynamic analysis of the discrete fractional-order Rulkov neuron map. Mathematical Biosciences and Engineering, 2023, 20(3): 4760-4781. doi: 10.3934/mbe.2023220
    [7] Shinsuke Koyama, Lubomir Kostal . The effect of interspike interval statistics on the information gainunder the rate coding hypothesis. Mathematical Biosciences and Engineering, 2014, 11(1): 63-80. doi: 10.3934/mbe.2014.11.63
    [8] Dingwei Tan, Yuliang Lu, Xuehu Yan, Lintao Liu, Longlong Li . High capacity reversible data hiding in MP3 based on Huffman table transformation. Mathematical Biosciences and Engineering, 2019, 16(4): 3183-3194. doi: 10.3934/mbe.2019158
    [9] Sven Blankenburg, Benjamin Lindner . The effect of positive interspike interval correlations on neuronal information transmission. Mathematical Biosciences and Engineering, 2016, 13(3): 461-481. doi: 10.3934/mbe.2016001
    [10] Hang Yu, Jiarui Shi, Jin Qian, Shi Wang, Sheng Li . Single dendritic neural classification with an effective spherical search-based whale learning algorithm. Mathematical Biosciences and Engineering, 2023, 20(4): 7594-7632. doi: 10.3934/mbe.2023328
  • Recently, it has been suggested that certain neurons with Poissonianspiking statistics may communicate by discontinuously switchingbetween two levels of firing intensity. Such a situation resembles inmany ways the optimal information transmission protocol for thecontinuous-time Poisson channel known from information theory. In thiscontribution we employ the classical information-theoretic results toanalyze the efficiency of such a transmission from differentperspectives, emphasising the neurobiological viewpoint. We addressboth the ultimate limits, in terms of the information capacity undermetabolic cost constraints, and the achievable bounds on performanceat rates below capacity with fixed decoding error probability. Indoing so we discuss optimal values of experimentally measurablequantities that can be compared with the actual neuronal recordings ina future effort.


    [1] Dover, New York, 1992.
    [2] W. W. Norton and Co., New York, 1928.
    [3] J. Cereb. Blood Flow Metab., 21 (2001), 1133-1145.
    [4] Netw. Comput. Neural Syst., 13 (2002), 531-552.
    [5] Princeton University Press, Princeton, 2012.
    [6] Springer, New York, USA, 1981.
    [7] in Advances in Network Information Theory (eds. P. Gupta, G. Kramer and A. J. van Wijngaarden), DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 66, American Mathematical Society, 2004, 263-284.
    [8] IEEE Trans. Inf. Theory, 53 (2007), 2349-2364.
    [9] IEEE Trans. Inf. Theory, 26 (1980), 710-715.
    [10] MIT Press, 2001.
    [11] Nature, 379 (1996), 642-644.
    [12] CRC Press, Boca Raton, USA, 1997.
    [13] J. Neurobiol., 65 (2005), 97-114.
    [14] IEEE Trans. Inf. Theory, 37 (1991), 244-256.
    [15] John Wiley and Sons, Inc., New York, USA, 1972.
    [16] Cambridge University Press, Cambridge, 2002.
    [17] Brain Res., 1434 (2012), 123-135.
    [18] Proc. Natl. Acad. Sci. U.S.A., 107 (2010), 12329-12334.
    [19] IEEE Trans. Inf. Theory, 51 (2005), 2336-2351.
    [20] World Scientific Publishing, Singapore, 1993.
    [21] J. Acoust. Soc. Am., 107 (2000), 908-921.
    [22] J. Comput. Neurosci., 3 (1996), 275-299.
    [23] Netw. Comput. Neural Syst., 19 (2008), 13-33.
    [24] Theor. Prob. App., 23 (1978), 143-147.
    [25] Neural Comput., 23 (2011), 3070-3093.
    [26] Front. Comput. Neurosci., 3 (2009), p9.
    [27] Phys. Rev. E, 82 (2010), 026115.
    [28] Brain Res., 1434 (2012), 136-141.
    [29] Biosystems, 136 (2015), 3-10.
    [30] Biol. Cybern., 107 (2013), 355-365.
    [31] Math. Biosci. Eng., 11 (2014), 63-80.
    [32] IEEE Trans. Inf. Theory, 39 (1993), 491-503.
    [33] Z. Naturforsch., 36 (1981), 910-912.
    [34] Nat. Neurosci., 1 (1998), 36-41.
    [35] IEEE Trans. Commun., 29 (1981), 1615-1621.
    [36] Biol. Cybern., 105 (2011), 55-70.
    [37] IEEE Trans. Inf. Theory, 27 (1981), 393-398.
    [38] Phys. Rev. E, 89 (2014), 022705.
    [39] PLoS Comput. Biol., 10 (2014), e1003522.
    [40] Neurosci. Res. Prog. Sum., 3 (1968), 405-527.
    [41] Holden-Day, Inc., San Francisco, 1964.
    [42] MIT Press, Cambridge, 1999.
    [43] in 4th Int. ITG Conf., VDE Verlag, Berlin, 2002, 233-238.
    [44] IEEE Trans. Inf. Theory, 55 (2009), 663-688.
    [45] PLoS Comput. Biol., 9 (2013), e1003263.
    [46] Proc. IEEE, 102 (2014), 738-750.
    [47] IEEE Trans. Inf. Theory, 39 (1993), 19-29.
    [48] J. Neurosci., 13 (1993), 334-350.
    [49] IEEE Trans. Inf. Theory, 56 (2010), 838-851.
    [50] preprint, arXiv:1411.1650.
    [51] Cambridge University Press, New York, 1988.
    [52] IEEE Trans. Inf. Theory, 36 (1990), 1019-1030.
    [53] IEEE Trans. Inf. Theory, 40 (1994), 1147-1157.
    [54] IEEE Trans. Inf. Theory, 34 (1988), 1449-1461.
    [55] IEEE Trans. Inf. Theory, 34 (1988), 1462-1471.
  • This article has been cited by:

    1. Rimjhim Tomar, Review: Methods of firing rate estimation, 2019, 183, 03032647, 103980, 10.1016/j.biosystems.2019.103980
    2. Yuriy Romanyshyn, Andriy Smerdov, Svitlana Petrytska, Energy Model of Neuron Activation, 2017, 29, 0899-7667, 502, 10.1162/NECO_a_00913
    3. Angelo Pirozzi, Enrica Pirozzi, 2019, Chapter 100665-1, 978-1-4614-7320-6, 1, 10.1007/978-1-4614-7320-6_100665-1
    4. Chunqin Zhang, Lichun Xie, Yasen Aizezi, Xiaoqing Gu, User Multi-Modal Emotional Intelligence Analysis Method Based on Deep Learning in Social Network Big Data Environment, 2019, 7, 2169-3536, 181758, 10.1109/ACCESS.2019.2959831
    5. Guowei Wang, Yan Fu, Spatiotemporal patterns and collective dynamics of bi-layer coupled Izhikevich neural networks with multi-area channels, 2022, 20, 1551-0018, 3944, 10.3934/mbe.2023184
    6. Angelo Pirozzi, Enrica Pirozzi, 2022, Chapter 100665, 978-1-0716-1004-6, 1674, 10.1007/978-1-0716-1006-0_100665
    7. Shi YiXia, Hua Sun, JiaLiang Yang, YingJing Jiang, Variable combinatorial gap-filling method for single-cell RNA-seq data, 2023, 0, 2444-8656, 10.2478/amns.2023.1.00395
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2940) PDF downloads(511) Cited by(7)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog