The effect of time delay in plant--pathogen interactions with host demography

  • Received: 01 April 2014 Accepted: 29 June 2018 Published: 01 January 2015
  • MSC : Primary: 92D30; Secondary: 34K20, 37N25.

  • Botanical epidemic models are very important tools to study invasion, persistence and control of diseases. It is well known that limitations arise from considering constant infection rates. We replace this hypothesis in the framework of delay differential equations by proposing a delayed epidemic model for plant--pathogen interactions with host demography. Sufficient conditions for the global stability of the pathogen-free equilibrium and the permanence of the system are among the results obtained through qualitative analysis. We also show that the delay can cause stability switches of the coexistence equilibrium. In the undelayed case, we prove that the onset of oscillations may occur through Hopf bifurcation.

    Citation: Bruno Buonomo, Marianna Cerasuolo. The effect of time delay in plant--pathogen interactions with host demography[J]. Mathematical Biosciences and Engineering, 2015, 12(3): 473-490. doi: 10.3934/mbe.2015.12.473

    Related Papers:

    [1] Shishi Wang, Yuting Ding, Hongfan Lu, Silin Gong . Stability and bifurcation analysis of $ SIQR $ for the COVID-19 epidemic model with time delay. Mathematical Biosciences and Engineering, 2021, 18(5): 5505-5524. doi: 10.3934/mbe.2021278
    [2] Ning Bai, Rui Xu . Mathematical analysis of an HIV model with latent reservoir, delayed CTL immune response and immune impairment. Mathematical Biosciences and Engineering, 2021, 18(2): 1689-1707. doi: 10.3934/mbe.2021087
    [3] Hongfan Lu, Yuting Ding, Silin Gong, Shishi Wang . Mathematical modeling and dynamic analysis of SIQR model with delay for pandemic COVID-19. Mathematical Biosciences and Engineering, 2021, 18(4): 3197-3214. doi: 10.3934/mbe.2021159
    [4] Sarita Bugalia, Jai Prakash Tripathi, Hao Wang . Mathematical modeling of intervention and low medical resource availability with delays: Applications to COVID-19 outbreaks in Spain and Italy. Mathematical Biosciences and Engineering, 2021, 18(5): 5865-5920. doi: 10.3934/mbe.2021295
    [5] Zhichao Jiang, Xiaohua Bi, Tongqian Zhang, B.G. Sampath Aruna Pradeep . Global Hopf bifurcation of a delayed phytoplankton-zooplankton system considering toxin producing effect and delay dependent coefficient. Mathematical Biosciences and Engineering, 2019, 16(5): 3807-3829. doi: 10.3934/mbe.2019188
    [6] Jinhu Xu, Yicang Zhou . Bifurcation analysis of HIV-1 infection model with cell-to-cell transmission and immune response delay. Mathematical Biosciences and Engineering, 2016, 13(2): 343-367. doi: 10.3934/mbe.2015006
    [7] Dongmei Li, Bing Chai, Weihua Liu, Panpan Wen, Ruixue Zhang . Qualitative analysis of a class of SISM epidemic model influenced by media publicity. Mathematical Biosciences and Engineering, 2020, 17(5): 5727-5751. doi: 10.3934/mbe.2020308
    [8] Xiaomeng Ma, Zhanbing Bai, Sujing Sun . Stability and bifurcation control for a fractional-order chemostat model with time delays and incommensurate orders. Mathematical Biosciences and Engineering, 2023, 20(1): 437-455. doi: 10.3934/mbe.2023020
    [9] Huan Kong, Guohong Zhang, Kaifa Wang . Stability and Hopf bifurcation in a virus model with self-proliferation and delayed activation of immune cells. Mathematical Biosciences and Engineering, 2020, 17(5): 4384-4405. doi: 10.3934/mbe.2020242
    [10] Yuan Ma, Yunxian Dai . Stability and Hopf bifurcation analysis of a fractional-order ring-hub structure neural network with delays under parameters delay feedback control. Mathematical Biosciences and Engineering, 2023, 20(11): 20093-20115. doi: 10.3934/mbe.2023890
  • Botanical epidemic models are very important tools to study invasion, persistence and control of diseases. It is well known that limitations arise from considering constant infection rates. We replace this hypothesis in the framework of delay differential equations by proposing a delayed epidemic model for plant--pathogen interactions with host demography. Sufficient conditions for the global stability of the pathogen-free equilibrium and the permanence of the system are among the results obtained through qualitative analysis. We also show that the delay can cause stability switches of the coexistence equilibrium. In the undelayed case, we prove that the onset of oscillations may occur through Hopf bifurcation.


    [1] Nature, 280 (1979), 361-367.
    [2] Oxford University Press, Oxford and New York, 1991.
    [3] Math. Biosci. Eng., 8 (2011), 931-952.
    [4] SIAM J. Math. Anal., 33 (2002), 1144-1165.
    [5] J. Math. Biol., 33 (1995), 250-260.
    [6] John Wiley and Sons, Boston, 1982.
    [7] Appl. Math. Comput., 232 (2014), 858-871.
    [8] Springer, Berlin, 1993.
    [9] Math. Biosci. Engin., 1 (2004), 361-404.
    [10] J. Royal Soc. Interface, 7 (2010), 439-451.
    [11] J. Theor. Biol., 278 (2011), 32-43.
    [12] Phytopathology, 102 (2012), 365-380.
    [13] J. Math. Biol., 36 (1998), 227-248.
    [14] Adv. Bot. Res., 38 (2002), 1-64.
    [15] Philos. T. Roy. Soc. B, 363 (2008), 741-759.
    [16] Annu. Rev. Phytopathol., 46 (2008), 385-418.
    [17] Theor. Pop. Biol., 57 (2000), 219-233.
    [18] Springer-Verlag, Berlin, 1983.
    [19] SIAM J. Math. Anal., 20 (1989), 388-395.
    [20] J. Math. Biol., 63 (2011), 125-139.
    [21] Plant Pathol., 35 (1986), 355-361.
    [22] Physiol. Entomol., 29 (2004), 291-304.
    [23] J. Theor. Biol., 256 (2009), 201-214.
    [24] Phytopathology, 84 (1994), 24-27.
    [25] Virus Res., 159 (2011), 215-222.
    [26] Math. Med. Biol., 15 (1998), 1-18.
    [27] Math. Biosci. Eng., 3 (2006), 101-109.
    [28] Academic Press, 1993.
    [29] Math. Biosci., 160 (1999), 191-213.
    [30] J. Math. Anal. Appl., 182 (1994), 250-256.
    [31] Appl. Math. Lett., 17 (2004), 1141-1145.
    [32] Tohoku Math. J., 54 (2002), 581-591.
    [33] Eur. J. Plant Path., 115 (2006), 3-23.
    [34] American Phytopathological Society, St Paul, MN, 2007.
    [35] Nature, 280 (1979), 455-461.
    [36] Nonlinear Anal. RWA, 11 (2010), 55-59.
    [37] Plant Disease, 85 (2001), 1122-1122.
    [38] SIAM J. Appl. Math., 62 (2001), 58-69.
    [39] John Wiley & Sons, 2006.
    [40] Nonlinear Anal., 42 (2000), 931-947.
    [41] Dynamical Systems, 27 (2012), 145-160.
    [42] Math. Methods Appl. Sci., 30 (2007), 733-749.
    [43] J. Appl. Ecol., 43 (2006), 506-516.
    [44] Proc. Royal Soc. Lond. B Biol., 274 (2007), 11-18.
    [45] Phytopathology, 98 (2008), 239-249
    [46] Math. Biosci., 180 (2002), 29-48.
    [47] Academic Press, 1963.
    [48] J. Appl. Math. Comput., 35 (2011), 229-250.
    [49] Nonlinear Dynam., 61 (2010), 229-239.
    [50] Phytopathology, 61 (1971), 600-610.
    [51] Nonlinear Anal. RWA, 9 (2008), 1714-1726.
    [52] Discrete Dyn. Nat. Soc., 2008 (2008), 16pp.
  • This article has been cited by:

    1. Abhishek Kumar, , Dynamic Behavior of an SIR Epidemic Model along with Time Delay; Crowley–Martin Type Incidence Rate and Holling Type II Treatment Rate, 2019, 20, 1565-1339, 757, 10.1515/ijnsns-2018-0208
    2. Abhishek Kumar, Kanica Goel, , A deterministic time-delayed SIR epidemic model: mathematical modeling and analysis, 2020, 139, 1431-7613, 67, 10.1007/s12064-019-00300-7
    3. Santanu Ray, Fahad Al Basir, Impact of incubation delay in plant–vector interaction, 2020, 170, 03784754, 16, 10.1016/j.matcom.2019.09.001
    4. Cristiana J. Silva, Helmut Maurer, Delfim F. M. Torres, Optimal control of a Tuberculosis model with state and control delays, 2017, 14, 1551-0018, 321, 10.3934/mbe.2017021
    5. Nabyendu Rakshit, Fahad Al Basir, Arnab Banerjee, Santanu Ray, Dynamics of plant mosaic disease propagation and the usefulness of roguing as an alternative biological control, 2019, 38, 1476945X, 15, 10.1016/j.ecocom.2019.01.001
    6. Kanica Goel, Abhishek Kumar, , Nonlinear dynamics of a time-delayed epidemic model with two explicit aware classes, saturated incidences, and treatment, 2020, 101, 0924-090X, 1693, 10.1007/s11071-020-05762-9
    7. Fahad Al Basir, Ezio Venturino, Santanu Ray, Priti Kumar Roy, Impact of farming awareness and delay on the dynamics of mosaic disease in Jatropha curcas plantations, 2018, 37, 0101-8205, 6108, 10.1007/s40314-018-0675-6
    8. F. Al Basir, Y. N. Kyrychko, K. B. Blyuss, S. Ray, Effects of Vector Maturation Time on the Dynamics of Cassava Mosaic Disease, 2021, 83, 0092-8240, 10.1007/s11538-021-00921-4
    9. Phongchai Jittamai, Natdanai Chanlawong, Wanyok Atisattapong, Wanwarat Anlamlert, Natthiya Buensanteai, Reproduction number and sensitivity analysis of cassava mosaic disease spread for policy design, 2021, 18, 1551-0018, 5069, 10.3934/mbe.2021258
    10. Leo Turner, Andrew Burbanks, Marianna Cerasuolo, PCa dynamics with neuroendocrine differentiation and distributed delay, 2021, 18, 1551-0018, 8577, 10.3934/mbe.2021425
    11. Barducci Alessandro, Convolutional modelling of epidemics, 2022, 5, 26897636, 180, 10.17352/amp.000063
    12. Fahad Al Basir, Konstantin B. Blyuss, Ezio Venturino, Stability and bifurcation analysis of a multi-delay model for mosaic disease transmission, 2023, 8, 2473-6988, 24545, 10.3934/math.20231252
    13. Fahad Al Basir, Role of the whitefly maturation period on mosaic disease propagation in Jatropha curcas plant, 2023, 9, 2297-4687, 10.3389/fams.2023.1238497
    14. Laid Boudjellal, Cristiana J. Silva, 2025, 9780443154454, 1, 10.1016/B978-0-44-315445-4.00007-X
    15. Niko Sauer, Epidemics: towards understanding undulation and decay, 2025, 36, 1012-9405, 10.1007/s13370-025-01318-5
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3688) PDF downloads(624) Cited by(15)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog