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Abstract. A within-host viral infection model with both virus-to-cell and

cell-to-cell transmissions and time delay in immune response is investigated.
Mathematical analysis shows that delay may destabilize the infected steady

state and lead to Hopf bifurcation. Moreover, the direction of the Hopf bifur-

cation and the stability of the periodic solutions are investigated by normal
form and center manifold theory. Numerical simulations are done to explore

the rich dynamics, including stability switches, Hopf bifurcations, and chaotic

oscillations.

1. Introduction. Human Immunodeficiency Virus (HIV) and Acquired Immune
Deficiency Syndrome (AIDS) have spread in successive waves in various regions and
kept being a serious threat to public health. HIV targets cells with CD4 receptors,
including the CD4+ T-cells, and damages the body’s immune system, leading to
humoral and cellular immune function loss (the marker of the onset of AIDS),
making the body susceptible to opportunistic infections. The earlier models of
virus infection describe the interaction between virus and target cells by assuming
that the infected cells produce virions instantaneously [1, 2].

The early models of virus infections, given by ordinary differential equations
(ODEs), ignore the time delays of the viral infection, production of subsequent
virus particles, and activation of immune response. Ciupe et al. [3] have shown
that allowing for time delays in the model better predicts viral load data when
compared to models without delays. The introduction of delays make the models
more realistic. A discrete delay was first introduced into HIV infection model by
Herz et al. [4]. Various models of viral dynamics with discrete or distributed delays
have generally been studied [5–16].

We noticed that most within-host virus models concentrate on the virus-to-cell
transmission. In fact, the infection via cell-to-cell contact is found to be much
more rapid and efficient than virus-to-cell transmission because it avoids several
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biophysical and kinetic barriers [17]. It has been reported that cell-to-cell spread
of virus is favored over infections with cell-free virus inocula [18, 19]. The data of
Gummuluru et al. [20] support the hypothesis that cell-to-cell spread of HIV-1 is the
predominant route of viral spread since viral replication in a system with rapid cell
turnover kinetics depends on cell-to-cell transfer of virus. Cell-to-cell transmission
has also been reported for many other infections, such as HCV [21–23], Epstein Barr
Virus (EBV) [24], Herpes simplex virus type-1 (HSV-1) [25], and HTLV-1 [26]. The
mechanisms cell-to-cell transmission mode were, however, not well understood until
the recent description of the “virological synapses” (VSs) [27]. Cell-to-cell spread
greatly influences pathogenesis, not only facilitates rapid viral dissemination but
may also promote immune invasion and, thereby, influence the disease [28–30]. As
far as cell-to-cell infection is concerned, much less has been done in mathematical
modeling. Culshaw et al. [11] studied a delayed two-dimensional model of cell-to-
cell spread of HIV-1 in tissue cultures with logistic growth term for target cells,
assuming that infection is spread directly from infected cells to healthy cells and
neglecting the effects of free virus. Thereafter, Lai and Zou [31] studied a virus
model with both virus-to-cell infection and cell-to-cell infection. These authors
also considered a model which including both cell-to-cell infection and full logistic
growth term for target cells [32],

dT
dt = rT (t)

(
1− T (t)+αI(t)

Tmax

)
− β1T (t)V (t)− β2T (t)I(t),

dI
dt = β1T (t)V (t) + β2T (t)I(t)− d1I(t),
dV
dt = γI(t)− d2V (t).

(1)

Here T (t), I(t) and V (t) represent the concentrations of susceptible CD4+ T cells
(target cells), productively infected T cells and free virus particles at time t, respec-
tively. Target cells are infected by free viral particles and infectious cells (produc-
tively infected cells) at rates β1T (t)V (t) and β2T (t)I(t), respectively. r, Tmax, γ, d1
and d2 represent the growth rate of a target cell, carrying capacity of target cells, the
rate of free viral particles released by infected cells, the losing rate of productively
infected cells and free viruses, respectively. α (α ≥ 1) is the limitation coefficient
of infected cells imposed on the growth of target cells. The stability, persistence as
well as Hopf bifurcation of model (1) have been investigated.

The immune response has not been considered in model (1) though antibodies,
cytokines, natural killer cells, and T cells are essential components of a normal
immune response to a virus. In most virus infections, cytotoxic T lymphocytes
(CTLs) play a critical role in antiviral defense by attacking virus-infected cells.
Indeed, in HIV infection, CTLs are the main host factors which determine viral load.
The dynamics of HIV infection with CTL response has received much attention in
the past decades [3,5,12,13,16,33,34]. For example, Ciupe et al. [3] considered the
following delayed HIV model

dT
dt = rT (t)

(
1− T (t)+I(t)

Tmax

)
− kT (t)V (t),

dI
dt = kT (t)V (t)− d1I(t)− d3E(t)I(t),
dV
dt = Nd1I(t)− d2V (t),
dE
dt = pI(t− τ)− d4E(t).

(2)

Here E(t) is the concentration of effector cells. The constant r is the growth rate
of target cells and the growth is limited by a carrying capacity Tmax. Target cells
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are infected by free viral particles at rates kT (t)V (t). d1, d3, N , d2, p and d4
represent the death rate of productive infected cells, the killing rate of infected cells
by effector cells, the number of virions produced by an infected cell during its life
span (burst size), the viral clearance rate and productive rate of the effector cells
and the death rate of effector cells, respectively. The term I(t − τ) accounts for
the time needed to activate the CD8+ T cell response, where τ is a constant. The
authors mainly focused on estimating the kinetic parameters of model (2) while the
dynamics behavior of model (2) has not been studied. The cell-to-cell transmission
has not been taken into consideration in model (2).

Motivated by [3, 32], we consider the following model
dT
dt = s− dT (t) + rT (t)

(
1− T (t)+αI(t)

Tmax

)
− β1T (t)V (t)− β2T (t)I(t),

dI
dt = β1T (t)V (t) + β2T (t)I(t)− d1I(t)− d3E(t)I(t),
dV
dt = Nd1I(t)− d2V (t),
dE
dt = pI(t− τ)− d4E(t),

(3)

with initial conditions

T (θ) = ϕ1(θ), I(θ) = ϕ2(θ), V (θ) = ϕ3(θ), E(θ) = ϕ4(θ), θ ∈ [−τ, 0], (4)

where ϕ = (ϕ1, ϕ2, ϕ3, ϕ4) ∈ C([−τ, 0],R4
+) with ϕi(θ) > 0 (θ ∈ [−τ, 0], i=1,2,3,4)

and ϕ2(0), ϕ3(0), ϕ4(0) > 0. The constant s is the source of CD4+ T-cells from
precursors, d is the natural death rate (d < r in general). The other parameters in
model (3) have the same meaning with model (1) and (2).

The paper is organized as follows. In Section 2, we present some preliminaries.
In Section 3, the dynamics behavior of infection-free steady state of model (3) is
studied. Both the local stability of the infection steady state for model (3) and
the conditions for the existence of Hopf bifurcation are presented. Furthermore,
the properties of the Hopf bifurcation solutions have been investigated by applying
normal form and center manifold theory. In Section 4, numerical simulations are
carried out to show the rich and complex dynamics of model (3), such as Hopf
bifurcation, stability switches phenomena and chaotic oscillations. Finally, a brief
summary and discussions complete the paper.

2. Preliminaries. We denote by X = C([−τ, 0],R4
+) the Banach space of contin-

uous functions mapping the interval [−τ, 0] into R4
+ equipped with the sup-norm.

By the standard theory of functional differential equations [35] we know that for
any ϕ ∈ C([−τ, 0],R4

+) there exists a unique solution

Y(t, ϕ) = (T (t, ϕ), I(t, ϕ), V (t, ϕ), E(t, ϕ))

of model (3) with initial condition (4).

Theorem 2.1. Let Y(t, ϕ) = {T (t), I(t), V (t), E(t)} be the solution of model (3)
with initial condition (4). Then T (t), I(t), V (t), E(t) are positive for all t ≥ 0,
and they are ultimately bounded. Moreover, there exists an η0 > 0 such that
lim inf
t→∞

T (t) ≥ η0.

Proof. At first, we prove that T (t) is positive for t ≥ 0. Otherwise, there exists a
positive t0, such that T (t) > 0 for t ∈ [0, t0) and T (t0) = 0. By the first equation
of model (3), we have T ′(t0) = s > 0. T ′(t0) = s > 0 implies that T (t) < 0 for
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t ∈ (t0 − ε, t0) and sufficiently small ε > 0. This contradicts T (t) > 0 for t ∈ [0, t0).
It follows that T (t) > 0 for t > 0. From the equation of (3) we have

I(t) =I(0)e−
∫ t
0
(d1+d3E(θ)−β2T (θ))dθ +

∫ t

0

β1T (θ)V (θ)e−
∫ t
θ
(d1+d3E(u)−β2T (u))dudθ,

V (t) =V (0)e−d2t +

∫ t

0

Nd1I(θ)e−d2(t−θ)dθ,

E(t) =E(0)e−d4t +

∫ t

0

pI(θ − τ)e−d4(t−θ)dθ.

From those expressions and (4) we know that the solution of model (3) is positive
for all t ≥ 0.

Next, we show that the solution of model (3) is ultimately bounded. From the
first equation of (3), we obtain

dT

dt
≤ s− dT + rT

(
1− T

Tmax

)
.

From this inequality and the comparison principle we know that lim sup
t→∞

T (t) ≤ T0,

where T0 = Tmax
2r

[
r − d+

√
(r − d)2 + 4rs

Tmax

]
. Then T (t) is ultimately bounded.

Let G = T (t) + I(t), then we have

G′ ≤s− dT + rT

(
1− T

Tmax

)
− d1I

≤s+ rT

(
1− T

Tmax

)
− δ(T + I)

≤K − δG,

where K = s+
rTmax

4
and δ = min{d, d1} . Thus, we have lim sup

t→∞
G ≤ K

δ and I(t)

is ultimately bounded. It follows from the third and fourth equations of (3),

V ′ ≤Nd1K
δ
− d2V, and E′ ≤ pK

δ
− d4E.

Therefore, we have lim sup
t→∞

V ≤ Nd1K
d2δ

and lim sup
t→∞

E ≤ pK
d4δ

. That is V (t) and E(t)

are ultimately bounded. Furthermore, from the first equation of model (3) we have,
for large t

T ′ ≥ s− T

(
d− r +

r(T0 + αĨ)

Tmax
+ β1Ṽ + β2Ĩ

)
,

where Ĩ and Ṽ are the upper bounds of I(t) and V (t) respectively. This shows that
T (t) is uniformly bounded away from zero.

Model (3) has two steady states: the infection-free steady state P0 = (T0, 0, 0, 0),
and the infected steady state P∗ = (T∗, I∗, V∗, E∗), where

T0 =
Tmax

2r

[
r − d+

√
(r − d)2 +

4rs

Tmax

]
,

T∗ =
B +

√
B2 + 4As

2A
, I∗ =

d4
d3p

[(
β1
Nd1
d2

+ β2

)
T∗ − d1

]
,
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V∗ =
Nd1
d2

I∗, E∗ =
pI∗
d4

,

A =
r

Tmax

αd4
d3p

(
β1Nd1
d2

+ β2

)
+

d4
d3p

(
β1Nd1
d2

+ β2

)2

,

B =
r

Tmax

(
Tmax +

αd1d4
d3p

)
+
d1d4
d3p

(
β1Nd1
d2

+ β2

)
− d.

If we denote R0 =
(β1Nd1 + β2d2)T0

d1d2
, it is easy to validate that R0 is the basic

reproduction number of system (3). Biologically, R0 represents the average number
of secondary infections. In fact, the basic reproduction number R0 includes two
parts, we can rewrite R0 as R0 = β1 ·T0 · 1

d1
·Nd1 · 1

d2
+β2 · 1

d1
·T0. The first term is

the average number of secondary infection caused by a virus, corresponding to virus-
to-cell infection mode; the second term is the average number of secondary infection
caused by an infected cell, corresponding to cell-to-cell infection. We can see that
the basic reproduction number R0 which we have defined is larger than that given
in existing models with only one infection mode. The basic reproduction number
of the model neglecting either the virus-to-cell infection or cell-to-cell infection may
underevaluate the spread risk.

If R0 < 1, then there is only the infection-free steady state. From the expression

I∗, we know that the infected steady state exists if and only if
(
β1

Nd1
d2

+ β2

)
T∗ > d1,

which leads to
(
β1

Nd1
d2

+ β2

)
T0 > d1, i.e. R0 > 1. Vice versa, R0 ≤ 1 implies that(

β1
Nd1
d2

+ β2

)
T∗ < d1, thus there exists no infection steady state, i.e., only the

infection-free steady state exists.

3. Dynamics analysis of model.

3.1. Stability of infection-free steady states P0. We linearize the model at
steady states of model (3) to study the local stability. The characteristic equation
is∣∣∣∣∣∣∣∣∣

λ+ d+ β1V + β2I + rT
Tmax

− r
(

1− T+αI
Tmax

)
αrT
Tmax

+ β2T β1T 0

−(β1V + β2I) λ+ d1 + d3E − β2T −β1T d3I
0 −Nd1 λ+ d2 0

0 −pe−λτ 0 λ+ d4

∣∣∣∣∣∣∣∣∣ = 0.

We have the following result for the infection-free steady state.

Theorem 3.1. The infection-free steady state P0 of model (3) is locally asymptot-
ically stable when R0 < 1 and unstable when R0 > 1.

Proof. At the infection-free steady state P0, the characteristic equation becomes(
λ+

s

T0
+

rT0
Tmax

)
(λ+ d4)[λ2 + (d2 + d1 − β2T0)λ+ d1d2(1−R0)] = 0. (5)

There are two negative real roots: λ1 = −
(
s
T0

+ rT0

Tmax

)
, λ2 = −d4. The other roots

satisfy
λ2 + (d2 + d1 − β2T0)λ+ d1d2(1−R0) = 0. (6)

The inequality R0 < 1 implies that d2 +d1−β2T0 > 0, and all the roots of (6) have
negative real part. Then the infection-free steady state P0 is locally asymptotically
stable. If R0 > 1, then (6) has at least one root with positive real part. Thus, the
infection-free steady state P0 is unstable.
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Theorem 3.2. The infection-free steady state P0 of model (3) is globally asymp-
totically stable when R0 < 1.

Proof. For a continuous and bounded function f(t), we define

f∞ , lim sup
t→∞

f(t) and f∞ , lim inf
t→∞

f(t).

The solutions T = T (t), I = I(t), V = V (t) and E = E(t) of (3) satisfy

0 ≤ T∞ ≤ T∞ <∞, 0 ≤ I∞ ≤ I∞ <∞, (7)

0 ≤ V∞ ≤ V∞ <∞, 0 ≤ E∞ ≤ E∞ <∞. (8)

We claim that T (t) ≤ T0 for t ≥ 0 if T (0) < T0. If there exists a t0 > 0, such that
T (t) < T0 for t ∈ [0, t0), and T (t0) = T0, then T ′(t0) > 0. The first equation of
model (3) implies that

T ′(t0) =s− dT (t0) + rT (t0)

(
1− T (t0) + αI(t0)

Tmax

)
− β1T (t0)V (t0)− β2T (t0)I(t0)

=− αrT0I(t0)

Tmax
− β1T0V (t0)− β2T0I(t0) < 0,

which contradicts T ′(t0) > 0.
From the fluctuation lemma [36], the second and third equations of model (3),

we know that there is a sequence tn with tn →∞ such that

d1I
∞ ≤ β1V∞T0 + β2I

∞T0, d2V
∞ ≤ Nd1I∞. (9)

Those two inequalities lead to

d1I
∞ ≤

(
β1
Nd1
d2

+ β2

)
T0I
∞. (10)

I∞ is nonnegative since it is the supremum of the function I(t). If I∞ > 0, then
the inequality in (10) yields

d1 ≤
(
β1
Nd1
d2

+ β2

)
T0,

which is contradiction with R0 < 1. The possible case is I∞ = 0, which implies
lim
t→∞

I(t) = 0. From the inequality (9) and I∞ = 0, we have V∞ = 0, which implies

that lim
t→∞

V (t) = 0. Similar argument to the fourth equation of system (3), we

obtain lim
t→∞

E(t) = 0. By applying the limiting theory [37] to the first equation of

system (3), we can obtain that lim
t→∞

T (t) = T0. This completes the proof.

3.2. Stability of infected steady state P∗ and Hopf bifurcation. In this
section, we investigate the stability of the infected steady state and the existence
of Hopf bifurcations. The infected steady state P∗(T∗, I∗, V∗, E∗) satisfies

s− dT∗ + rT∗

(
1− T∗ + αI∗

Tmax

)
− β1T∗V∗ − β2T∗I∗ = 0,

β1T∗V∗ + β2T∗I∗ = d1I∗ + d3E∗I∗, V∗ =
Nd1
d2

I∗, E∗ =
pI∗
d4

.

The characteristic equation at the infected steady state P∗ is

F (λ, τ) = λ4 + a3λ
3 + a2λ

2 + a1λ+ a0 + (b2λ
2 + b1λ+ b0)e−λτ = 0, (11)
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where ai > 0 (i = 0, 1, 2, 3), bi > 0 (i = 0, 1, 2), and

a3 =
r ∗ T∗
Tmax

+
s

T∗
+ d2 + d4 + β1

Nd1
d2

T∗,

a2 =

(
r ∗ T∗
Tmax

+
s

T∗

)(
d2 + d4 + β1

Nd1
d2

T∗

)
+ d4

(
d2 + β1

Nd1
d2

T∗

)
+

(
β2T∗ +

αrT∗
Tmax

)(
β1
Nd1
d2

+ β2

)
I∗,

a1 =d4

(
d2 + β1

Nd1
d2

T∗

)(
rT∗
Tmax

+
s

T∗

)
+

(
β1
Nd1
d2

+ β2

)
I∗

[
β1Nd1T∗

+ d4 ∗
(
β2T∗ +

αrT∗
Tmax

)
+ d2

(
β2T∗ +

αrT∗
Tmax

)]
,

a0 =d4

(
β1
Nd1
d2

+ β2

)
I∗

[
β1Nd1T∗ + d2

(
β2T∗ +

αrT∗
Tmax

)]
,

b2 =d3pI∗, b1 = d3pI∗

(
d2 +

rT∗
Tmax

+
s

T∗

)
, b0 = d2d3pI∗

(
rT∗
Tmax

+
s

T∗

)
.

When τ = 0, the corresponding characteristic equation becomes

F (λ, 0) = λ4 + a3λ
3 + (a2 + b2)λ2 + (a1 + b1)λ+ a0 + b0 = 0. (12)

By Routh-Hurwitz criterion we know that all solutions of (12) have negative real
parts if and only if

H1 =a3(a2 + b2)− (a1 + b1) > 0,

H2 =a3(a2 + b2)(a1 + b1)− a23(a0 + b0)− (a1 + b1)2 > 0. (13)

The stability is given in the following theorem.

Theorem 3.3. If R0 > 1 and τ = 0, then the infected steady state P∗ of model (3)
is locally asymptotically stable provided that (13) holds.

The root of (11) depends on τ continuously [38]. All roots of (11) locate in the
left side of the imaginary axis if τ = 0 since the endemic equilibrium P∗ is stable.
A root of (11) may pass through the imaginary axis and enter the right side when
τ increases. λ = iω is the critical case since a root may enter the right side or
the left side under small perturbation when it locates on the imaginary axis. After
substituting λ = iω into (11) and separating the real and imaginary parts, we have{

−ω4 + a2ω
2 − a0 = (b0 − b2ω2) cosωτ + b1ω sinωτ,

−a3ω3 + a1ω = (b0 − b2ω2) sinωτ − b1ω cosωτ.
(14)

The equations of (14) lead to

G(z) = z4 +D1z
3 +D2z

2 +D3z +D4 = 0, z = ω2, (15)

where D1 = a23 − 2a2, D2 = a22 + 2a0 − 2a1a3 − b22, D3 = a21 − 2a2a0 + 2b2b0 − b21,
and D4 = a20 − b20. F (λ, τ) = 0 has a purely imaginary root iω is equivalent to that
G(z) = 0 has a positive real root z.

From the definition of G(z), we have G′(z) = 4z3 + 3D1z
2 + 2D2z + D3. If we

introduce y = z+ 3D1

4 , then we know that G′(z) = 0 is equivalent to y3+m1y+m2 =
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0, where m1 = D2

2 −
3
16D

2
1, m2 =

D3
1

32 −
D1D2

8 +D3. Define

∆ =
(m2

2

)2
+
(m1

3

)3
, σ =

−1 +
√

3i

2
,

y1 = 3

√
−m2

2
+
√

∆ + 3

√
−m2

2
−
√

∆,

y2 = 3

√
−m2

2
+
√

∆σ + 3

√
−m2

2
−
√

∆σ2,

y3 = 3

√
−m2

2
+
√

∆σ2 + 3

√
−m2

2
−
√

∆σ,

zi =yi −
3D1

4
, i = 1, 2, 3.

From [39], we have

Lemma 3.4. For the polynomial equation G(z) = 0

(i) If D4 < 0, then G(z) = 0 has at least one positive root;
(ii) If D4 ≥ 0 and ∆ ≥ 0, then G(z) = 0 has positive roots if and only if z1 > 0

and G(z1) < 0;
(iii) If D4 > 0, and ∆ < 0, then G(z) = 0 has positive roots if and only if there

exists at least one z∗ ∈ {z1, z2, z3} such that z∗ > 0 and G(z∗) ≤ 0.

Without loss of generality, we assume that G(z) = 0 has four positive roots,
denote by z∗i (i = 1, 2, 3, 4). Let ωi =

√
z∗i (i = 1, 2, 3, 4), and we have

cos(ωiτ) =G1 =
(ω4 − a2ω2 + a0)(b2ω

2 − b0) + b1ω(a3ω
3 − a1ω)

b21ω
2 + (b0 − b2ω2)2

,

sin(ωiτ) =G2 =
b1ω(−ω4 + a2ω

2 − a0) + (b0 − b2ω2)(−a3ω3 + a1ω)

b21ω
2 + (b0 − b2ω2)2

.

Define

τ
(k)
j =

{ 1
ωk

[arccos(G1) + 2πj], G2 ≥ 0,
1
ωk

[2π − arccos(G1) + 2πj], G2 < 0,

where k = 1, 2, 3, 4, j = 0, 1, 2, · · · .
Let

τ0 = τ
(k0)
j0

= min
1≤k≤4,j≥0

{τ (k)j }, ω0 = ωk0 , z0 = z∗k0 . (16)

Lemma 3.5. Suppose that the condition (13) holds.

(i) All roots of (11) have negative real parts for τ ∈ [0, τ0) if any one of the
following conditions holds:

(a) D4 < 0;
(b) D4 ≥ 0, ∆ < 0, z1 > 0 and G(z1) < 0;
(c) D4 ≥ 0, ∆ < 0, there exists a z∗ ∈ {z1, z2, z3} such that z∗ > 0 and

G(z∗) ≤ 0.
(ii) All roots of (11) have negative real parts for τ ≥ 0 if the conditions in (i) are

not satisfied.

If λ(τ) = α(τ) + iβ(τ) is the pure imaginary root of characteristic equation (11),

then α
(
τ
(k)
j

)
= 0 and β

(
τ
(k)
j

)
= ωk (k=1,2,3,4).
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Lemma 3.6. If G′(zk) 6= 0, then
d
(
Reλ(τ(k)

j )
)

dτ 6= 0, and the sign of
d
(
Reλ(τ(k)

j )
)

dτ is
the same as that of G′(zk).

Proof. Differentiating (11) with respect to τ , we get

(4λ3 + 3a3λ
2 + 2a2λ+ a1)

dλ

dτ
+ e−λτ (2b2λ+ b1)

dλ

dτ

− e−λτ (b2λ
2 + b1λ+ b0)

(
τ
dλ

dτ
+ λ

)
= 0,

and (
dλ

dτ

)−1
=

4λ3 + 3a3λ
2 + 2a2λ+ a1

λe−λτ (b2λ2 + b1λ+ b0)
+

2b2λ+ b1
λ(b2λ2 + b1λ+ b0)

− τ

λ

=
4λ3 + 3a3λ

2 + 2a2λ+ a1
−λ(λ4 + a3λ3 + a2λ2 + a1λ+ a0)

+
2b2λ+ b1

λ(b2λ2 + b1λ+ b0)
− τ

λ
.

The fact sign

{
d(Reλ)
dτ

∣∣∣
τ=τ

(k)
j

}
= sign

{
Re
(
dλ
dτ

)−1}
λ=iωk

leads to

sign

{
d(Reλ)

dτ

} ∣∣∣
τ=τ

(k)
j

=sign

{
Re

[
4λ3 + 3a3λ

2 + 2a2λ+ a1
−λ(λ4 + a3λ3 + a2λ2 + a1λ+ a0)

] ∣∣∣
λ=iωk

+ Re

[
2b2λ+ b1

λ(b2λ2 + b1λ+ b0)

] ∣∣∣
λ=iωk

}

=sign

{
(4ω3

k − 2a2ωk)(ω4
k − a2ω2

k + a0) + (a1 − 3a3ω
2
k)(a1ωk − a3ω3

k)

ωk[(ω4
k − a2ω2

k + a0)2 + (a1ωk − a3ω3
k)2]

+
2b2ωk(b2ω

2
k − b0) + b21ωk

w[(b2ω2
k − b0)2 + b21ω

2
k]

}

=sign

{
4ω6

k + 3D1ω
4
k + 2D2ω

2
k +D3

(b2ω2
k − b0)2 + b21ω

2
k

}

=sign

{
G′(ω2

k)

(b2ω2
k − b0)2 + b21ω

2
k

}

=sign

{
G′(zk)

(b2ω2
k − b0)2 + b21ω

2
k

}
.

The obvious fact (b2ω
2
k − b0)2 + b21ω

2
k > 0 yields

sign

d
(

Reλ(τ
(k)
j )

)
dτ

 = sign{G′(zk)}. (17)

This completes the proof of the Lemma.

According to the Hopf bifurcation theorem for functional differential equations
[40, Theorem 1.1 in Chapter 11] and together with Lemmas 3.4, 3.5 and 3.6 we have
following result.
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Theorem 3.7. Let τ0, z0 be defined by (16). Suppose that (13) holds.

(i) If the conditions of (a)–(c) of Lemma 3.5 are not satisfied, then infected steady
state P∗ is asymptotically stable for all τ ≥ 0.

(ii) If one of the conditions (a)–(c) of Lemma 3.5 is satisfied, then the infected
steady state P∗ is asymptotically stable for τ ∈ [0, τ0).

(iii) If one of the conditions (a)–(c) of Lemma 3.5 holds, and G′(zk) 6= 0, then
model (3) undergoes a Hopf bifurcation at the infected steady state P∗ when

τ = τ
(k)
j .

3.3. Direction and stability of Hopf bifurcations. In this subsection, we study
the direction and stability of the Hopf bifurcation by using the normal theory and
the center manifold theorem [41]. We always assume that model (3) undergoes Hopf

bifurcation at the steady state P∗ = (T∗, I∗, V∗, E∗) for τ = τ̃ = τ
(k)
j . Let iω be the

purely imaginary roots of the characteristic equation at the infected steady state
P∗ = (T∗, I∗, V∗, E∗) for τ = τ̃ . The conditions for direction and stability of Hopf
bifurcation are summarized in the following theorem.

Theorem 3.8. (i) The direction of Hopf bifurcation is determined by the sign of
µ2: if µ2 > 0, then it is a supercritical bifurcation; if µ2 < 0, then it is a subcritical
bifurcation. (ii) The stability of the bifurcated periodic solution is determined by
β2: the periodic solution is stable if β2 < 0, and it is unstable if β2 > 0. (iii) The
period of bifurcated periodic solutions is determined by T2: the period increases if
T2 > 0, and it decreases if T2 < 0. Where

c1(0) =
i

2ωτ̃

(
g20g11 − 2|g11|2 −

|g02|2

3

)
+
g21
2
,

µ2 = −Re{c1(0)}
Re{λ′(τ̃)}

,

β2 = 2Re(c1(0)),

T2 = −Im(c1(0)) + µ2Im(λ′(τ̃))

ωτ̃
.

The detailed calculation of µ2, β2 and T2 is given in Appendix A.

Table 1. List of parameters.

Parameters Range of parameters Source Data1 Data2

s 0–10 cells mm−3 day−1 [2, 6, 8, 14] 10 10

d 0.007–0.1 day−1 [8, 14] 0.1 0.01

β1 0.00025–0.5 virons mm3 day−1 [2, 6, 14] 0.00025 0.00025
β2 – Assumed 0.00065 0.00065

r 0.03–3 day−1 [2, 6, 14] 0.03 0.1

Tmax 1500 mm−3 [6, 14] 1500 1500
α ≥ 1 [32] 1.2 1.2

d1 0.2–0.5 day−1 [6, 14] 0.5 0.4

d2 2.4–3 day−1 [6, 14] 3 2.4

d3 0.812 day−1 [3] 0.812 0.812

d4 1.618 day−1 [3] 0.618 1.618
N 10–2500 virons/cell [2, 14] 50 500

p 0.05 day−1 [5] 0.05 0.05

4. Numerical simulation. Numerical simulations are done to illustrate the dy-
namical behaviors of model (3) for different τ . The other parameter values in the
simulation are listed in Table 1.
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For the parameter values Data 1 given in Table.1. It is easy to see that R0 =
0.7514 < 1, from Theorem 3.2 shows that the infection-free steady state P0 is
globally asymptotically stable for any τ ≥ 0 (see Fig. 1)

Under the condition (13) the infected steady state P∗ is locally asymptotically
stable independent of the size of the delay, though the time delay does cause tran-
sient oscillations in all components. For the parameter values given in the last
column of Table 1, we can compute that R0 = 78.05 > 1 and the infected steady
state is P∗ = (37.71854, 16.3522, 1362.6799, 0.5053). The positive real roots of (15)
are z1 = 0.3563, z2 = 0.1039, and the pure imaginary roots of (11) are λ1 = iω1

and λ2 = iω2 with ω1 = 0.5969 > ω2 = 0.3223. Furthermore, we have G′(z1) > 0
and G′(z2) < 0. From the transversal condition (17) and [15], we can have following
results.

(a) At τ
(1)
j , j = 0, 1, 2, · · · , a pair of characteristic roots of (11) crosses the imagi-

nary axis from left to the right.

(b) At τ
(2)
j , j = 0, 1, 2, · · · , a pair of characteristic roots of (11) crosses the imagi-

nary axis from right to the left.

(c) τ
(1)
j − τ (1)j−1 = 2π

ω1
< 2π

ω2
= τ

(2)
j − τ (2)j−1.

From (c) we know that there exists an integer k such that τ
(1)
j and τ

(2)
j satisfy

τ
(1)
0 < τ

(2)
0 < τ

(1)
1 < τ

(2)
1 < · · · < τ

(1)
k < τ

(1)
k+1 < τ

(2)
k .

The results of (a)–(c) imply the stability switch as τ increases: a pair of characteris-

tic roots will cross the imaginary axis to the right at τ
(1)
0 and get back to the left at

τ
(2)
0 . The stability switch continues until for a τ = τ

(1)
k when a pair of characteristic

roots crosses the imaginary axis from left to the right and remains in the right. The
two sequences given by numerical simulations are

{τ (1)j }
∞
j=0 ={2.5901, 13.1167, 23.6433, 34.1700, · · · },

{τ (2)j }
∞
j=0 ={10.2828, 29.7767, 49.2706, · · · }.

Furthermore, there exists a k = 1 such that τ
(1)
0 < τ

(2)
0 < τ

(1)
1 < τ

(1)
2 < τ

(2)
1 . The

infected steady state P∗ is stable for τ < 2.5901, unstable for τ ∈ (2.5901, 10.2828),
stable for τ ∈ (10.2828, 13.1167), and unstable for τ > 13.1167, which is presented
in Fig. 2 and the corresponding stability and bifurcation is shown in Fig. 3
(left). The horizontal axis is the delay τ , and the vertical axis is the virus V .
For τ < 2.5901 and τ ∈ (10.2828, 13.1167), there is a line in Fig. 3 (left), which
is given V = V∗ = 1362.6799, the infected steady state P∗ is locally asymptoti-

cally stable. For τ ∈ (2.5901, 10.2828), when τ cross τ
(1)
0 , we can compute c1(0) =

−0.2072941082433112 − 1.037904500371602 × 102i, µ2 = 3.959023703656483 > 0,
β̄2 = −0.414588216486622 < 0 and T2 = 67.303256908139844 > 0. Hence, The-
orem 3.8 implies that there exists a stable periodic solution of model (3). The
two curves in Fig. 3 are the maximal and minimal values of V (t) in a period.

Similarly, when τ cross τ
(1)
1 , we can compute c1(0) = −0.470254201495353 −

94.354228525286175i, µ2 = 47.973638016773599 > 0, β̄2 = −0.940508402990705 <
0 and T2 = 12.261483017883963 > 0, thus, there also exists stable periodic solu-
tions of model (3) for τ > 13.1167. Fig. 4 shows that when τ = 31, chaotic motions
occurs. Furthermore, from Fig. 5, when τ becomes large, say τ = 49, the infected
steady state P∗ is unstable, and the system trajectory exhibits a transient seemingly
chaotic solution for a longer time (see the small figures in Fig. 5) then involves into
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a final nonchaotic state such as a quasi-periodic solution. Thus, immune response
delay has an effect on the control of the disease.

From Fig. 6, which shows that though the components I and V of the infection
steady state are only slightly changed, the time needed for the system converge to
the steady state is much shorter as β2 increases, i.e. the system will spend a shorter
time to reach the steady state for high value of β2. Moreover, the figures in Fig.
7 together with the Fig. 3 (left one) shows that the stable intervals is enlarged as
β2 increases, though the amplitude of the periodic solutions is smaller. And when
β2 = 0.01, the Fig. 7 (right) shows that multiple stability switches can occurs.
Hence, neglecting cell-to-cell transmission (β2) may lose some dynamics behavior.
As for parameter s, which is the source of new health target cells from precursors.
Fig. 8, shows that the components I and V of the infection steady state increases
as s increases. This is because high value of s increases the pool of susceptible
target cells. Moreover, comparing with Fig. 9 and Fig. 3 (left) we can see that the
amplitude of the periodic solutions increases as s increases, but the stable interval
decreases. Furthermore, numerical simulation shows that there is a period-doubling
solution (see Fig. 10). From Fig. 11, we can see that the component I and V of
the infection steady state decreases as d increases. Comparing with Fig. 3 (left)
and Fig. 12, we can see that the amplitude of the periodic solutions decreases as
d increases, whereas the length of the stable interval increases. Hence, both the
recruitment rate s and the death rate d of the target cells do have some impact on
the dynamics of the model.

In general, the existence of logistic term may lead to rich dynamics for a model,
especially for a model without delay, logistic term may cause Hopf bifurcation. In
order to show the impact of the delay on the dynamics of the model without the
effect of logistic term. Then, we give the bifurcation diagram when the system is
in absence of logistic term, i.e., r = 0 in Fig. 3 (right), which implies that stability
switch and Hopf bifurcation still exist when there is no logistic growth term for
the system. Thus, we can see that stability switch, Hopf bifurcation and chaotic
oscillation exist in both cases. We can claim that when take immune responses
into consideration, time delay may be the main factor for periodic oscillations.
Furthermore, the two figures in Fig. 3 show that the stable intervals for the system
in absence of logistic growth term is much larger than the system with logistic
growth term and the oscillation interval will be enlarged as r increases, though the
existence of logistic growth term may not change the main dynamics behavior of
the system.

Simulations are also done to show the impact of logistic growth term r on the
dynamics of the model (see Fig. 13 and Fig. 14). The simulation shows that the
infected steady state P∗ may be stable or unstable, and the model may has periodic
solutions, or chaotic motions, depending on r. From Fig. 13, we see that only
Hopf bifurcation occurs and no chaotic motions when τ , say τ = 2, stay in a stable
interval; while both hopf bifurcation and chaotic motions exist when τ , say τ = 5,
stay in an unstable interval, and the corresponding bifurcation diagrams are given
in Fig. 14, respectively. Moreover, Fig. 14 (left) shows that at the left end of the
r range, though there exists an interval for which the infected steady state P∗ is
asymptotically stable, the viral load increases, then Hopf bifurcation occurs and
the amplitude of the bifurcating periodic solutions increase and then decrease as r
increase. Thus, the simulation shows that the logistic growth term also plays an
important role on the dynamics of the model. Our results suggest that both immune
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delay and logistic growth term are responsible for rich dynamics of the model.
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Figure 1. P0 is globally asymptotically stable for τ = 1 (left) and τ = 10 (right).
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Figure 2. Solutions of model (3) for different τ .

5. Summary and discussion. In this paper, we extend the previous work to a
more realistic delayed model including cell-to-cell transmission. The basic reproduc-
tion number R0 include two parts: cell-to-cell infection and virus-to-cell infection.
It is easy to see that the basic reproduction number will be underestimated for
models neglecting the cell-to-cell infection or virus-to-cell infection. Mathematical
analysis gives the conditions for the existence of the equilibria and shows the influ-
ence of the time delay on the stability of equilibrium states. It is proved that the
local stability of the uninfected steady state is independent of the size of the de-
lay. Furthermore, the global stability of the uninfected steady state P0 is obtained
if R0 is less than one by applying the fluctuation lemma. Our results show that
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Figure 3. The stability and bifurcation for r = 0.1 (left) and r = 0 (right).
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Figure 4. Solutions of model (3) for τ = 31.
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Figure 5. Solutions of model (3) for τ = 49.
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Figure 6. Solutions of model (3) for different values of β2 with τ = 2.
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Figure 7. The stability and bifurcation with β2 = 0 (left) and β2 = 0.01 (right).
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Figure 10. There exists a period-doubling solution with s = 5, τ = 36.
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Figure 11. The effects of d on the system with τ = 2.
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Figure 12. The stability and bifurcation with d = 0.1.

increasing the delay can destabilize the infected steady state by leading to a Hopf
bifurcation and periodic solutions. The bifurcation direction and the stability of
the periodic solutions are investigated by using normal form and center manifold.
The theoretical analysis shows the importance of time delay on HIV dynamics.

Numerical simulations show that both cell-to-cell transmission and time delay
τ have an impact on the dynamics of the model, and rich dynamics can occur for
large τ in the realistic parameter space. Compared to the earlier studies [3, 32],
our analysis shows that the introduction of the immune delay not only destabilize
the stability of the infected steady state, leading to a Hopf bifurcation and periodic
solutions, but also stability switch occurs as time delay τ increases, which has not
been observed in [3,16,32]. Chaotic oscillations were observed for large τ . We also
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Figure 13. Solutions of model (3) for r = 0.1, 1.5, 2.1, 3, with τ = 2 (top
plots) and τ = 5 (bottom plots).
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Figure 14. The stability and bifurcation of (3) with τ = 2 (left) and τ = 5 (right).

find that the viral load may be destabilized into oscillations with the increase of
the logistic growth rate r for T-cells. Moreover, numerical simulations also show
that the oscillation interval will be enlarged as r increases. The system can occurs
multiple stability switches for high value of cell-to-cell transmission β2, and the
stable intervals is larger though the amplitude is smaller. Furthermore, numerical
simulations show that larger β2 makes the system converge to the steady state more
easily. Hence, our results suggest that the logistic growth rate for T-cells r and the
immune response delay τ and the cell-to-cell transmission are responsible for the
complex dynamics.

Although the delay of immune response and cell-to-cell transmission considered in
this paper is a good way to improve the viral dynamic model, the intracellular delays
should also be taken into consideration for more realistic models. The dynamical
analysis of the epidemic models with multiple delays will be more complex and
bigger challenge in the future.



360 JINHU XU AND YICANG ZHOU

Appendix A. Proof of Theorem 3.8. We use the variable transformations

x1(t) = T (τt)− T∗, x2(t) = I(τt)− I∗, x3(t) = V (τt)− V∗,
x4(t) = E(τt)− E∗, τ = τ̃ + µ

to make model (3) become an functional differential equation in C = C([−1, 0],R4).

dx

dt
= Lµ(xt) + f(µ, xt), (18)

where x(t) = (x1(t), x2(t), x3(t), x4(t))T ∈ R4 , Lµ : C → R4, and f : R× C → R4,

Lµ(φ) = (τ̃ + µ)B1φ(0) + (τ̃ + µ)B2φ(−1), (19)

f(µ, φ)

=(τ̃ + µ)


− r
Tmax

φ21(0)−
(

αr
Tmax

+ β2

)
φ1(0)φ2(0)− β1φ1(0)φ3(0)

β1φ1(0)φ3(0) + β2φ1(0)φ2(0)− d3φ2(0)φ4(0)
0
0

 ,
(20)

with φ(θ) = (φ1(θ), φ2(θ), φ3(θ), φ4(θ))T ∈ C and

B1 =


−
(
rT∗
Tmax

+ s
T∗

)
−
(
αrT∗
Tmax

+ β2T∗

)
−β1T∗ 0

β1V∗ + β2I∗ −β1Nd1d2
T∗ β1T∗ −d3I∗

0 Nd1 −d2 0
0 0 0 −d4

 ,

B2 =


0 0 0 0
0 0 0 0
0 0 0 0
0 p 0 0

 .

By Reisz representation theorem, there exists a matrix components, bounded vari-

ation function η(θ, µ) in θ ∈ [−1, 0], such that Lµφ =
∫ 0

−1 dη(θ, µ)φ(θ) for φ ∈ C.
In fact, we can choose

η(θ, µ) = (τ̃ + µ)B1δ(θ)− (τ̃ + µ)B2δ(θ + 1), (21)

where, δ denote the Dirac delta function. For φ ∈ C1([−1, 0],R4), define

A(µ)φ =

{
dφ(θ)
dθ , θ ∈ [−1, 0),∫ 0

−1 dη(µ, s)φ(s), θ = 0,

and

R(µ)φ =

{
0, θ ∈ [−1, 0),
f(µ, φ), θ = 0.

Model (18) is equivalent to

ẋt = A(µ)xt +R(µ)xt, xt = x(t+ θ), θ ∈ [−1, 0]. (22)

For ψ ∈ C1([0, 1], (R4)∗), define

A∗ψ(s) =

{
−dψ(s)ds , s ∈ (0, 1],∫ 0

−1 dη
T (s, 0)ψ(−s), s = 0,
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and a bilinear inner product

〈ψ, φ〉 = ψ̄(0)φ(0)−
∫ 0

−1

∫ θ

ξ=0

ψ̄(ξ − θ)dη(θ)φ(ξ)dξ, (23)

where η(θ) = η(θ, 0). Then A(0) and A∗ are adjoint operators with eigenvalues
±iωτ̃ . We compute the eigenvector of A(0) and A∗ corresponding to iωτ̃ and −iωτ̃ ,
respectively. If q(θ) = (1, q1, q2, q3)T eiθωτ̃ is the eigenvector of A(0) corresponding
to iωτ̃ , then A(0)q(θ) = iωτ̃q(θ), and

τ̃


iω + rT∗

Tmax
+ s

T∗

αrT∗
Tmax

+ β2T∗ β1T∗ 0

−(β1V∗ + β2I∗) iω + β1
Nd1
d2
T∗ −β1T∗ d3I∗

0 −δ iω + d2 0
0 −pe−iωτ̃ 0 iω + d4




1
q1
q2
q3

 =


0
0
0
0

 .

We can obtain

q1 =−
(iω + d2)

(
iω + rT∗

Tmax
+ s

T∗

)
(iω + d2)

(
β2T∗ + αrT∗

Tmax

)
+ β1Nd1T∗

,

q2 =
Nd1q1
iω + d2

, q3 =
pe−iωτ̃

iω + d4
.

On the other hand, if q∗(s) = D(1, q∗1 , q
∗
2 , q
∗
3)eisωτ̃ is the eigenvector of A∗ corre-

sponding to −iωτ̃ , then we have

τ̃


−iω + rT∗

Tmax
+ s
T∗

−(β1V∗ + β2I∗) 0 0
αrT∗
Tmax

+ β2T∗ −iω + β1
Nd1
d2

T∗ −δ −peiωτ̃

β1T∗ −β1T∗ −iω + d2 0
0 d3I∗ 0 −iω + d4




1
q∗1
q∗2
q∗3

 =


0
0

0

0

 ,

and

q∗1 =
−iω + rT∗

Tmax
+ s

T∗

β1V∗ + β2I∗
, q∗2 =

β1T∗(q
∗
1 − 1)

−iω + d2
, q∗3 =

d3I∗q
∗
1

iω − d4
.

We can choose D =
1

1 + q1q
∗
1 + q2q

∗
2 + q3q

∗
3 + τ̃ pq1q

∗
3e
iωτ̃

to have 〈q∗(s), q(θ)〉 = 1.

By (23), we have

〈q∗(s), q(θ)〉 =D(1, q∗1, q
∗
2, q

∗
3)(1, q1, q2, q3)T

−
∫ 0

−1

∫ θ

ξ=0
D(1, q∗1, q

∗
2, q

∗
3)e−i(ξ−θ)ωτ̃dη(θ)(1, q1, q2, q3)T eiξωτ̃dξ

=D

{
1 + q1q

∗
1 + q2q

∗
2 + q3q

∗
3 −

∫ 0

−1
(1, q∗1 , q

∗
2 , q

∗
3)θeiθωτ̃dη(θ)(1, q1, q2, q3)T

}
=D

{
1 + q1q

∗
1 + q2q

∗
2 + q3q

∗
3 + τ̃pq1q

∗
3e

−iωτ̃
}
.

Next, we use the same notations as in [41], and compute the center manifold C0 at
µ = 0. Let xt be the solution of (22) for µ = 0. Define

z(t) = 〈q∗, xt〉, W (t, θ) = xt(θ)− 2Re{z(t)q(θ)}. (24)

On the center manifold C0 we have

W (t, θ) = W (z, z̄, θ) = W20
z2

2
+W11(θ)zz̄ +W02(θ)

z̄2

2
+ · · · , (25)
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where z and z̄ are local coordinates for center manifold C0 in the direction q∗ and
q∗. Note that W is real if xt is real. We only consider real solutions. For the
solution xt ∈ C0 of (22) with µ = 0, we have

ż(t) =iωτ̃z + 〈q∗(θ), f(0,W (z, z, θ) + 2Re{zq(θ)})〉
=iωτ̃z + q∗(0)f(0,W (z, z, 0) + 2Re{zq(0)})

,iωτ̃z + q∗(0)f0(z, z).

We define

g(z, z) = q∗(0)f0(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z2

2
+ g21

z2z̄

2
+ · · · (26)

and study the equation

ż(t) = iωτ̃z + g(z, z).

It follows from (24) and (25) that

xt(θ) = (x1t(θ), x2t(θ), x3t(θ), x4t(θ))
T

= W (t, θ) + 2Re{zq(θ)}
= (1, q1, q2, q3)T eiωτ̃θz + (1, q1, q2, q3)T e−iωτ̃θz

+W20
z2

2
+W11(θ)zz +W02(θ)

z2

2
+ · · · , (27)

and

x1t(0) =z + z +W
(1)
20 (0)

z2

2
+W

(1)
11 (0)zz +W

(1)
02 (0)

z2

2
+ O(|(z, z)|3),

x2t(0) =q1z + q1z +W
(2)
20 (0)

z2

2
+W

(2)
11 (0)zz +W

(2)
02 (0)

z2

2
+ O(|(z, z)|3),

x3t(0) =q2z + q2z +W
(3)
20 (0)

z2

2
+W

(3)
11 (0)zz +W

(3)
02 (0)

z2

2
+ O(|(z, z)|3),

x4t(0) =q3z + q3z +W
(4)
20 (0)

z2

2
+W

(4)
11 (0)zz +W

(4)
02 (0)

z2

2
+ O(|(z, z)|3).

It follows from (20) that

g(z, z) =q∗(0)f0(z, z)

=q∗(0)f0(0, xt)

=τ̃ q∗(0)


− rx

2
1t(0)

Tmax
−
(

αr
Tmax

+ β2
)
x1t(0)x2t(0)− β1x1t(0)x3t(0)

β2x1t(0)x2t(0) + β1x1t(0)x3t(0)− d3x2t(0)x4t(0)
0

0


=τ̃D

{
−

r

Tmax
x21t(0) +

(
q∗1β2 −

αr

Tmax
− β2

)
x1t(0)x2t(0)

+ (q∗1 − 1)β1x1t(0)x3t(0)− q∗1d3x2t(0)x4t(0)

}

=τ̃D

{
−

r

Tmax

[
z + z +W

(1)
20 (0)

z2

2
+W

(1)
11 (0)zz +W

(1)
02 (0)

z2

2
+ O(|(z, z)|3)

]2
+

(
q∗1β2 −

αr

Tmax
− β2

)[
z + z +W

(1)
20 (0)

z2

2
+W

(1)
11 (0)zz

+W
(1)
02 (0)

z2

2
+ O(|(z, z)|3)

]
×
[
q1z + q1z +W

(2)
20 (0)

z2

2
+W

(2)
11 (0)zz
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+W
(2)
02 (0)

z2

2
+ O(|(z, z)|3)

]
+ (q∗1 − 1)β1

[
z + z +W

(1)
20 (0)

z2

2

+W
(1)
11 (0)zz +W

(1)
02 (0)

z2

2
+ O(|(z, z)|3)

]
×
[
q2z + q2z +W

(3)
20 (0)

z2

2

+W
(3)
11 (0)zz +W

(3)
02 (0)

z2

2
+ O(|(z, z)|3)

]
− q∗1d3

[
q1z + q1z

+W
(2)
20 (0)

z2

2
+W

(2)
11 (0)zz +W

(2)
02 (0)

z2

2
+ O(|(z, z)|3)

]
×
[
q3z + q3z +W

(4)
20 (0)

z2

2
+W

(4)
11 (0)zz +W

(4)
02 (0)

z2

2
+ O(|(z, z)|3)

]}
.

The coefficients in (26) are

g20 =2τ̃D

[
−

r

Tmax
+ q1

(
q∗1β2 −

αr

Tmax
− β2

)
+ q2(q∗1 − 1)β1 − q∗1d3q1q3

]
,

g11 =2τ̃D

[
−

r

Tmax
+ Re{q1}

(
q∗1β2 −

αr

Tmax
− β2

)
+ Re{q2}(q∗1 − 1)β1

− q∗1d3Re{q1q3}
]
,

g02 =2τ̃D

[
−

r

Tmax
+ q1

(
q∗1β2 −

αr

Tmax
− β2

)
+ q2(q∗1 − 1)β1 − q∗1d3q1q3

]
,

g21 =τ̃D

{
−

r

Tmax

(
2W

(1)
20 (0) + 4W

(1)
11 (0)

)
+

(
q∗1β2 −

αr

Tmax
− β2

)
×
(

2W
(2)
11 (0) + q1W

(1)
20 (0) +W

(2)
20 (0) + 2q1W

(1)
11 (0)

)
+ β1(q∗1 − 1)

(
2W

(3)
11 (0) +W

(3)
20 (0) + q2W

(1)
20 (0) + 2q2W

(1)
11 (0)

)
− q∗1d3

(
2q1W

(4)
11 (0) + q1W

(4)
20 (0) + 2q3W

(2)
11 (0) + q3W

(2)
20 (0)

)}
. (28)

From (22) and (24) we have

Ẇ =ẋt − żq − ˙̄zq̄ =

{
AW − 2Re{q∗(0)f0q(θ)}, θ ∈ [−1, 0),
AW − 2Re{q∗(0)f0q(θ)}+ f0, θ = 0,

,AW +H(z, z̄, θ), (29)

where

H(z, z, θ) = H20(θ)
z2

2
+H11(θ)zz +H02(θ)

z2

2
+ · · · . (30)

Substituting the expression into (29) and comparing the coefficients, we have

(A− 2iωτ̃)W20(θ) = −H20(θ), AW11(θ) = −H11(θ). (31)

From (29) we know that for θ ∈ [−1, 0),

H(z, z, θ) = −q∗(0)f0q(θ)− q∗(0)f0q(θ) = −g(z, z)q(θ)− g(z, z)q(θ). (32)

From (30) and (32) we have

H20(θ) = −g20q(θ)− g02q(θ), H11(θ) = −g11q(θ)− g11q(θ). (33)

From (31), (33) and the definition of A, we get

Ẇ20(θ) = 2iωτ̃W20(θ)−H20(θ) = 2iωτ̃W20(θ) + g20q(θ) + g02q(θ).

For q(θ) = (1, q1, q2, q3)T eiωτ̃θ, we have

W20(θ) =
ig20
ωτ̃

q(0)eiωτ̃θ +
ig02
3ωτ̃

q(0)e−iωτ̃θ + E1e
2iωτ̃θ, (34)
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where E1 = (E
(1)
1 , E

(2)
1 , E

(3)
1 , E

(4)
1 )T ∈ R4 is a constant vector. Similarly, we obtain

W11(θ) = − ig11
ωτ̃

q(0)eiωτ̃θ +
ig11
ωτ̃

q̄(0)e−iωτ̃ + E2, (35)

where E2 = (E
(1)
2 , E

(2)
2 , E

(3)
2 , E

(4)
2 )T ∈ R4 is a constant vector. In what follows, we

shall determine the values of E1 and E2. From the definition of A and (31), we have∫ 0

−1
dη(θ)W20(θ) = 2iωτ̃W20(θ)−H20(θ),

∫ 0

−1
dη(θ)W11(θ) = −H11(θ), (36)

where η(θ) = η(0, θ). By (29), we have

H20(0) = −g20q(0)− g02q(0) + 2τ̃


−
(

r
Tmax

+ q1

(
αr
Tmax

+ β2

)
+ β1q2

)
q2β1 + q1β2 − d3q1q3

0
0

 , (37)

and

H11(0) = −g11q(0)− g11q(0) + 2τ̃


−
(

r
Tmax

+ Re{q1}
(

αr
Tmax

+ β2
)

+ β1Re{q2}
)

β1Re{q2}+ β2Re{q1} − d3Re{q1q3}
0

0

 . (38)

Substituting the expressions W20 and H20 into (36), and using following equations(
iωτ̃I−

∫ 0

−1
eiθωτ̃dη(θ)

)
q(0) = 0,

(
−iωτ̃I−

∫ 0

−1
e−iωτ̃dη(θ)

)
q(0) = 0,

we have

(
2iωτ̃I−

∫ 0

−1
e2iθωτ̃dη(θ)

)
E1 = 2τ̃


−
(

r
Tmax

+ q1
(

αr
Tmax

+ β2
)

+ β1q2
)

q2β1 + q1β2 − d3q1q3
0
0

 , (39)

which leads to
2iω + rT∗

Tmax
+ s

T∗

αrT∗
Tmax

+ β2T∗ β1T∗ 0

−(β1V∗ + β2I∗) 2iω + β1
Nd1
d2
T∗ −β1T∗ d3I∗

0 −δ 2iω + d2 0
0 −pe−2iωτ̃ 0 2iω + d4

E1

= 2


M1

q2β1 + q1β2 − d3q1q3
0
0

 .

It follows that

E
(1)
1 =

2

∆1

∣∣∣∣∣∣∣∣∣
M1

αrT∗
Tmax

+ β2T∗ β1T∗ 0

q2β1 + q1β2 − d3q1q3 2iω + β1
Nd1
d2

T∗ −β1T∗ d3I∗

0 −δ 2iω + d2 0
0 −pe−2iωτ̃ 0 2iω + d4

∣∣∣∣∣∣∣∣∣ ,

E
(2)
1 =

2

∆1

∣∣∣∣∣∣∣∣
2iω + rT∗

Tmax
+ s
T∗

M1 β1T∗ 0

−(β1V∗ + β2I∗) q2β1 + q1β2 − d3q1q3 −β1T∗ d3I∗
0 0 2iω + d2 0
0 0 0 2iω + d4

∣∣∣∣∣∣∣∣ ,
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E
(3)
1 =

2

∆1

∣∣∣∣∣∣∣∣∣
2iω + rT∗

Tmax
+ s
T∗

αrT∗
Tmax

+ β2T∗ M1 0

−(β1V∗ + β2I∗) 2iω + β1
Nd1
d2

T∗ q2β1 + q1β2 − d3q1q3 d3I∗

0 −δ 0 0

0 −pe−2iωτ̃ 0 2iω + d4

∣∣∣∣∣∣∣∣∣ ,

E
(4)
1 =

2

∆1

∣∣∣∣∣∣∣∣∣
2iω + rT∗

Tmax
+ s
T∗

αrT∗
Tmax

+ β2T∗ β1T∗ M1

−(β1V∗ + β2I∗) 2iω + β1
Nd1
d2

T∗ −β1T∗ q2β1 + q1β2 − d3q1q3
0 −δ 2iω + d2 0

0 −pe−2iωτ̃ 0 0

∣∣∣∣∣∣∣∣∣ ,
where

M1 = −
( r

Tmax
+ q1

(
αr

Tmax
+ β2

)
+ β1q2

)
,

and

∆1 =

∣∣∣∣∣∣∣∣
2iω + rT∗

Tmax
+ s

T∗

αrT∗
Tmax

+ β2T∗ β1T∗ 0

−(β1V∗ + β2I∗) 2iω + β1
Nd1
d2
T∗ −β1T∗ d3I∗

0 −δ 2iω + d2 0
0 −pe−2iωτ̃ 0 2iω + d4

∣∣∣∣∣∣∣∣ .
Similarly, we have

rT∗
Tmax

+ s
T∗

αrT∗
Tmax

+ β2T∗ β1T∗ 0

−(β1V∗ + β2I∗) β1
Nd1
d2
T∗ −β1T∗ d3I∗

0 −δ d2 0
0 −p 0 d4

E2

=2


M2

β1Re{q2}+ β2Re{q1} − d3Re{q1q3}
0
0

 ,

which leads to

E
(1)
2 =

2

∆2

∣∣∣∣∣∣∣∣∣
M2

αrT∗
Tmax

+ β2T∗ β1T∗ 0

β1Re{q2}+ β2Re{q1} − d3Re{q1q3} β1
Nd1
d2

T∗ −β1T∗ d3I∗

0 −δ d2 0
0 −p 0 d4

∣∣∣∣∣∣∣∣∣ ,

E
(2)
2 =

2

∆2

∣∣∣∣∣∣∣∣
rT∗
Tmax

+ s
T∗

M2 β1T∗ 0

−(β1V∗ + β2I∗) β1Re{q2}+ β2Re{q1} − d3Re{q1q3} −β1T∗ d3I∗
0 0 d2 0

0 0 0 d4

∣∣∣∣∣∣∣∣ ,

E
(3)
2 =

2

∆2

∣∣∣∣∣∣∣∣∣
rT∗
Tmax

+ s
T∗

αrT∗
Tmax

+ β2T∗ M2 0

−(β1V∗ + β2I∗) β1
Nd1
d2

T∗ β1Re{q2}+ β2Re{q1} − d3Re{q1q3} d3I∗

0 −δ 0 0

0 −p 0 d4

∣∣∣∣∣∣∣∣∣ ,

E
(4)
2 =

2

∆2

∣∣∣∣∣∣∣∣∣
rT∗
Tmax

+ s
T∗

αrT∗
Tmax

+ β2T∗ β1T∗ M2

−(β1V∗ + β2I∗) β1
Nd1
d2

T∗ −β1T∗ β1Re{q2}+ β2Re{q1} − d3Re{q1q3}
0 −δ d2 0

0 −p 0 0

∣∣∣∣∣∣∣∣∣ ,
where

M2 = −
( r

Tmax
+ Re{q1}

(
αr

Tmax
+ β2

)
+ β1Re{q2}

)
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∆2 =

∣∣∣∣∣∣∣∣
rT∗
Tmax

+ s
T∗

αrT∗
Tmax

+ β2T∗ β1T∗ 0

−(β1V∗ + β2I∗) β1
Nd1
d2
T∗ −β1T∗ d3I∗

0 −δ d2 0
0 −p 0 d4

∣∣∣∣∣∣∣∣ .
We can determine W20(θ) and W11(θ) from (34) and (35). Furthermore, we can

compute g21 by (28) and obtain following values:

c1(0) =
i

2ωτ̃

(
g20g11 − 2|g11|2 −

|g02|2

3

)
+
g21
2
,

µ2 = −Re{c1(0)}
Re{λ′(τ̃)}

,

β2 = 2Re(c1(0)),

T2 = − Im(c1(0)) + µ2Im(λ′(τ̃))

ωτ̃
.
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