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ABSTRACT. A within-host viral infection model with both virus-to-cell and
cell-to-cell transmissions and time delay in immune response is investigated.
Mathematical analysis shows that delay may destabilize the infected steady
state and lead to Hopf bifurcation. Moreover, the direction of the Hopf bifur-
cation and the stability of the periodic solutions are investigated by normal
form and center manifold theory. Numerical simulations are done to explore
the rich dynamics, including stability switches, Hopf bifurcations, and chaotic
oscillations.

1. Introduction. Human Immunodeficiency Virus (HIV) and Acquired Immune
Deficiency Syndrome (AIDS) have spread in successive waves in various regions and
kept being a serious threat to public health. HIV targets cells with CD4 receptors,
including the CD4" T-cells, and damages the body’s immune system, leading to
humoral and cellular immune function loss (the marker of the onset of AIDS),
making the body susceptible to opportunistic infections. The earlier models of
virus infection describe the interaction between virus and target cells by assuming
that the infected cells produce virions instantaneously [1,2].

The early models of virus infections, given by ordinary differential equations
(ODESs), ignore the time delays of the viral infection, production of subsequent
virus particles, and activation of immune response. Ciupe et al. [3] have shown
that allowing for time delays in the model better predicts viral load data when
compared to models without delays. The introduction of delays make the models
more realistic. A discrete delay was first introduced into HIV infection model by
Herz et al. [4]. Various models of viral dynamics with discrete or distributed delays
have generally been studied [5-16].

We noticed that most within-host virus models concentrate on the virus-to-cell
transmission. In fact, the infection via cell-to-cell contact is found to be much
more rapid and efficient than virus-to-cell transmission because it avoids several
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biophysical and kinetic barriers [17]. It has been reported that cell-to-cell spread
of virus is favored over infections with cell-free virus inocula [18,19]. The data of
Gummuluru et al. [20] support the hypothesis that cell-to-cell spread of HIV-1 is the
predominant route of viral spread since viral replication in a system with rapid cell
turnover kinetics depends on cell-to-cell transfer of virus. Cell-to-cell transmission
has also been reported for many other infections, such as HCV [21-23], Epstein Barr
Virus (EBV) [24], Herpes simplex virus type-1 (HSV-1) [25], and HTLV-1 [26]. The
mechanisms cell-to-cell transmission mode were, however, not well understood until
the recent description of the “virological synapses” (VSs) [27]. Cell-to-cell spread
greatly influences pathogenesis, not only facilitates rapid viral dissemination but
may also promote immune invasion and, thereby, influence the disease [28-30]. As
far as cell-to-cell infection is concerned, much less has been done in mathematical
modeling. Culshaw et al. [11] studied a delayed two-dimensional model of cell-to-
cell spread of HIV-1 in tissue cultures with logistic growth term for target cells,
assuming that infection is spread directly from infected cells to healthy cells and
neglecting the effects of free virus. Thereafter, Lai and Zou [31] studied a virus
model with both virus-to-cell infection and cell-to-cell infection. These authors
also considered a model which including both cell-to-cell infection and full logistic
growth term for target cells [32],

dt Tras
4 = BTV () + BT (DI(t) — diI (1), (1)
W= I(t) — dV (2).

4 —r() (1 - T - BTV - BT(I(0),

Here T'(t),1(t) and V(t) represent the concentrations of susceptible CD4™ T cells
(target cells), productively infected T cells and free virus particles at time ¢, respec-
tively. Target cells are infected by free viral particles and infectious cells (produc-
tively infected cells) at rates S1T(t)V (t) and 52T (t)1(t), respectively. 7, Tz, 7, d1
and ds represent the growth rate of a target cell, carrying capacity of target cells, the
rate of free viral particles released by infected cells, the losing rate of productively
infected cells and free viruses, respectively. « (« > 1) is the limitation coefficient
of infected cells imposed on the growth of target cells. The stability, persistence as
well as Hopf bifurcation of model (1) have been investigated.

The immune response has not been considered in model (1) though antibodies,
cytokines, natural killer cells, and T cells are essential components of a normal
immune response to a virus. In most virus infections, cytotoxic T lymphocytes
(CTLs) play a critical role in antiviral defense by attacking virus-infected cells.
Indeed, in HIV infection, CTLs are the main host factors which determine viral load.
The dynamics of HIV infection with CTL response has received much attention in
the past decades [3,5,12,13,16,33,34]. For example, Ciupe et al. [3] considered the
following delayed HIV model

ra— (1 - %) — KTV (1),

@t
AL = KTV (t) — diI(t) — dzE()I(t), @)
4 = NdiI(t) — doV (1),
9B — pI(t — 1) — dyE(2).

Here E(t) is the concentration of effector cells. The constant r is the growth rate
of target cells and the growth is limited by a carrying capacity Tyq.. Target cells
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are infected by free viral particles at rates kT'(¢t)V (¢t). di, ds, N, da, p and dy
represent the death rate of productive infected cells, the killing rate of infected cells
by effector cells, the number of virions produced by an infected cell during its life
span (burst size), the viral clearance rate and productive rate of the effector cells
and the death rate of effector cells, respectively. The term I(t — 7) accounts for
the time needed to activate the CD8" T cell response, where 7 is a constant. The
authors mainly focused on estimating the kinetic parameters of model (2) while the
dynamics behavior of model (2) has not been studied. The cell-to-cell transmission
has not been taken into consideration in model (2).
Motivated by [3,32], we consider the following model

4T _ s dT(t) + rT(t) (1 - w> — BTV (1) = BT )I(1),

4L = BIT(V (1) + BT (D1() — dyI(r) — dsE(0)I (1), ®)
V. — Ny I(t) — doV (1),
4B — pI(t — 1) — dsE(t),

with initial conditions
T(0) = 1(0), 1(0) = w2(0), V(0) = p3(0), E(0) = ¢a(0), 0 € [-7,0], (4)

where ¢ = (1,92, 93, 04) € C([—7,0],RY) with ¢;(6) > 0 (8 € [-7,0], i=1,2,3,4)
and ¢2(0), ¢3(0),4(0) > 0. The constant s is the source of CD4* T-cells from
precursors, d is the natural death rate (d < r in general). The other parameters in
model (3) have the same meaning with model (1) and (2).

The paper is organized as follows. In Section 2, we present some preliminaries.
In Section 3, the dynamics behavior of infection-free steady state of model (3) is
studied. Both the local stability of the infection steady state for model (3) and
the conditions for the existence of Hopf bifurcation are presented. Furthermore,
the properties of the Hopf bifurcation solutions have been investigated by applying
normal form and center manifold theory. In Section 4, numerical simulations are
carried out to show the rich and complex dynamics of model (3), such as Hopf
bifurcation, stability switches phenomena and chaotic oscillations. Finally, a brief
summary and discussions complete the paper.

2. Preliminaries. We denote by X = C([—,0],R%) the Banach space of contin-
uous functions mapping the interval [—7,0] into R‘_‘._ equipped with the sup-norm.
By the standard theory of functional differential equations [35] we know that for
any ¢ € C([—7,0],R}) there exists a unique solution

Y(t,p) = (T(t,0), Lt ), V(L. 0), E(t, ¢))
of model (3) with initial condition (4).

Theorem 2.1. Let Y(t,¢) = {T(t),I(t), V(t), E(t)} be the solution of model (3)
with initial condition (4). Then T(t),1(t),V(t), E(t) are positive for all t > 0,
and they are ultimately bounded. Moreover, there exists an ng > 0 such that
litrgiorclf T(t) > no.-

Proof. At first, we prove that T'(¢) is positive for ¢ > 0. Otherwise, there exists a
positive tg, such that T'(t) > 0 for ¢t € [0,%9) and T'(tg) = 0. By the first equation
of model (3), we have T'(ty) = s > 0. T'(tg) = s > 0 implies that T(t) < 0 for
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t € (to — €,to) and sufficiently small € > 0. This contradicts T'(¢) > 0 for t € [0, tp).
It follows that T'(t) > 0 for ¢t > 0. From the equation of (3) we have

t
I(t) :](0)6*f&(d1+dsE(9)fﬁzT(9))d9+/ ﬁlT(g)V(Q)B*fst(d1+d3E(u)7B2T(u))dud0’
0
t
V(t) =V (0)e 9t + / NdyI(9)e 4=t~ qp,
0

t
E(t) =E(0)e %t + / pI(0 —7)e =0 g,
0

From those expressions and (4) we know that the solution of model (3) is positive
for all t > 0.

Next, we show that the solution of model (3) is ultimately bounded. From the
first equation of (3), we obtain

§<s—dT+rT<1— r )

max

From this inequality and the comparison principle we know that limsup T'(t) < Tp,
t—o0

where Ty = Tpe [r —d+/(r—d)?+ 72|, Then T(t) is ultimately bounded.
Let G =T(t) + I(t), then we have

T
G’Ss—dT+rT(1—T )—dll

)—MT+D

<s—+rT (1 —
<K — G,

max

Tmal) . .
where K = s + 1 and § = min{d,d;} . Thus, we have limsup G < £ and I(t)
t—o0

is ultimately bounded. It follows from the third and fourth equations of (3),

Ndi K pK
5

V/ S — dg‘/, and E/ S T — d4E

Therefore, we have limsup V' < NciléK and limsup F < ZT];‘ That is V(t) and E(t)
t—o0 t—o0
are ultimately bounded. Furthermore, from the first equation of model (3) we have,

for large t

r(To + al)

T >s—T|d—-
—S ( T+ Tmam

+ BV + Bod ) ,
where I and V are the upper bounds of I(¢) and V(t) respectively. This shows that
T'(t) is uniformly bounded away from zero. O

Model (3) has two steady states: the infection-free steady state Py = (7,0, 0,0),
and the infected steady state P, = (Tk, I, Vi, E.), where
Tmam

4rs
— _ _1\2
To o [r d+4/(r—d)?+ Tma:r:| ,

B++vVB?2+4As d Nd
= I, = 4 {<51d21+52>T*d1},

T

2A - d3p
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Nd1 pI*
‘/* :71*, E* = 3
do dy
v ady (S1Ndy dy (B1Ndy 2
A= - =
Tma:c dBP < d2 * 62) * dSP ( d2 + 62 ’
r Oédld4> d1d4 (BlNdl )
B=—— Tma:c + + + B —d.
Trax ( d3p d3p ds 2
Nd do)Ti
If we denote Ry = (B 1d+dﬁ2 2) O, it is easy to validate that Ry is the basic
1d2

reproduction number of system (3). Biologically, Ry represents the average number
of secondary infections. In fact, the basic reproduction number Ry includes two
parts, we can rewrite Rg as Rg = 1 -To - d—ll -Ndj - d—12 + Ba - d—ll -To. The first term is
the average number of secondary infection caused by a virus, corresponding to virus-
to-cell infection mode; the second term is the average number of secondary infection
caused by an infected cell, corresponding to cell-to-cell infection. We can see that
the basic reproduction number Ry which we have defined is larger than that given
in existing models with only one infection mode. The basic reproduction number
of the model neglecting either the virus-to-cell infection or cell-to-cell infection may
underevaluate the spread risk.

If Ry < 1, then there is only the infection-free steady state. From the expression

I, we know that the infected steady state exists if and only if (51 Nd, 62) T, > dq,

do

which leads to (61% + ,62) To > dq, i.e. Ry > 1. Vice versa, Ry < 1 implies that

(611\;—‘31 + ﬂg) T, < di, thus there exists no infection steady state, i.e., only the
infection-free steady state exists.

3. Dynamics analysis of model.

3.1. Stability of infection-free steady states P;. We linearize the model at
steady states of model (3) to study the local stability. The characteristic equation
is

Nbd+B1V + Bal + 71— (1 Fxel) 2rl 4 BT BiT 0
—(B1V + B21) Atdi+dsE— BT —p1T  dsl | _ g
0 —Nd; A+ ds 0
0 —pe’/\" 0 A+ dy

We have the following result for the infection-free steady state.

Theorem 3.1. The infection-free steady state Py of model (3) is locally asymptot-
ically stable when Ry < 1 and unstable when Ry > 1.

Proof. At the infection-free steady state Py, the characteristic equation becomes

()\ 2 ) (A+dg)[X? + (da + dy — BTo)A + dido(1 — Ro) = 0. (5)

TO Tmaw
There are two negative real roots: \; = — (Tio + TTE’T ), Ay = —d4. The other roots
satisfy
AN+ (dy + dy — BoTo) N + dyda(1 — Ry) = 0. (6)

The inequality Ry < 1 implies that dy +d; — 52Ty > 0, and all the roots of (6) have
negative real part. Then the infection-free steady state P, is locally asymptotically
stable. If Ry > 1, then (6) has at least one root with positive real part. Thus, the
infection-free steady state Py is unstable. O
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Theorem 3.2. The infection-free steady state Py of model (3) is globally asymp-
totically stable when Ry < 1.

Proof. For a continuous and bounded function f(t), we define
f°° £ limsup f(t) and foo £ liminf f(t).
t—00 t—o0

The solutions T'=T(t), I = I(t), V =V (t) and E = E(t) of (3) satisfy
0<To <T® <00, 0< I <I® <0, (7)
0< Ve <V® <00, 0< Ey, < E® < 0. (8)
We claim that T'(t) < Tp for t > 0 if T'(0) < Tp. If there exists a ¢y > 0, such that
T(t) < Tp for t € [0,t0), and T(tg) = Ty, then T"(¢y9) > 0. The first equation of
model (3) implies that
T(to) + OZI(to)

T/(to) =S — dT(to) + TT(to) <]_ — T

) — BT (to)V (t0) — BoT (ko) I (to)
= I) g 1yvao) -~ gamu(t0) <0,

which contradicts T"(tg) > 0.
From the fluctuation lemma [36], the second and third equations of model (3),
we know that there is a sequence t,, with ¢,, — oo such that

di I < BiVTo + Bal™Ty, doV™ < NdyI%°. 9)

Those two inequalities lead to
Nd
1™ < (Bldl + 52> Tol™. (10)
2

I*° is nonnegative since it is the supremum of the function I(t). If I > 0, then
the inequality in (10) yields

Nd
di < (51d1 + 52) To,

2
which is contradiction with Ry < 1. The possible case is I = 0, which implies
tlim I(t) = 0. From the inequality (9) and I>° = 0, we have VV°° = 0, which implies
that tlim V(t) = 0. Similar argument to the fourth equation of system (3), we

— 00
obtain tl_i)m E(t) = 0. By applying the limiting theory [37] to the first equation of
system (3), we can obtain that 75lim T(t) = Tp. This completes the proof. O
—00

3.2. Stability of infected steady state P, and Hopf bifurcation. In this

section, we investigate the stability of the infected steady state and the existence
of Hopf bifurcations. The infected steady state Pi(T%, i, Vi, Ey) satisfies

Ty I,
s — dT, + rT. <1 - T*“) — BTV, — BoT. I, = 0,
Nd I
/BlT*V* + ﬂQT*I* - dll* + d3E*I*’ V* - le*; E* - ZZl .
2 4

The characteristic equation at the infected steady state P, is

FOT) =M 4 a3)® 4+ ao)\® + a1\ + ag + (bo A2 + by 4+ bg)e > =0, (11)
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where a; >0 (i =0,1,2,3), b, >0 (: =0,1,2), and
T‘*T d1

N
+*+d2+d4+51

“er T, ds
Ndy Nd
( )<d2+d4+61 >+d4<d2+51 LT )
Tmax 2 2
arT, Nd
+ (52T + ) <[31 ! +52)
Nd rT, s Nd
ay =dy (dz + /=T ) ( + ) (51 L 52) L, |f1Nd T,
2 Tmax T*

T, T,
+dy * (52T* + ;r ) + da (52T* + ;r )

)

(51 N 52) 1, [51Nd1T* + da (52T* + ;TT*>

max

)

rT, S rT, S
by =dspl., b1 =dspl, |d — |, by=dodspl, | —— + — | .
2 =deble, b1 = dap ( 2 Toan T*> 0= dadsp (T - T*>

When 7 = 0, the corresponding characteristic equation becomes

F(X,0) =X+ a3\ + (ag + ba)A? + (a1 + b))\ +ag + by = 0. (12)

By Routh-Hurwitz criterion we know that all solutions of (12) have negative real
parts if and only if

Hy =as(az +b2) — (a1 + 1) > 0,
H2 :ag(ag + bg)(al + bl) — a%(ao + bo) — (a1 + b1)2 > 0. (13)
The stability is given in the following theorem.

Theorem 3.3. If Ry > 1 and 7 = 0, then the infected steady state P, of model (3)
is locally asymptotically stable provided that (13) holds.

The root of (11) depends on 7 continuously [38]. All roots of (11) locate in the
left side of the imaginary axis if 7 = 0 since the endemic equilibrium P, is stable.
A root of (11) may pass through the imaginary axis and enter the right side when
T increases. A = iw is the critical case since a root may enter the right side or
the left side under small perturbation when it locates on the imaginary axis. After
substituting A = iw into (11) and separating the real and imaginary parts, we have

—wt + aw? —ap = (bo — b2w2) COSWT + biw sin wr, (14)
—azw? + ajw = (by — baw?) sinwT — byw cos wT.
The equations of (14) lead to
G(2) = 2" 4+ D12° + Dyz? + D3z + Dy = 0, 2z = w?, (15)

where D = a3 2a9, Dy = a2 + 2ag9 — 2a1a3 — b2, D3 = a1 — 2asaq + 2bsby — b%,
and Dy = a3 — b3. F(\,7) = 0 has a purely imaginary root iw is equivalent to that
G(z) = 0 has a positive real root z.

From the definition of G(z), we have G’(2) = 423 + 3D12% + 2D3z + D3. If we

introduce y = z+ 34Dl , then we know that G’(z) = 0 is equivalent to y>+miy+msg =
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D2 32 my = %’—%—i—Dgy Define
A= (M) (MY, oo TV
= 2 3 5 - 2 9
n=if-"2 VA -2 - VA,
" y“;umm w?; ~ VAo,

R

0, where m; =

3D
R =Yi — Tla 1= 172a3'

From [39], we have

Lemma 3.4. For the polynomial equation G(z) =0
(i) If Dy <0, then G(z) = 0 has at least one positive root;
(ii) If Dy > 0 and A > 0, then G(z) = 0 has positive roots if and only if z1 > 0

and G(z1) < 0;
(iii) If Dy > 0, and A < 0, then G(z) = 0 has positive Toots if and only if there
exists at least one z. € {z1,22, 23} such that z. > 0 and G(z,) <0.

Without loss of generality, we assume that G(z) = 0 has four positive roots,
denote by 27 (i =1,2,3,4). Let w; = /2] (1 =1,2,3,4), and we have

(w* — asw? + ag)(baw? — by) + brw(azw® — a1w)

Cos(sz) 1 b%w2 + (bo — b2w2)2 )
. biw(—w?* + asw? — ag) + (bg — baw?)(—azw?® + a1w)
) =Gy = .
Sln(sz) 2 b%oﬂ T (b() — b2W2)2
Define
=—[arccos(G1) + 27j], G2 >0,

1
o _ [ o
J wl—k[27r —arccos(G1) +2mj], G2 <0,
where k =1,2,3,4, j = 0,1,2, - -.
Let
k . k .
0= TJ(OO) - 1<kn<1}1nj>0{7-3( "} wo = Who» 20 = Zq- (16)
Lemma 3.5. Suppose that the condition (13) holds.
(i) All roots of (11) have negative real parts for 7 € [0,79) if any one of the
following conditions holds:
(a) Dy < 0;
(b) Dy >0, A <0, z1 >0 and G(z1) < 0;
(¢) Dy >0, A <0, there exists a z. € {21, 22,23} such that z, > 0 and

G(z4) <0.
(i) All roots of (11) have negative real parts for T > 0 if the conditions in (i) are

not satisfied.
If \(7) = a(7) +14B(7) is the pure imaginary root of characteristic equation (11),
then a (T;k)) =0and 8 (TJ@) = wy (k=1,2,34).



BIFURCATION ANALYSIS OF HIV-1 INFECTION MODEL 351

d(ReA(H’“)) ‘
Lemma 3.6. If G'(z) # 0, then =————= # 0, and the sign of

the same as that of G'(z).

d Re)\ 'rfk)
7( l( 2 )) 18
Proof. Differentiating (11) with respect to 7, we get

(4)\3 + 3a3)\2 + 2a9\ + al)@ + 6_>\T(2b2)\ + bl)@
dr dr

dX
— e (b A% + by A + by) (TdT + A) =0,

and
dAA\ 714X 4 3a3A2 4 200X + 2bo\ + by T
<dT> TN AT (A X +bo) | Ab2 A2 DA+ bo) A
AX3 + 3a3A? + 209\ + a; 205\ + by

-
TN+ asN +ash + mAtag) - A(b2A2 4 biA+bo) A

The fact sign { ddjf)‘) (k)} = sign {Re (%)_1})\ ~ leads to
T=T; =twi

o {2020}

. 4)\3 —+ 30,3)\2 —+ QCLQA —+ ay
=sign{ Re ‘
MMt 4+ a3zA3 + a2 + a1\ + ag) | r=iwy

rmr®)

2o\ + by
R |
* Q{A(b2x2+b1/\+bo)} A_M}

—sign (4w} — 2agwk)(w% — aswi + ag) + (a1 — 3azwi)(a1wk — aswy)
wl(wi — agwi + ag)? + (arwi — asw})?]

2b2wk(b2w,2€ —bo) + b%wk
w[(baw? — by)? + biw}]

. 4&)2 + 3D1w,‘i + 2D2w£ + D3
=Ss1g1 -
(bng — b0)2 + b%wi

ion G'(w)
I8N (oaw? — bo)2 + bRw?

=sign G/(zk)
I8N (oaw? — bo)2 + 02 [

The obvious fact (bow? — bg)? + biwi > 0 yields

d (ReA(T]W))
sign¢ —————~ 3 =sign{G’(2x)}. (17)
dr
This completes the proof of the Lemma. O

According to the Hopf bifurcation theorem for functional differential equations
[40, Theorem 1.1 in Chapter 11] and together with Lemmas 3.4, 3.5 and 3.6 we have
following result.
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Theorem 3.7. Let 79, zo be defined by (16). Suppose that (13) holds.

(i) If the conditions of (a)—(c) of Lemma 3.5 are not satisfied, then infected steady
state Py is asymptotically stable for all T > 0.
(i) If one of the conditions (a)-(c) of Lemma 3.5 is satisfied, then the infected
steady state P, is asymptotically stable for T € [0, 7).
(i11) If one of the conditions (a)—(c) of Lemma 3.5 holds, and G'(z) # 0, then
model (3) undergoes a Hopf bifurcation at the infected steady state P, when

T = T](k).

3.3. Direction and stability of Hopf bifurcations. In this subsection, we study
the direction and stability of the Hopf bifurcation by using the normal theory and
the center manifold theorem [41]. We always assume that model (3 ) undergoes Hopf
bifurcation at the steady state Py = (T, I, Vi, Ey) for 7 =7 = 7'] . Let iw be the
purely imaginary roots of the characteristic equation at the 1nfected steady state
P, = (T, I.,V,,E,) for 7 = 7. The conditions for direction and stability of Hopf
bifurcation are summarized in the following theorem.

Theorem 3.8. (i) The direction of Hopf bifurcation is determined by the sign of
wo: if po > 0, then it is a supercritical bifurcation; if us < 0, then it is a subcritical
bifurcation. (ii) The stability of the bifurcated periodic solution is determined by
By: the periodic solution is stable if By < 0, and it is unstable if By > 0. (iii) The
period of bifurcated periodic solutions is determined by Ts: the period increases if
Ty > 0, and it decreases if To < 0. Where

i 2
c1(0) = o (920911 —2|g1|* - gO;|> + %
 Refea(0))
H2 R@{)\/( }7

)
By = 2Re(c1(0))
Im(e1(0)) + p2Im(N' (7))

wT

)

Ty =

The detailed calculation of ys, 3, and T is given in Appendix A.

TABLE 1. List of parameters.

Parameters Range of parameters Source Datal Data2
s 0-10 cells mm~> day ! [2,6,8,14] 10 10
d 0.007-0.1 day~?! [8,14] 0.1 0.01
B1 0.00025-0.5 virons mm® day ! [2,6,14]  0.00025 0.00025
B - Assumed  0.00065  0.00065
r 0.03-3 day ™! [2,6,14] 0.03 0.1
Tonaz 1500 mm ™3 [6,14] 1500 1500
a >1 [32] 1.2 1.2
dy 0.2-0.5 day ™! [6,14] 0.5 0.4
da 2.4-3 day ™! [6,14] 3 2.4
ds 0.812 day ! 3] 0.812 0.812
dy 1.618 day—* 3] 0.618 1.618
N 10-2500 virons/cell [2,14] 50 500
D 0.05 day ! [5] 0.05 0.05

4. Numerical simulation. Numerical simulations are done to illustrate the dy-
namical behaviors of model (3) for different 7. The other parameter values in the
simulation are listed in Table 1.
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For the parameter values Data 1 given in Table.1. It is easy to see that Ry =
0.7514 < 1, from Theorem 3.2 shows that the infection-free steady state Py is
globally asymptotically stable for any 7 > 0 (see Fig. 1)

Under the condition (13) the infected steady state P is locally asymptotically
stable independent of the size of the delay, though the time delay does cause tran-
sient oscillations in all components. For the parameter values given in the last
column of Table 1, we can compute that Ry = 78.05 > 1 and the infected steady
state is P, = (37.71854,16.3522,1362.6799,0.5053). The positive real roots of (15)
are z; = 0.3563, zo = 0.1039, and the pure imaginary roots of (11) are A\ = iw
and Ag = iwy with wy = 0.5969 > ws = 0.3223. Furthermore, we have G'(z1) > 0
and G’(z2) < 0. From the transversal condition (17) and [15], we can have following
results.

(a) At 7‘ , j=0,1,2,--- a pair of characteristic roots of (11) crosses the imagi-
nary axis from left to the right.

(b) At T]@), j=0,1,2,--- a pair of characteristic roots of (11) crosses the imagi-
nary axis from right to the left.

(c) O M _2r o2 2 (2)

=77 =T

J 17 W w2 J Jj=1
From (c) we know that there exists an integer k such that 7'(1) and Tj@) satisfy
(1) < T(§2) < 71(1) < 7'1(2) - < T]E ) < T,&_)l < T,iQ).

The results of (a)—(c) imply the stability switch as 7 increases: a pair of characteris-
tic roots will cross the imaginary axis to the right at Tél) and get back to the left at

(2) . The stability switch continues until for a 7 = (1) when a pair of characteristic
roots crosses the imaginary axis from left to the rlght and remains in the right. The
two sequences given by numerical simulations are

{rV}22, ={2.5901,13.1167, 23.6433, 34.1700, - - - },
{r1P}22, ={10.2828,29.7767,49.2706, - - - }.

Furthermore, there exists a k£ = 1 such that 7'( < 7(52) 1(1) < 7'2(1) < 7'1(2). The
infected steady state P, is stable for 7 < 2.5901 unstable for 7 € (2.5901, 10.2828),
stable for 7 € (10.2828,13.1167), and unstable for 7 > 13.1167, which is presented
in Fig. 2 and the corresponding stability and bifurcation is shown in Fig. 3
(left). The horizontal axis is the delay 7, and the vertical axis is the virus V.
For 7 < 2.5901 and 7 € (10.2828,13.1167), there is a line in Fig. 3 (left), which
is given V' = V, = 1362.6799, the infected steady state P, is locally asymptoti-
cally stable. For 7 € (2.5901,10.2828), when 7 cross Tél), we can compute ¢1(0) =
—0.2072941082433112 — 1.037904500371602 x 10%i, pe = 3.959023703656483 > 0,
B2 = —0.414588216486622 < 0 and Th = 67.303256908139844 > 0. Hence, The-
orem 3.8 implies that there exists a stable periodic solution of model (3). The
two curves in Fig. 3 are the maximal and minimal values of V() in a period.

Similarly, when 7 cross 7'1(1), we can compute ¢1(0) = —0.470254201495353 —
94.354228525286175i, p1o = 47.973638016773599 > 0, fo = —0.940508402990705 <
0 and 75 = 12.261483017883963 > 0, thus, there also exists stable periodic solu-
tions of model (3) for 7 > 13.1167. Fig. 4 shows that when 7 = 31, chaotic motions
occurs. Furthermore, from Fig. 5, when 7 becomes large, say 7 = 49, the infected
steady state P, is unstable, and the system trajectory exhibits a transient seemingly
chaotic solution for a longer time (see the small figures in Fig. 5) then involves into
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a final nonchaotic state such as a quasi-periodic solution. Thus, immune response
delay has an effect on the control of the disease.

From Fig. 6, which shows that though the components I and V of the infection
steady state are only slightly changed, the time needed for the system converge to
the steady state is much shorter as 5 increases, i.e. the system will spend a shorter
time to reach the steady state for high value of 8. Moreover, the figures in Fig.
7 together with the Fig. 3 (left one) shows that the stable intervals is enlarged as
(B2 increases, though the amplitude of the periodic solutions is smaller. And when
B2 = 0.01, the Fig. 7 (right) shows that multiple stability switches can occurs.
Hence, neglecting cell-to-cell transmission (f32) may lose some dynamics behavior.
As for parameter s, which is the source of new health target cells from precursors.
Fig. 8, shows that the components I and V of the infection steady state increases
as s increases. This is because high value of s increases the pool of susceptible
target cells. Moreover, comparing with Fig. 9 and Fig. 3 (left) we can see that the
amplitude of the periodic solutions increases as s increases, but the stable interval
decreases. Furthermore, numerical simulation shows that there is a period-doubling
solution (see Fig. 10). From Fig. 11, we can see that the component I and V of
the infection steady state decreases as d increases. Comparing with Fig. 3 (left)
and Fig. 12, we can see that the amplitude of the periodic solutions decreases as
d increases, whereas the length of the stable interval increases. Hence, both the
recruitment rate s and the death rate d of the target cells do have some impact on
the dynamics of the model.

In general, the existence of logistic term may lead to rich dynamics for a model,
especially for a model without delay, logistic term may cause Hopf bifurcation. In
order to show the impact of the delay on the dynamics of the model without the
effect of logistic term. Then, we give the bifurcation diagram when the system is
in absence of logistic term, i.e., 7 = 0 in Fig. 3 (right), which implies that stability
switch and Hopf bifurcation still exist when there is no logistic growth term for
the system. Thus, we can see that stability switch, Hopf bifurcation and chaotic
oscillation exist in both cases. We can claim that when take immune responses
into consideration, time delay may be the main factor for periodic oscillations.
Furthermore, the two figures in Fig. 3 show that the stable intervals for the system
in absence of logistic growth term is much larger than the system with logistic
growth term and the oscillation interval will be enlarged as r increases, though the
existence of logistic growth term may not change the main dynamics behavior of
the system.

Simulations are also done to show the impact of logistic growth term 7 on the
dynamics of the model (see Fig. 13 and Fig. 14). The simulation shows that the
infected steady state P, may be stable or unstable, and the model may has periodic
solutions, or chaotic motions, depending on r. From Fig. 13, we see that only
Hopf bifurcation occurs and no chaotic motions when 7, say 7 = 2, stay in a stable
interval; while both hopf bifurcation and chaotic motions exist when 7, say 7 = 5,
stay in an unstable interval, and the corresponding bifurcation diagrams are given
in Fig. 14, respectively. Moreover, Fig. 14 (left) shows that at the left end of the
r range, though there exists an interval for which the infected steady state P, is
asymptotically stable, the viral load increases, then Hopf bifurcation occurs and
the amplitude of the bifurcating periodic solutions increase and then decrease as r
increase. Thus, the simulation shows that the logistic growth term also plays an
important role on the dynamics of the model. Our results suggest that both immune
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delay and logistic growth term are responsible for rich dynamics of the model.
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FIGURE 1. Py is globally asymptotically stable for 7 = 1 (left) and 7 = 10 (right).

FIGURE 2. Solutions of model (3) for different 7.

5. Summary and discussion. In this paper, we extend the previous work to a
more realistic delayed model including cell-to-cell transmission. The basic reproduc-
tion number Ry include two parts: cell-to-cell infection and virus-to-cell infection.
It is easy to see that the basic reproduction number will be underestimated for
models neglecting the cell-to-cell infection or virus-to-cell infection. Mathematical
analysis gives the conditions for the existence of the equilibria and shows the influ-
ence of the time delay on the stability of equilibrium states. It is proved that the
local stability of the uninfected steady state is independent of the size of the de-
lay. Furthermore, the global stability of the uninfected steady state P, is obtained
if Ry is less than one by applying the fluctuation lemma. Our results show that



356 JINHU XU AND YICANG ZHOU

12000 5000

4500

10000
4000
3500

8000
3000
< 6000 2500
2000

4000
1500
1000

2000
500
0 0

0 50

Ll M o
0 500 1000 1500 2000 2500 3000
time t (days)
400
2200 4
o bl
0 500 1000 1500 2000 2500 3000
5 «10% time t (days)
;1
0
0 500 1000 1500 2000 2500 3000
time t (days)
10
0
0 500 1000 1500 2000 2500 3000
time t (days)

FIGURE 4. Solutions of model (3) for 7 = 31.
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FIGURE 8. The effects of s on the system with 7 = 2.

FIGURE 9. The stability and bifurcation with s = 5.
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250 18000

——-d=0 16000 ——d=0
200 ——d=0.05| 14000 ——d=0.05|
—--d=0.1 12000 —-—d=0.1
150
10000
- > 8000
100 |
6000 I
I
[
50 4000 i
itk Aoy
2000 VIIRIN s
\"”ﬁJQ DS .
ol il o A
o 150 200 o 50 150 200

100 100
time t (days) time t (days)
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FIGURE 12. The stability and bifurcation with d = 0.1.

increasing the delay can destabilize the infected steady state by leading to a Hopf
bifurcation and periodic solutions. The bifurcation direction and the stability of
the periodic solutions are investigated by using normal form and center manifold.
The theoretical analysis shows the importance of time delay on HIV dynamics.
Numerical simulations show that both cell-to-cell transmission and time delay
7 have an impact on the dynamics of the model, and rich dynamics can occur for
large 7 in the realistic parameter space. Compared to the earlier studies [3, 32],
our analysis shows that the introduction of the immune delay not only destabilize
the stability of the infected steady state, leading to a Hopf bifurcation and periodic
solutions, but also stability switch occurs as time delay 7 increases, which has not
been observed in [3,16,32]. Chaotic oscillations were observed for large 7. We also
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FIGURE 14. The stability and bifurcation of (3) with 7 =2 (left) and 7 = 5 (right).

find that the viral load may be destabilized into oscillations with the increase of
the logistic growth rate r for T-cells. Moreover, numerical simulations also show
that the oscillation interval will be enlarged as r increases. The system can occurs
multiple stability switches for high value of cell-to-cell transmission fs, and the
stable intervals is larger though the amplitude is smaller. Furthermore, numerical
simulations show that larger S makes the system converge to the steady state more
easily. Hence, our results suggest that the logistic growth rate for T-cells r» and the
immune response delay 7 and the cell-to-cell transmission are responsible for the
complex dynamics.

Although the delay of immune response and cell-to-cell transmission considered in
this paper is a good way to improve the viral dynamic model, the intracellular delays
should also be taken into consideration for more realistic models. The dynamical
analysis of the epidemic models with multiple delays will be more complex and
bigger challenge in the future.
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Appendix A. Proof of Theorem 3.8. We use the variable transformations
x1(t) = T(1t) — Ty, xo(t) = I(1t) — L, z3(t) = V(7t) — Vi,
x24(t) = E(1t) — Ee,T =T+ 1

to make model (3) become an functional differential equation in C' = C([—1, 0], R%).

dx
T Ly(we) + f(p,24), (18)
where x(t) = (v1(t), 22(t), 23(t),z4(t))T € R* | L, : C - R* and f: R x C — R,
L.(9) = (7 + p)B16(0) + (7 + p)B2d(-1), (19)

fu, ¢)
— 7 —¢7(0) — (Tz; + 52) $1(0)92(0) — B1#1(0)¢3(0)
=(7 + p) $191(0)93(0) + B201(0)¢2(0) — d3¢2(0)¢4(0) , (20)
0

0
with ¢(0) = (61(0), $2(0), ¢3(0), ¢4(0))" € C and

(=4 %) - ($#Z+8T) -HT. 0

Bl = 61‘/* + 52'[* _/81 ]\&;ll T* B]T* _d3_[*
0 Nd, —do 0
0 0 0 —d,
000 0
000 0
B2=1 900 0
0 p 00O

By Reisz representation theorem, there exists a matrix components, bounded vari-
ation function 7(6, 1) in @ € [—1,0], such that L,¢ = f£)1 dn(0, n)o(9) for ¢ € C.
In fact, we can choose

n(0, ) = (7 + p)B16(0) — (7 + p)B26(6 + 1), (21)
where, § denote the Dirac delta function. For ¢ € C*([—1,0],R?*), define
49(0) 0e-1,0
A(/J/)(b — 89 ’ B [ ) )a
Sy dn(p, s)é(s),  0=0,

and
0, 0 €[-1,0),

Model (18) is equivalent to
@y = A(p)xy + R(p)xy, ¢ = x(t +6), 0 € [-1,0]. (22)
For v € C1([0, 1], (R*)*), define
_d(s) s €(0,1],

AWl = { [, A (5,000(=5), s =0,
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and a bilinear inner product

(1, 6) = B(0 / Eowg 0)dn(6)(€)de, (23)

where n(0) = 1n(0,0). Then A(0) and A* are adjoint operators with eigenvalues
+iwT. We compute the eigenvector of A(0) and A* corresponding to iwT and —iw7,
respectively. If ¢(0) = (1,q1, g2, q3)Te?“7 is the eigenvector of A(0) corresponding
to iwT, then A(0)q(#) = iwTq(0), and

iwH A=+ 2L g T, BT 0 1 0

S| —BVFBL) W BYAT. AT, sl o |_|[o0
0 —6 iw + do 0 q2 0

0 —pe T 0 iw + dy q3 0

We can obtain
(i + dy) (i ~ 4 )
(iw + ds) (52T + ool ) + B,Nd,T.
Nd1Q1 B pe—zwr

q2:iw+d2’ qg_iw+d4.

On the other hand, if ¢*(s) = D(1,q}, g5, q5)e**7 is the eigenvector of A* corre-
sponding to —iwT, then we have

—iw + T:Z:; + 7 BV + Bals) 0 0 1 0
= %::*T + B2Tx —iw 4 B1 7 Nd1 T =4 —peT a | _| 0 ,
BT —51T* —iw + da 0 9 0
0 ds I, 0 —iw+ds a3 0
and
- T
o= —iw + 7 = BiTu(qf — 1) = dsl.q}
1 BV, + BoI, 12 —iw4dy P iw—dy
1
We can choose D = — to have (¢*(s),q(0)) = 1.

1 +9197 + 9295 + 7395 + Tpq1qze™7™
By (23), we have

(a"(s),a(8)) =D(1,77,75,3) (L, a1, 42, 43) "

0 o ) . o
- / D(1,75,@5,83)e " =0T dn(0) (1, a1, a2, 43) " €67 de
—1J¢=0

—_ 0 . -
D {1 bt + o + ot - [ (1,qzxq;q§>eez"“dn(e>(1,ql,qz,qg)T}
-1
=D {1 + @@} + 925 + 375 + ?pqﬁée*i“ﬁ} .

Next, we use the same notations as in [41], and compute the center manifold Cj at
= 0. Let z; be the solution of (22) for u = 0. Define

2(t) = (", we), W(E,0) = 2:(0) — 2Re{z(t)q(0)}- (24)

On the center manifold Cy we have
2 22

W(t,0) = W(z,20) = WQO% Wi (0)2F + Woz(e)% T (25)
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where z and Z are local coordinates for center manifold Cj in the direction ¢* and
G*. Note that W is real if x; is real. We only consider real solutions. For the
solution z; € Cy of (22) with p = 0, we have

2(t) =iwTz + (°(0), f(0,W(2,Z,0) + 2Re{zq(0)}))
=iwTz + 7 (0)f(0,W(z,%,0) + 2Re{2¢(0)})
2iwTz +7°(0) fo(z2).

We define
_ e _ 22 _ 72 22z
9(2,2) =77 (0) fo(z, 2) = 9205 + 91122 + 902? + 9217 + (26)
and study the equation
2(t) = iwTz + g(z,%).
It follows from (24) and (25) that
2(0) = (14(0), 224 (0), w3¢(0), 242 (0))”
W (t,0) + 2Re{zq(0)}
(1 q1,92, (I3)T leOZ + (1761762763)116_“”192
22 2
+Wao S + Wia(60)27 + Woa () 5+ -+ (27)
and
)
211(0) =2 + 7+ Wi (0) 5 WP+ WS + 02,

2

=2
Z z
224(0) =qlz+alz+W§§>< 0)% + Wi (022 + Wg (0) 5 + 0((=. D)),
2’2 2
230(0) =a22 + T + W3 (00 + WP (0)27 + Wed (05 + O(l(,2)P),
2
z

2
24:(0) =gs2 + 35Z + Wig (0) = + W (0)22 + W3 (0) 0)%5 + 0=, 2)I).

2
It follows from (20) that

9(2,2) =77(0) fo(z,%)
=" (0)fo(0, =)

G ( + 52) 21¢(0)22¢(0) — B11£(0)x3¢(0)

Tmax Tmax

=7g*(0) B2x1(0)z2¢(0) + B121£(0)x3¢(0) — d3zar(0)z4¢(0)
0
0

=%D{ - (o) + (6?/32

mazx

_ 52) 212(0)2:(0)

Tmaz

+ (@1 — 1)B1z1¢(0)z3¢(0) — QTd3$2t(0)$4t(0)}

%D{ - [z R WL )—+W(1)(0)zz+W5§)( )—+O(|(z 2)| )]2

+ (a1 - 7 ; ) [z w05 w0

+ W (0 )—+o<|<z )] % [arz + 32+ W0 )—+W<2’( 0)2%
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2) - - E
FWEOS + 00D + @ - Va2 WS
+ Wi ()27 + W”(O)— 0l(2,2)%)] x [az2 + @7 + W) <0>—

Z P
~+0((=D))] ~Tids [z + 7,2

+ Wl(f>( 0)2z + W(B)(O)
@02+ W@ (023 + WD (0 F 3
+WE 5 + W=+ W 05 + 0l 2)P)]
2 =2
x [a32+ 7 + Wi (05 + Wi 022+ Wi (05 + 0(1(=,2))] }
The coefficients in (26) are

g20 =27D| — +q (6]‘52 e 52) +q2(q1 —1)B1 — QTdSQ1QS],
max Tmaz
911 =275 | — =" + Re{a1) (qwg or Bz) + Re{a2}(@ — 1)
L Tmaz Tmaz
—qid3Re{q173} |,
e T — _ _
go2 =27D| — +q (QTﬁz - - ﬁz) +72(q1 — 1)B1 — q1d3q143 |
L Tmagj Tmam

g21 :%D{ __r <2W2<(1J)(0) + 4w1(;>(0)> + (51,32 - Ti - 52)
x (2w P (0) + Wi (0) + Wi (0) + 20} (0))
+Bi(@i = 1) (2w 0) + Wi (0) + @ W5 (0) + 202 W1} (0))
= @ids (20 WP (0) + LWL (0) + 26 W3 (0) + 2, W55 (0)) } (28)

From (22) and (24) we have

. . [ AW —2Re{7"(0)foq(8)}, 6 € [-1,0),
W=t —2q-2= { AW — 3Re{q" (0 foa(0)} + fo. 0 0.

L2AW + H(z,2,0), (29)
where
22 z2
H(Z,Z,H) :Hgo(e)?+H11(9)Z§+H02(9)?+“' . (30)
Substituting the expression into (29) and comparing the coefficients, we have
(A — 21@%)W20(9) = —Hgo(e), AWH(G) = _Hll(a)- (31)
From (29) we know that for 6 € [—1,0),
H(2,%,0) = =7"(0)foal6) — 4" (0)Fo7(0) = —g(=.D)a(6) = 5(=,2)7(0).  (32)
From (30) and (32) we have
Hyo(0) = —920q(0) — G02a(0), Hi1(0) = —g114(0) — g1, 7(6). (33)

From (31), (33) and the definition of A, we get

Wgo(g) = 2iw7~'W20(9) - H20(0) = 2Z'w7~'W20(0) + 920(](9) + §02§(9)

For ¢(0) = (17Q1,QQ,Q3)T w0 we have

( jwro | 19 —iwF iwF
Wao(0) = fji;o q(O)eMT@ + 3%);6(0)6 04 B e?wrd (34)
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where B = (Efl), E§2), E§3), E§4))T € R is a constant vector. Similarly, we obtain

1911

Wii(6) = =L q(0)e™ + Lhg(0)e™7 + B, (35)

where Ey = (ESV, E® B ES))T € R* is a constant vector. In what follows, we
shall determine the values of E; and Es. From the definition of A and (31), we have

0 0
[ I (0)Wao(0) = 20T Won(6) — Han(0). [ IO)W(0) = ~Hys(0). (30

where 7(0) = n(0,0). By (29), we have

(=t a (2= +5) +hie)

Hy0(0) = —g20q(0) — Gp2q(0) + 27 Q@b+ Ch%z — d3q1g3 . (37)
0
and

~ (75 + Refar} (725 + B2) + BiRe{a})

Tmaz

Hi11(0) = —g11q(0) — §1,(0) + 27 Pr1Re{q2} + BaRe{q1} — dsRe{q1q3} . (38)
0
0
Substituting the expressions Wy and Hsg into (36), and using following equations

(mz— / ’ eiewfdn(9)> 4(0) = 0, (—mz— / ’ e—iw*dn(9)> 7(0) = 0,

-1 —1

we have
0 - (Tr:az ta (Tﬁzx + 52) + B1q2)
(2iw%[- / e2i0w%dn(9)) Ei1 =27 q2/1 + q1502 —d3qiq3 , (39)
-1
0
which leads to
Ziw + irnTM t 7 % + BT BT 0
—(P1Vi + Bol.) 2w+ p ]\;‘31 T. =BT, dsl, B
0 -6 2w + do 0
0 _pe*szT 0 %iw + d4
My
_o| P+ afe —dsqias
0
0
It follows that
M % + BT B1Tx 0
E(l) — i q2B1 4+ q1B2 —dsqiqs  2iw + B ]Yizl T, BT dsl.
' A1 0 -0 2iw + d2 0 ’
0 —pe—2iwT 0 e + dy
2iw+ 7 M BT 0
@ _ 2| —(BiVa+B2ly) @b+ afe—dsags  —PiTs d3 1
1TA 0 0 2w + da 0 ,

0 0 0 21w + dg
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iw+ gt f i+ BT M, 0
B3 _ 2| —(BiVa+B2l) 2w+ By Afgl T @21+ q1B2 — d3qiqs ds 1.
! N 0 -5 0 0 '
0 —pe—2wT 0 2iw + dg
Zdwt e fr 4Bl AT M,
p@® _ 2 | —(B1Vi+B2l) 2w+ B A;Zl Te —p1Te  q2f1+q1B2 —d3qigs
N 0 -5 2w + da 0
0 7p€—2iw‘? 0 0
where
r ar
M1:—< +(J1( +52)+51Q2)
Tmaflj Tmaflj ’
and
2w+ A 4 £ 2L 4 BT, BT, 0
Al _ _(ﬁlv* + BQI*) 2ZW + 51 ]\;(211 T* _51T* dBI*
0 —5 21w + d2 0
0 _pe= 2wt 0 2iw+ds

Similarly, we have

oy e oy BT BT 0

Tmax max
_(51 V* + B2I*) 51 ]\Cfl(jl T* _ﬂlT* dSI* E2
0 -0 do 0
0 —p 0 dy
My
_o | BiRe{ga} + B2Re{q1} — dsRe{q175}
0 b
0
which leads to
Mo % + BTy P1Tx 0
g _ 2 | BiRe{g2} + B2Re{q1} — dsRe{q175} A1 1\;‘;1 T —B1T.  dsl.
2T A 0 ) da o |’
0 —p 0 dy
T 4 M, B1Ts 0
p® _ 2 | —=(BiVi+B21)  BiRe{qe} + f2Re{q1} — dsRe{q1@s} —F1Tx dsl.
2 Ao 0 0 da o |’
0 0 0 dy
Tz ¥ 7 T BT My 0
p® _ 2| —~(BiVi+B2l)  BiTEET. BiRe{q2} + BoRe{q1} — dsRe{q17s} dsl.
2 Ay 0 ) 0 o |’
0 —p 0 dy
T 4 Fle BT BiTn M
@ _ 2 | —(BiVatB2L) A ]\;Zl T —A1Ts  PiRe{q2} + B2Re{q1} — dsRe{q133}
2 Ao 0 —0 da 0
0 —p 0 0
where
r ar
MQ = —( + Re{ql} + 52 + ﬁ1Re{q2}>
Tmaac Tmax
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TTT“ + 7 % + 8T BT 0
—(BiVe+ BoL)  BINET. BT dsl.
0 -6 do 0
0 -p 0  ds
We can determine Wag(6) and W1;(6) from (34) and (35). Furthermore, we can

Ay =

compute g1 by (28) and obtain following values:

i 2
c1(0) = — <920911 —2|g11]* — 902|> + gﬂ

2WT 3 2’
_ Refai(0)}
"= TRefN ()Y
Bz :2Re(cl( ))a
7, — _Im(ea(0) + pm(X(7)

wT
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