Bifurcation analysis of HIV-1 infection model with cell-to-cell transmission and immune response delay

  • Received: 01 April 2015 Accepted: 29 June 2018 Published: 25 November 2015
  • MSC : Primary: 34K20, 92D30; Secondary: 34C23, 34K60.

  • A within-host viral infection model with both virus-to-cell and cell-to-cell transmissions and time delay in immune response is investigated. Mathematical analysis shows that delay may destabilize the infected steady state and lead to Hopf bifurcation. Moreover, the direction of the Hopf bifurcation and the stability of the periodic solutions are investigated by normal form and center manifold theory.Numerical simulations are done to explore the rich dynamics,including stability switches, Hopf bifurcations, and chaotic oscillations.

    Citation: Jinhu Xu, Yicang Zhou. Bifurcation analysis of HIV-1 infection model with cell-to-cell transmission and immune response delay[J]. Mathematical Biosciences and Engineering, 2016, 13(2): 343-367. doi: 10.3934/mbe.2015006

    Related Papers:

    [1] Yu Yang, Gang Huang, Yueping Dong . Stability and Hopf bifurcation of an HIV infection model with two time delays. Mathematical Biosciences and Engineering, 2023, 20(2): 1938-1959. doi: 10.3934/mbe.2023089
    [2] Yan Wang, Minmin Lu, Daqing Jiang . Viral dynamics of a latent HIV infection model with Beddington-DeAngelis incidence function, B-cell immune response and multiple delays. Mathematical Biosciences and Engineering, 2021, 18(1): 274-299. doi: 10.3934/mbe.2021014
    [3] Jiawei Deng, Ping Jiang, Hongying Shu . Viral infection dynamics with mitosis, intracellular delays and immune response. Mathematical Biosciences and Engineering, 2023, 20(2): 2937-2963. doi: 10.3934/mbe.2023139
    [4] Hongying Shu, Wanxiao Xu, Zenghui Hao . Global dynamics of an immunosuppressive infection model with stage structure. Mathematical Biosciences and Engineering, 2020, 17(3): 2082-2102. doi: 10.3934/mbe.2020111
    [5] Huan Kong, Guohong Zhang, Kaifa Wang . Stability and Hopf bifurcation in a virus model with self-proliferation and delayed activation of immune cells. Mathematical Biosciences and Engineering, 2020, 17(5): 4384-4405. doi: 10.3934/mbe.2020242
    [6] Haitao Song, Weihua Jiang, Shengqiang Liu . Virus dynamics model with intracellular delays and immune response. Mathematical Biosciences and Engineering, 2015, 12(1): 185-208. doi: 10.3934/mbe.2015.12.185
    [7] Yuting Ding, Gaoyang Liu, Yong An . Stability and bifurcation analysis of a tumor-immune system with two delays and diffusion. Mathematical Biosciences and Engineering, 2022, 19(2): 1154-1173. doi: 10.3934/mbe.2022053
    [8] LanJiang Luo, Haihong Liu, Fang Yan . Dynamic behavior of P53-Mdm2-Wip1 gene regulatory network under the influence of time delay and noise. Mathematical Biosciences and Engineering, 2023, 20(2): 2321-2347. doi: 10.3934/mbe.2023109
    [9] Juan Wang, Chunyang Qin, Yuming Chen, Xia Wang . Hopf bifurcation in a CTL-inclusive HIV-1 infection model with two time delays. Mathematical Biosciences and Engineering, 2019, 16(4): 2587-2612. doi: 10.3934/mbe.2019130
    [10] Yan Wang, Tingting Zhao, Jun Liu . Viral dynamics of an HIV stochastic model with cell-to-cell infection, CTL immune response and distributed delays. Mathematical Biosciences and Engineering, 2019, 16(6): 7126-7154. doi: 10.3934/mbe.2019358
  • A within-host viral infection model with both virus-to-cell and cell-to-cell transmissions and time delay in immune response is investigated. Mathematical analysis shows that delay may destabilize the infected steady state and lead to Hopf bifurcation. Moreover, the direction of the Hopf bifurcation and the stability of the periodic solutions are investigated by normal form and center manifold theory.Numerical simulations are done to explore the rich dynamics,including stability switches, Hopf bifurcations, and chaotic oscillations.


    [1] SIAM Rev., 41 (1999), 3-44.
    [2] SIAM J. Appl. Math., 63 (2003), 1313-1327.
    [3] Math. Biosci., 200 (2006), 1-27.
    [4] Proc. Natl. Acad. Sci. USA, 93 (1996), 7247-7251.
    [5] Math. Biosci., 235 (2012), 98-109.
    [6] Math. Biosci., 165 (2000), 27-39.
    [7] Math. Biosci., 152 (1998), 143-163.
    [8] Math. Biosci., 163 (2000), 201-215.
    [9] Bull. Math. Biol., 72 (2010), 1492-1505.
    [10] Math. Biosci. Eng., 7 (2010), 675-685.
    [11] J. Math. Biol., 46 (2003), 425-444.
    [12] Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 513-526.
    [13] Comput. Math. Appl., 62 (2011), 3091-3102.
    [14] Math. Biosci., 219 (2009), 104-112.
    [15] Bull. Math. Biol., 73 (2011), 1774-1793.
    [16] Math. Biosci. Eng.,12 (2015), 185-208.
    [17] J. Virol., 81 (2007), 1000-1012.
    [18] J. Virol., 67 (1993), 2182-2190.
    [19] Virology, 186 (1992), 712-724.
    [20] J. Virol., 74 (2000), 10882-10891.
    [21] J. Gen. Virol., 90 (2009), 48-58.
    [22] Nat. Med., 17 (2011), 589-595.
    [23] PloS one., 8 (2013), e64221.
    [24] J. Virol., 72 (1998), 4371-4378.
    [25] Current opinion in virology, 1 (2011), 396-402.
    [26] Virology., 244 (1998), 294-301.
    [27] Nat Immunol., 1 (2000), 23-29.
    [28] Curr Opin HIV AIDS., 4 (2009), 143-149.
    [29] Nat Rev Microbiol, 6 (2008), 815-826.
    [30] Current molecular medicine., 12 (2012), 83-95.
    [31] SIAM J. Appl. Math., 74 (2014), 898-917.
    [32] J. Math. Anal. Appl., 426 (2015), 563-584.
    [33] Science., 272 (1996), 74-79.
    [34] Comput. Math. Appl., 51 (2006), 1593-1610.
    [35] Springer-Verlag, 1993.
    [36] Commun. Pure. Appl. Math., 38 (1985), 733-753.
    [37] J. Math. Anal. Appl., 178 (1993), 344-362.
    [38] vol. 23. Biomathematics. New York: Springer, 1993.
    [39] Chaos Solitions Fractals., 26 (2005), 519-526.
    [40] Springer, Heidelberg, 1977.
    [41] London math society lecture note series, vol. 41. Cambridge University Press, 1981.
  • This article has been cited by:

    1. Shikaa Samuel, Vinod Gill, Diffusion-Chemotaxis Model of Effects of Cortisol on Immune Response to Human Immunodeficiency virus, 2018, 7, 2192-8010, 207, 10.1515/nleng-2017-0018
    2. Jinhu Xu, Yan Geng, Stability preserving NSFD scheme for a delayed viral infection model with cell-to-cell transmission and general nonlinear incidence, 2017, 23, 1023-6198, 893, 10.1080/10236198.2017.1304933
    3. Jinhu Xu, Yan Geng, Suxia Zhang, Global Stability and Hopf Bifurcation in a Delayed Viral Infection Model with Cell-to-Cell Transmission and Humoral Immune Response, 2019, 29, 0218-1274, 1950161, 10.1142/S021812741950161X
    4. Chittaranjan Mondal, Debadatta Adak, Nandadulal Bairagi, Optimal control in a multi-pathways HIV-1 infection model: a comparison between mono-drug and multi-drug therapies, 2019, 0020-7179, 1, 10.1080/00207179.2019.1690694
    5. Shikaa Samuel, Vinod Gill, Time-fractional diffusion model on dynamical effect of dendritic cells on HIV pathogenesis, 2018, 18, 14727978, 193, 10.3233/JCM-180780
    6. Jinhu Xu, Yan Geng, Threshold dynamics of a delayed virus infection model with cellular immunity and general nonlinear incidence, 2019, 42, 01704214, 892, 10.1002/mma.5392
    7. Yu Yang, Tonghua Zhang, Yancong Xu, Jinling Zhou, A Delayed Virus Infection Model with Cell-to-Cell Transmission and CTL Immune Response, 2017, 27, 0218-1274, 1750150, 10.1142/S0218127417501504
    8. Jinhu Xu, Yan Geng, Jiangyong Hou, Global dynamics of a diffusive and delayed viral infection model with cellular infection and nonlinear infection rate, 2017, 73, 08981221, 640, 10.1016/j.camwa.2016.12.032
    9. Jinhu Xu, Jiangyong Hou, Yan Geng, Suxia Zhang, Dynamic consistent NSFD scheme for a viral infection model with cellular infection and general nonlinear incidence, 2018, 2018, 1687-1847, 10.1186/s13662-018-1560-8
    10. M.L. Mann Manyombe, J. Mbang, G. Chendjou, Stability and Hopf bifurcation of a CTL-inclusive HIV-1 infection model with both viral and cellular infections, and three delays, 2021, 144, 09600779, 110695, 10.1016/j.chaos.2021.110695
    11. Yancong Xu, Yu Yang, Fanwei Meng, Pei Yu, Modeling and analysis of recurrent autoimmune disease, 2020, 54, 14681218, 103109, 10.1016/j.nonrwa.2020.103109
    12. Jinhu Xu, Yan Geng, Dynamic Consistent NSFD Scheme for a Delayed Viral Infection Model with Immune Response and Nonlinear Incidence, 2017, 2017, 1026-0226, 1, 10.1155/2017/3141736
    13. Yan Geng, Jinhu Xu, Stability and bifurcation analysis for a delayed viral infection model with full logistic proliferation, 2020, 13, 1793-5245, 2050033, 10.1142/S1793524520500333
    14. Dali Zan, Ying Zhang, Hao Yang, Kaiqun Wang, Di Huang, Weiyi Chen, 2019, The effect of intercellular adhesion on immune response of tumor cells at different early stages of tumor growth based on the modeling study, 978-1-7281-2493-3, 1658, 10.1109/AIM.2019.8868697
    15. Suxia Zhang, Hongsen Dong, Jinhu Xu, Bifurcation Analysis of a Delayed Infection Model with General Incidence Function, 2019, 2019, 1748-670X, 1, 10.1155/2019/1989651
    16. Jinhu Xu, Yan Geng, Jiangyong Hou, A non-standard finite difference scheme for a delayed and diffusive viral infection model with general nonlinear incidence rate, 2017, 74, 08981221, 1782, 10.1016/j.camwa.2017.06.041
    17. Yan Geng, Jinhu Xu, Global stability of a delayed and diffusive virus model with nonlinear infection function, 2021, 15, 1751-3758, 287, 10.1080/17513758.2021.1922770
    18. Suxia Zhang, Fei Li, Xiaxia Xu, Dynamics and control strategy for a delayed viral infection model, 2022, 16, 1751-3758, 44, 10.1080/17513758.2022.2028024
    19. Zhijun Liu, Lianwen Wang, Ronghua Tan, Spatiotemporal dynamics for a diffusive HIV-1 infection model with distributed delays and CTL immune response, 2022, 27, 1531-3492, 2767, 10.3934/dcdsb.2021159
    20. Fei Li, Suxia Zhang, Xiaxia Xu, Dynamical analysis and optimal control for a delayed viral infection model, 2023, 16, 1793-5245, 10.1142/S1793524522500930
    21. Yan Wang, Jun Liu, Xinhong Zhang, Jane M. Heffernan, An HIV stochastic model with cell-to-cell infection, B-cell immune response and distributed delay, 2023, 86, 0303-6812, 10.1007/s00285-022-01863-8
    22. Regan Murugesan, Suresh Rasappan, 2022, 2516, 0094-243X, 130007, 10.1063/5.0108789
    23. Yu Yang, Gang Huang, Yueping Dong, Stability and Hopf bifurcation of an HIV infection model with two time delays, 2022, 20, 1551-0018, 1938, 10.3934/mbe.2023089
    24. Jiawei Deng, Ping Jiang, Hongying Shu, Viral infection dynamics with mitosis, intracellular delays and immune response, 2022, 20, 1551-0018, 2937, 10.3934/mbe.2023139
    25. Yuqiong Lan, Yanqiu Li, Dongmei Zheng, Global dynamics of an age-dependent multiscale hepatitis C virus model, 2022, 85, 0303-6812, 10.1007/s00285-022-01773-9
    26. Xiao-Lan Liu, Cheng-Cheng Zhu, A Non-Standard Finite Difference Scheme for a Diffusive HIV-1 Infection Model with Immune Response and Intracellular Delay, 2022, 11, 2075-1680, 129, 10.3390/axioms11030129
    27. Jinhu Xu, Guokun Huang, Global Stability and Bifurcation Analysis of a Virus Infection Model with Nonlinear Incidence and Multiple Delays, 2023, 7, 2504-3110, 583, 10.3390/fractalfract7080583
    28. Yan Wang, Minmin Lu, Daqing Jiang, Dynamic Behavior of a General Stochastic HIV Model with Virus-to-Cell Infection, Cell-to-Cell Transmission, Immune Response and Distributed Delays, 2023, 33, 0938-8974, 10.1007/s00332-023-09955-5
    29. Jinhu Xu, Global dynamics of a periodic viral infection model incorporating diffusion and antiretroviral therapy, 2024, 17, 1793-5245, 10.1142/S1793524523500596
    30. Chittaranjan Mondal, Parthasakha Das, Nandadulal Bairagi, Transmission dynamics and optimal control strategies in a multi-pathways delayed HIV infection model with multi-drug therapy, 2024, 139, 2190-5444, 10.1140/epjp/s13360-024-04911-y
    31. Pradeesh Murugan, Prakash Mani, Threshold dynamics of time-delay in HIV infection model with immune impairment, 2024, 0, 1937-1632, 0, 10.3934/dcdss.2024066
    32. Shilpa Samaddar, Kalyan Manna, Malay Banerjee, 2024, Chapter 3, 978-981-97-7849-2, 29, 10.1007/978-981-97-7850-8_3
    33. Zhigang Liu, Tiejun Zhou, Analysis of global stability and bifurcation for an HIV infection model with cell to cell transmission, 2024, 2024, 2731-4235, 10.1186/s13662-024-03861-0
    34. Hana M. Dobrovolny, How do viruses get around? A review of mathematical modeling of in-host viral transmission, 2025, 604, 00426822, 110444, 10.1016/j.virol.2025.110444
    35. Jinhu Xu, Xueru Liu, Suxia Zhang, Aili Wang, Mengli Hao, Modeling and Analysis for a Delayed Cytokine-Enhanced Viral Infection Model, 2025, 35, 0218-1274, 10.1142/S021812742550066X
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3559) PDF downloads(623) Cited by(35)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog