Loading [Contrib]/a11y/accessibility-menu.js

Threshold dynamics of a periodic SIR model with delay in an infected compartment

  • Received: 01 March 2014 Accepted: 29 June 2018 Published: 01 January 2015
  • MSC : Primary: 34K13, 92D30; Secondary: 37N25.

  • Threshold dynamics of epidemic models in periodic environmentsattract more attention. But there are few papers which are concernedwith the case where the infected compartments satisfy a delaydifferential equation. For this reason, we investigate the dynamicalbehavior of a periodic SIR model with delay in an infectedcompartment. We first introduce the basic reproduction number$\mathcal {R}_0$ for the model, and then show that it can act as athreshold parameter that determines the uniform persistence orextinction of the disease. Numerical simulations are performed toconfirm the analytical results and illustrate the dependence of$\mathcal {R}_0$ on the seasonality and the latent period.

    Citation: Zhenguo Bai. Threshold dynamics of a periodic SIR model with delay in an infected compartment[J]. Mathematical Biosciences and Engineering, 2015, 12(3): 555-564. doi: 10.3934/mbe.2015.12.555

    Related Papers:

    [1] Abdelheq Mezouaghi, Salih Djillali, Anwar Zeb, Kottakkaran Sooppy Nisar . Global proprieties of a delayed epidemic model with partial susceptible protection. Mathematical Biosciences and Engineering, 2022, 19(1): 209-224. doi: 10.3934/mbe.2022011
    [2] Shengqiang Liu, Lin Wang . Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy. Mathematical Biosciences and Engineering, 2010, 7(3): 675-685. doi: 10.3934/mbe.2010.7.675
    [3] Jiawei Deng, Ping Jiang, Hongying Shu . Viral infection dynamics with mitosis, intracellular delays and immune response. Mathematical Biosciences and Engineering, 2023, 20(2): 2937-2963. doi: 10.3934/mbe.2023139
    [4] Lin Zhao, Zhi-Cheng Wang, Liang Zhang . Threshold dynamics of a time periodic and two–group epidemic model with distributed delay. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1535-1563. doi: 10.3934/mbe.2017080
    [5] Jie He, Zhenguo Bai . Global Hopf bifurcation of a cholera model with media coverage. Mathematical Biosciences and Engineering, 2023, 20(10): 18468-18490. doi: 10.3934/mbe.2023820
    [6] Shaoli Wang, Jianhong Wu, Libin Rong . A note on the global properties of an age-structured viral dynamic model with multiple target cell populations. Mathematical Biosciences and Engineering, 2017, 14(3): 805-820. doi: 10.3934/mbe.2017044
    [7] Jianquan Li, Xiaoyu Huo, Yuming Chen . Threshold dynamics of a viral infection model with defectively infected cells. Mathematical Biosciences and Engineering, 2022, 19(7): 6489-6503. doi: 10.3934/mbe.2022305
    [8] Xia Wang, Yuming Chen . An age-structured vector-borne disease model with horizontal transmission in the host. Mathematical Biosciences and Engineering, 2018, 15(5): 1099-1116. doi: 10.3934/mbe.2018049
    [9] Hai-Feng Huo, Fan Wu, Hong Xiang . On threshold dynamics for periodic and time-delayed impulsive systems and application to a periodic disease model. Mathematical Biosciences and Engineering, 2022, 19(1): 836-854. doi: 10.3934/mbe.2022038
    [10] Yilei Tang, Dongmei Xiao, Weinian Zhang, Di Zhu . Dynamics of epidemic models with asymptomatic infection and seasonal succession. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1407-1424. doi: 10.3934/mbe.2017073
  • Threshold dynamics of epidemic models in periodic environmentsattract more attention. But there are few papers which are concernedwith the case where the infected compartments satisfy a delaydifferential equation. For this reason, we investigate the dynamicalbehavior of a periodic SIR model with delay in an infectedcompartment. We first introduce the basic reproduction number$\mathcal {R}_0$ for the model, and then show that it can act as athreshold parameter that determines the uniform persistence orextinction of the disease. Numerical simulations are performed toconfirm the analytical results and illustrate the dependence of$\mathcal {R}_0$ on the seasonality and the latent period.


    [1] J. Math. Biol., 53 (2006), 421-436.
    [2] 2014, preprint.
    [3] J. Math. Biol., 62 (2011), 741-762.
    [4] Math. Biosci., 210 (2007), 647-658.
    [5] Nonlinear Anal., 74 (2011), 3548-3555.
    [6] Rocky Mountain J. Math., 9 (1979), 31-42.
    [7] Proc. R. Soc. B., 273 (2006), 2541-2550.
    [8] Bull. Math. Biol., 72 (2010), 1192-1207.
    [9] J. Math. Biol., 65 (2012), 623-652.
    [10] SIAM J. Appl. Math., 70 (2010), 2023-2044.
    [11] Nonlinear Anal. RWA, 11 (2010), 3106-3109.
    [12] Nonlinear Anal. RWA, 11 (2010), 55-59.
    [13] Appl. Math. Lett., 17 (2004), 1141-1145.
    [14] SIAM J. Math. Anal., 37 (2005), 251-275.
    [15] J. Math. Anal. Appl., 363 (2010), 230-237.
    [16] J. Math. Biol., 64 (2012), 933-949.
    [17] Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 1155-1170.
    [18] Mathematical Surveys and Monographs, 41. American Mathematical Society, Providence, RI, 1995.
    [19] J. Integral Equations, 7 (1984), 253-277.
    [20] J. Math. Biol., 30 (1992), 755-763.
    [21] SIAM J. Appl. Math., 69 (2008), 621-639.
    [22] J. Dyn. Diff. Equat., 20 (2008), 699-717.
    [23] Nonlinear Anal. RWA, 10 (2009), 3175-3189.
    [24] Math. Biosci., 208 (2007), 419-429.
    [25] Springer-Verlag, New York, 2003.
    [26] J. Math. Anal. Appl., 325 (2007), 496-516.
  • This article has been cited by:

    1. Erivelton G. Nepomuceno, Alípio M. Barbosa, Marcos X. Silva, Matjaž Perc, Individual-based modelling and control of bovine brucellosis, 2018, 5, 2054-5703, 180200, 10.1098/rsos.180200
    2. Eric Ávila-Vales, Erika Rivero-Esquivel, Gerardo Emilio García-Almeida, Global Dynamics of a Periodic SEIRS Model with General Incidence Rate, 2017, 2017, 1687-9643, 1, 10.1155/2017/5796958
    3. Liu Xiangsen, Dai Binxiang, Dynamics of a generalized predator‐prey model with delay and impulse via the basic reproduction number, 2019, 42, 0170-4214, 6878, 10.1002/mma.5794
    4. Erivelton G. Nepomuceno, Ricardo H.C. Takahashi, Luis A. Aguirre, Reducing vaccination level to eradicate a disease by means of a mixed control with isolation, 2018, 40, 17468094, 83, 10.1016/j.bspc.2017.09.004
    5. Ousmane Koutou, Bakary Traoré, Boureima Sangaré, Yuriy Rogovchenko, Mathematical model of malaria transmission dynamics with distributed delay and a wide class of nonlinear incidence rates, 2018, 5, 2574-2558, 1564531, 10.1080/25742558.2018.1564531
    6. Zhenguo Bai, Threshold dynamics of a time-delayed SEIRS model with pulse vaccination, 2015, 269, 00255564, 178, 10.1016/j.mbs.2015.09.005
    7. Ke Guo, Wanbiao Ma, Existence of positive periodic solutions of several types of biological models with periodic coefficients, 2023, 69, 14681218, 103760, 10.1016/j.nonrwa.2022.103760
    8. Xi Li, Jianwei Shen, Qianqian Zheng, Linan Guan, Turing instability induced by crossing curves in network-organized system, 2024, 2024, 2731-4235, 10.1186/s13662-024-03826-3
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3016) PDF downloads(529) Cited by(8)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog