Citation: Shangbing Ai, Zhian Wang. Traveling bands for the Keller-Segel model with population growth[J]. Mathematical Biosciences and Engineering, 2015, 12(4): 717-737. doi: 10.3934/mbe.2015.12.717
[1] | Tong Li, Zhi-An Wang . Traveling wave solutions of a singular Keller-Segel system with logistic source. Mathematical Biosciences and Engineering, 2022, 19(8): 8107-8131. doi: 10.3934/mbe.2022379 |
[2] | Sunwoo Hwang, Seongwon Lee, Hyung Ju Hwang . Neural network approach to data-driven estimation of chemotactic sensitivity in the Keller-Segel model. Mathematical Biosciences and Engineering, 2021, 18(6): 8524-8534. doi: 10.3934/mbe.2021421 |
[3] | Wenhao Chen, Guo Lin, Shuxia Pan . Propagation dynamics in an SIRS model with general incidence functions. Mathematical Biosciences and Engineering, 2023, 20(4): 6751-6775. doi: 10.3934/mbe.2023291 |
[4] | Lin Zhang, Yongbin Ge, Zhi Wang . Positivity-preserving high-order compact difference method for the Keller-Segel chemotaxis model. Mathematical Biosciences and Engineering, 2022, 19(7): 6764-6794. doi: 10.3934/mbe.2022319 |
[5] | Maryam Basiri, Frithjof Lutscher, Abbas Moameni . Traveling waves in a free boundary problem for the spread of ecosystem engineers. Mathematical Biosciences and Engineering, 2025, 22(1): 152-184. doi: 10.3934/mbe.2025008 |
[6] | Ran Zhang, Shengqiang Liu . Traveling waves for SVIR epidemic model with nonlocal dispersal. Mathematical Biosciences and Engineering, 2019, 16(3): 1654-1682. doi: 10.3934/mbe.2019079 |
[7] | Thierry Colin, Marie-Christine Durrieu, Julie Joie, Yifeng Lei, Youcef Mammeri, Clair Poignard, Olivier Saut . Modeling of the migration of endothelial cells on bioactive micropatterned polymers. Mathematical Biosciences and Engineering, 2013, 10(4): 997-1015. doi: 10.3934/mbe.2013.10.997 |
[8] | Shiqiang Feng, Dapeng Gao . Existence of traveling wave solutions for a delayed nonlocal dispersal SIR epidemic model with the critical wave speed. Mathematical Biosciences and Engineering, 2021, 18(6): 9357-9380. doi: 10.3934/mbe.2021460 |
[9] | M. B. A. Mansour . Computation of traveling wave fronts for a nonlinear diffusion-advection model. Mathematical Biosciences and Engineering, 2009, 6(1): 83-91. doi: 10.3934/mbe.2009.6.83 |
[10] | Lin Zhang, Yongbin Ge, Xiaojia Yang . High-accuracy positivity-preserving numerical method for Keller-Segel model. Mathematical Biosciences and Engineering, 2023, 20(5): 8601-8631. doi: 10.3934/mbe.2023378 |
[1] | Science, 44 (1975), 341-356. |
[2] | Science, 166 (1969), 1588-1597. |
[3] | Dicrete Contin. Dyn. Syst.-Series B, 20 (2015), 1-21. |
[4] | Dicrete Contin. Dyn. Syst., 34 (2014), 5165-5179. |
[5] | C. R. Acad. Sci. Paris. Ser. I., 336 (2003), 141-146. |
[6] | Milan j. Math., 72 (2004), 1-28. |
[7] | SIAM J. Math. Anal., 33 (2002), 1330-1355. |
[8] | Interfaces Free Bound., 8 (2006), 223-245. |
[9] | J. Differential Equations, 255 (2013), 193-219. |
[10] | Biophysical Journal, 96 (2009), 2439-2448. |
[11] | J. Theor. Biol., 30 (1971), 235-248. |
[12] | Bull. Math. Biol., 42 (1980), 397-429. |
[13] | Biophy. J., 22 (1978), 1-13. |
[14] | Bull. Math. Biol., 46 (1984), 19-40. |
[15] | Math. Biosci, 168 (2000), 71-115. |
[16] | Math. Models Methods Appl. Sci., 21 (2011), 1631-1650. |
[17] | Math. Models Methods Appl. Sci., 24 (2014), 2819-2849. |
[18] | SIAM J. Appl. Math., 70 (2009), 1522-1541. |
[19] | Math. Models Methods Appl. Sci., 20 (2010), 1967-1998. |
[20] | J. Differential Equations, 250 (2011), 1310-1333. |
[21] | J. Math. Biol., 61 (2010), 739-761. |
[22] | Interfaces Free Bound., 10 (2008), 517-538. |
[23] | J. Math. Biol., 30 (1991), 169-184. |
[24] | Math. Biosci., 13 (1972), 397-406. |
[25] | J. Theor. Biol., 49 (1975), 311-321. |
[26] | Bull. Math. Biol., 40 (1978), 671-674. |
[27] | Math. Biosci., 24 (1975), 273-279. |
[28] | PLoS computational biology, 6 (2010), e1000890, 12pp. |
[29] | PNAS, 108 (2011), 16235-16240. |
[30] | Proc. Appl. Math. Mech., 3 (2003), 476-478. |
[31] | SIAM J. Math. Anal., 38 (2006), 1694-1713. |
[32] | Discrete Contin. Dyn. Syst.-Series B, 17 (2012), 2849-2860. |
[33] | Discrete Contin. Dyn. Syst.-Series B, 18 (2013), 601-641. |
[34] | Math. Methods. Appl. Sci., 31 (2008), 45-70. |
1. | Rachidi B. Salako, Wenxian Shen, Shuwen Xue, Can chemotaxis speed up or slow down the spatial spreading in parabolic–elliptic Keller–Segel systems with logistic source?, 2019, 79, 0303-6812, 1455, 10.1007/s00285-019-01400-0 | |
2. | Yingjie Zhu, Existence of a Nontrivial Steady-State Solution to a Parabolic-Parabolic Chemotaxis System with Singular Sensitivity, 2019, 2019, 1026-0226, 1, 10.1155/2019/8140380 | |
3. | Rachidi B. Salako, Wenxian Shen, Existence of traveling wave solutions of parabolic–parabolic chemotaxis systems, 2018, 42, 14681218, 93, 10.1016/j.nonrwa.2017.12.004 | |
4. |
Rachidi B. Salako, Wenxian Shen,
Parabolic–Elliptic Chemotaxis Model with Space–Time Dependent Logistic Sources on . III: Transition Fronts,
2020,
1040-7294,
10.1007/s10884-020-09901-z
|
|
5. | Rachidi B. Salako, Wenxian Shen, Spreading speeds and traveling waves of a parabolic-elliptic chemotaxis system with logistic source on $\mathbb{R}^N$, 2017, 37, 1553-5231, 6189, 10.3934/dcds.2017268 | |
6. | Yizhuo Wang, Shangjiang Guo, Dynamics for a two-species competitive Keller-Segel chemotaxis system with a free boundary, 2021, 502, 0022247X, 125259, 10.1016/j.jmaa.2021.125259 | |
7. | José Luis López, On nonstandard chemotactic dynamics with logistic growth induced by a modified complex Ginzburg–Landau equation, 2022, 148, 0022-2526, 248, 10.1111/sapm.12440 | |
8. | Yizhuo Wang, Shangjiang Guo, Traveling wave solutions for a two-species competitive Keller–Segel chemotaxis system, 2023, 73, 14681218, 103900, 10.1016/j.nonrwa.2023.103900 | |
9. | Shangbing Ai, Zengji Du, Traveling wave solutions for a Keller-Segel system with nonlinear chemical gradient, 2024, 0022247X, 129128, 10.1016/j.jmaa.2024.129128 |