Traveling bands for the Keller-Segel model with population growth

  • Received: 01 April 2014 Accepted: 29 June 2018 Published: 01 April 2015
  • MSC : 35C07, 35K55, 46N60, 62P10, 92C17.

  • This paper is concerned with the existence of the traveling bands to the Keller-Segel model with cell population growth in the form of a chemical uptake kinetics. We find that when the cell growth is considered, the profile of traveling bands, the minimum wave speed and the range of the chemical consumption rate for the existence of traveling wave solutions will change. Our results reveal that collective interaction of cell growth and chemical consumption rate plays an essential role in the generation of traveling bands. The research in the paper provides new insights into the mechanisms underlying the chemotactic pattern formation of wave bands.

    Citation: Shangbing Ai, Zhian Wang. Traveling bands for the Keller-Segel model with population growth[J]. Mathematical Biosciences and Engineering, 2015, 12(4): 717-737. doi: 10.3934/mbe.2015.12.717

    Related Papers:

    [1] Tong Li, Zhi-An Wang . Traveling wave solutions of a singular Keller-Segel system with logistic source. Mathematical Biosciences and Engineering, 2022, 19(8): 8107-8131. doi: 10.3934/mbe.2022379
    [2] Sunwoo Hwang, Seongwon Lee, Hyung Ju Hwang . Neural network approach to data-driven estimation of chemotactic sensitivity in the Keller-Segel model. Mathematical Biosciences and Engineering, 2021, 18(6): 8524-8534. doi: 10.3934/mbe.2021421
    [3] Wenhao Chen, Guo Lin, Shuxia Pan . Propagation dynamics in an SIRS model with general incidence functions. Mathematical Biosciences and Engineering, 2023, 20(4): 6751-6775. doi: 10.3934/mbe.2023291
    [4] Lin Zhang, Yongbin Ge, Zhi Wang . Positivity-preserving high-order compact difference method for the Keller-Segel chemotaxis model. Mathematical Biosciences and Engineering, 2022, 19(7): 6764-6794. doi: 10.3934/mbe.2022319
    [5] Maryam Basiri, Frithjof Lutscher, Abbas Moameni . Traveling waves in a free boundary problem for the spread of ecosystem engineers. Mathematical Biosciences and Engineering, 2025, 22(1): 152-184. doi: 10.3934/mbe.2025008
    [6] Ran Zhang, Shengqiang Liu . Traveling waves for SVIR epidemic model with nonlocal dispersal. Mathematical Biosciences and Engineering, 2019, 16(3): 1654-1682. doi: 10.3934/mbe.2019079
    [7] Thierry Colin, Marie-Christine Durrieu, Julie Joie, Yifeng Lei, Youcef Mammeri, Clair Poignard, Olivier Saut . Modeling of the migration of endothelial cells on bioactive micropatterned polymers. Mathematical Biosciences and Engineering, 2013, 10(4): 997-1015. doi: 10.3934/mbe.2013.10.997
    [8] Shiqiang Feng, Dapeng Gao . Existence of traveling wave solutions for a delayed nonlocal dispersal SIR epidemic model with the critical wave speed. Mathematical Biosciences and Engineering, 2021, 18(6): 9357-9380. doi: 10.3934/mbe.2021460
    [9] M. B. A. Mansour . Computation of traveling wave fronts for a nonlinear diffusion-advection model. Mathematical Biosciences and Engineering, 2009, 6(1): 83-91. doi: 10.3934/mbe.2009.6.83
    [10] Lin Zhang, Yongbin Ge, Xiaojia Yang . High-accuracy positivity-preserving numerical method for Keller-Segel model. Mathematical Biosciences and Engineering, 2023, 20(5): 8601-8631. doi: 10.3934/mbe.2023378
  • This paper is concerned with the existence of the traveling bands to the Keller-Segel model with cell population growth in the form of a chemical uptake kinetics. We find that when the cell growth is considered, the profile of traveling bands, the minimum wave speed and the range of the chemical consumption rate for the existence of traveling wave solutions will change. Our results reveal that collective interaction of cell growth and chemical consumption rate plays an essential role in the generation of traveling bands. The research in the paper provides new insights into the mechanisms underlying the chemotactic pattern formation of wave bands.


    [1] Science, 44 (1975), 341-356.
    [2] Science, 166 (1969), 1588-1597.
    [3] Dicrete Contin. Dyn. Syst.-Series B, 20 (2015), 1-21.
    [4] Dicrete Contin. Dyn. Syst., 34 (2014), 5165-5179.
    [5] C. R. Acad. Sci. Paris. Ser. I., 336 (2003), 141-146.
    [6] Milan j. Math., 72 (2004), 1-28.
    [7] SIAM J. Math. Anal., 33 (2002), 1330-1355.
    [8] Interfaces Free Bound., 8 (2006), 223-245.
    [9] J. Differential Equations, 255 (2013), 193-219.
    [10] Biophysical Journal, 96 (2009), 2439-2448.
    [11] J. Theor. Biol., 30 (1971), 235-248.
    [12] Bull. Math. Biol., 42 (1980), 397-429.
    [13] Biophy. J., 22 (1978), 1-13.
    [14] Bull. Math. Biol., 46 (1984), 19-40.
    [15] Math. Biosci, 168 (2000), 71-115.
    [16] Math. Models Methods Appl. Sci., 21 (2011), 1631-1650.
    [17] Math. Models Methods Appl. Sci., 24 (2014), 2819-2849.
    [18] SIAM J. Appl. Math., 70 (2009), 1522-1541.
    [19] Math. Models Methods Appl. Sci., 20 (2010), 1967-1998.
    [20] J. Differential Equations, 250 (2011), 1310-1333.
    [21] J. Math. Biol., 61 (2010), 739-761.
    [22] Interfaces Free Bound., 10 (2008), 517-538.
    [23] J. Math. Biol., 30 (1991), 169-184.
    [24] Math. Biosci., 13 (1972), 397-406.
    [25] J. Theor. Biol., 49 (1975), 311-321.
    [26] Bull. Math. Biol., 40 (1978), 671-674.
    [27] Math. Biosci., 24 (1975), 273-279.
    [28] PLoS computational biology, 6 (2010), e1000890, 12pp.
    [29] PNAS, 108 (2011), 16235-16240.
    [30] Proc. Appl. Math. Mech., 3 (2003), 476-478.
    [31] SIAM J. Math. Anal., 38 (2006), 1694-1713.
    [32] Discrete Contin. Dyn. Syst.-Series B, 17 (2012), 2849-2860.
    [33] Discrete Contin. Dyn. Syst.-Series B, 18 (2013), 601-641.
    [34] Math. Methods. Appl. Sci., 31 (2008), 45-70.
  • This article has been cited by:

    1. Rachidi B. Salako, Wenxian Shen, Shuwen Xue, Can chemotaxis speed up or slow down the spatial spreading in parabolic–elliptic Keller–Segel systems with logistic source?, 2019, 79, 0303-6812, 1455, 10.1007/s00285-019-01400-0
    2. Yingjie Zhu, Existence of a Nontrivial Steady-State Solution to a Parabolic-Parabolic Chemotaxis System with Singular Sensitivity, 2019, 2019, 1026-0226, 1, 10.1155/2019/8140380
    3. Rachidi B. Salako, Wenxian Shen, Existence of traveling wave solutions of parabolic–parabolic chemotaxis systems, 2018, 42, 14681218, 93, 10.1016/j.nonrwa.2017.12.004
    4. Rachidi B. Salako, Wenxian Shen, Parabolic–Elliptic Chemotaxis Model with Space–Time Dependent Logistic Sources on
    RN
    . III: Transition Fronts, 2020, 1040-7294, 10.1007/s10884-020-09901-z
    5. Rachidi B. Salako, Wenxian Shen, Spreading speeds and traveling waves of a parabolic-elliptic chemotaxis system with logistic source on $\mathbb{R}^N$, 2017, 37, 1553-5231, 6189, 10.3934/dcds.2017268
    6. Yizhuo Wang, Shangjiang Guo, Dynamics for a two-species competitive Keller-Segel chemotaxis system with a free boundary, 2021, 502, 0022247X, 125259, 10.1016/j.jmaa.2021.125259
    7. José Luis López, On nonstandard chemotactic dynamics with logistic growth induced by a modified complex Ginzburg–Landau equation, 2022, 148, 0022-2526, 248, 10.1111/sapm.12440
    8. Yizhuo Wang, Shangjiang Guo, Traveling wave solutions for a two-species competitive Keller–Segel chemotaxis system, 2023, 73, 14681218, 103900, 10.1016/j.nonrwa.2023.103900
    9. Shangbing Ai, Zengji Du, Traveling wave solutions for a Keller-Segel system with nonlinear chemical gradient, 2024, 0022247X, 129128, 10.1016/j.jmaa.2024.129128
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3063) PDF downloads(525) Cited by(9)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog