Citation: Zhenguo Bai. Threshold dynamics of a periodic SIR model with delay in an infected compartment[J]. Mathematical Biosciences and Engineering, 2015, 12(3): 555-564. doi: 10.3934/mbe.2015.12.555
[1] | Abdelheq Mezouaghi, Salih Djillali, Anwar Zeb, Kottakkaran Sooppy Nisar . Global proprieties of a delayed epidemic model with partial susceptible protection. Mathematical Biosciences and Engineering, 2022, 19(1): 209-224. doi: 10.3934/mbe.2022011 |
[2] | Shengqiang Liu, Lin Wang . Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy. Mathematical Biosciences and Engineering, 2010, 7(3): 675-685. doi: 10.3934/mbe.2010.7.675 |
[3] | Jiawei Deng, Ping Jiang, Hongying Shu . Viral infection dynamics with mitosis, intracellular delays and immune response. Mathematical Biosciences and Engineering, 2023, 20(2): 2937-2963. doi: 10.3934/mbe.2023139 |
[4] | Lin Zhao, Zhi-Cheng Wang, Liang Zhang . Threshold dynamics of a time periodic and two–group epidemic model with distributed delay. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1535-1563. doi: 10.3934/mbe.2017080 |
[5] | Jie He, Zhenguo Bai . Global Hopf bifurcation of a cholera model with media coverage. Mathematical Biosciences and Engineering, 2023, 20(10): 18468-18490. doi: 10.3934/mbe.2023820 |
[6] | Shaoli Wang, Jianhong Wu, Libin Rong . A note on the global properties of an age-structured viral dynamic model with multiple target cell populations. Mathematical Biosciences and Engineering, 2017, 14(3): 805-820. doi: 10.3934/mbe.2017044 |
[7] | Jianquan Li, Xiaoyu Huo, Yuming Chen . Threshold dynamics of a viral infection model with defectively infected cells. Mathematical Biosciences and Engineering, 2022, 19(7): 6489-6503. doi: 10.3934/mbe.2022305 |
[8] | Xia Wang, Yuming Chen . An age-structured vector-borne disease model with horizontal transmission in the host. Mathematical Biosciences and Engineering, 2018, 15(5): 1099-1116. doi: 10.3934/mbe.2018049 |
[9] | Hai-Feng Huo, Fan Wu, Hong Xiang . On threshold dynamics for periodic and time-delayed impulsive systems and application to a periodic disease model. Mathematical Biosciences and Engineering, 2022, 19(1): 836-854. doi: 10.3934/mbe.2022038 |
[10] | Yilei Tang, Dongmei Xiao, Weinian Zhang, Di Zhu . Dynamics of epidemic models with asymptomatic infection and seasonal succession. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1407-1424. doi: 10.3934/mbe.2017073 |
[1] | J. Math. Biol., 53 (2006), 421-436. |
[2] | 2014, preprint. |
[3] | J. Math. Biol., 62 (2011), 741-762. |
[4] | Math. Biosci., 210 (2007), 647-658. |
[5] | Nonlinear Anal., 74 (2011), 3548-3555. |
[6] | Rocky Mountain J. Math., 9 (1979), 31-42. |
[7] | Proc. R. Soc. B., 273 (2006), 2541-2550. |
[8] | Bull. Math. Biol., 72 (2010), 1192-1207. |
[9] | J. Math. Biol., 65 (2012), 623-652. |
[10] | SIAM J. Appl. Math., 70 (2010), 2023-2044. |
[11] | Nonlinear Anal. RWA, 11 (2010), 3106-3109. |
[12] | Nonlinear Anal. RWA, 11 (2010), 55-59. |
[13] | Appl. Math. Lett., 17 (2004), 1141-1145. |
[14] | SIAM J. Math. Anal., 37 (2005), 251-275. |
[15] | J. Math. Anal. Appl., 363 (2010), 230-237. |
[16] | J. Math. Biol., 64 (2012), 933-949. |
[17] | Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 1155-1170. |
[18] | Mathematical Surveys and Monographs, 41. American Mathematical Society, Providence, RI, 1995. |
[19] | J. Integral Equations, 7 (1984), 253-277. |
[20] | J. Math. Biol., 30 (1992), 755-763. |
[21] | SIAM J. Appl. Math., 69 (2008), 621-639. |
[22] | J. Dyn. Diff. Equat., 20 (2008), 699-717. |
[23] | Nonlinear Anal. RWA, 10 (2009), 3175-3189. |
[24] | Math. Biosci., 208 (2007), 419-429. |
[25] | Springer-Verlag, New York, 2003. |
[26] | J. Math. Anal. Appl., 325 (2007), 496-516. |
1. | Erivelton G. Nepomuceno, Alípio M. Barbosa, Marcos X. Silva, Matjaž Perc, Individual-based modelling and control of bovine brucellosis, 2018, 5, 2054-5703, 180200, 10.1098/rsos.180200 | |
2. | Eric Ávila-Vales, Erika Rivero-Esquivel, Gerardo Emilio García-Almeida, Global Dynamics of a Periodic SEIRS Model with General Incidence Rate, 2017, 2017, 1687-9643, 1, 10.1155/2017/5796958 | |
3. | Liu Xiangsen, Dai Binxiang, Dynamics of a generalized predator‐prey model with delay and impulse via the basic reproduction number, 2019, 42, 0170-4214, 6878, 10.1002/mma.5794 | |
4. | Erivelton G. Nepomuceno, Ricardo H.C. Takahashi, Luis A. Aguirre, Reducing vaccination level to eradicate a disease by means of a mixed control with isolation, 2018, 40, 17468094, 83, 10.1016/j.bspc.2017.09.004 | |
5. | Ousmane Koutou, Bakary Traoré, Boureima Sangaré, Yuriy Rogovchenko, Mathematical model of malaria transmission dynamics with distributed delay and a wide class of nonlinear incidence rates, 2018, 5, 2574-2558, 1564531, 10.1080/25742558.2018.1564531 | |
6. | Zhenguo Bai, Threshold dynamics of a time-delayed SEIRS model with pulse vaccination, 2015, 269, 00255564, 178, 10.1016/j.mbs.2015.09.005 | |
7. | Ke Guo, Wanbiao Ma, Existence of positive periodic solutions of several types of biological models with periodic coefficients, 2023, 69, 14681218, 103760, 10.1016/j.nonrwa.2022.103760 | |
8. | Xi Li, Jianwei Shen, Qianqian Zheng, Linan Guan, Turing instability induced by crossing curves in network-organized system, 2024, 2024, 2731-4235, 10.1186/s13662-024-03826-3 |