Citation: Bruno Buonomo, Marianna Cerasuolo. The effect of time delay in plant--pathogen interactions with host demography[J]. Mathematical Biosciences and Engineering, 2015, 12(3): 473-490. doi: 10.3934/mbe.2015.12.473
[1] | Shishi Wang, Yuting Ding, Hongfan Lu, Silin Gong . Stability and bifurcation analysis of $ SIQR $ for the COVID-19 epidemic model with time delay. Mathematical Biosciences and Engineering, 2021, 18(5): 5505-5524. doi: 10.3934/mbe.2021278 |
[2] | Ning Bai, Rui Xu . Mathematical analysis of an HIV model with latent reservoir, delayed CTL immune response and immune impairment. Mathematical Biosciences and Engineering, 2021, 18(2): 1689-1707. doi: 10.3934/mbe.2021087 |
[3] | Hongfan Lu, Yuting Ding, Silin Gong, Shishi Wang . Mathematical modeling and dynamic analysis of SIQR model with delay for pandemic COVID-19. Mathematical Biosciences and Engineering, 2021, 18(4): 3197-3214. doi: 10.3934/mbe.2021159 |
[4] | Sarita Bugalia, Jai Prakash Tripathi, Hao Wang . Mathematical modeling of intervention and low medical resource availability with delays: Applications to COVID-19 outbreaks in Spain and Italy. Mathematical Biosciences and Engineering, 2021, 18(5): 5865-5920. doi: 10.3934/mbe.2021295 |
[5] | Zhichao Jiang, Xiaohua Bi, Tongqian Zhang, B.G. Sampath Aruna Pradeep . Global Hopf bifurcation of a delayed phytoplankton-zooplankton system considering toxin producing effect and delay dependent coefficient. Mathematical Biosciences and Engineering, 2019, 16(5): 3807-3829. doi: 10.3934/mbe.2019188 |
[6] | Jinhu Xu, Yicang Zhou . Bifurcation analysis of HIV-1 infection model with cell-to-cell transmission and immune response delay. Mathematical Biosciences and Engineering, 2016, 13(2): 343-367. doi: 10.3934/mbe.2015006 |
[7] | Dongmei Li, Bing Chai, Weihua Liu, Panpan Wen, Ruixue Zhang . Qualitative analysis of a class of SISM epidemic model influenced by media publicity. Mathematical Biosciences and Engineering, 2020, 17(5): 5727-5751. doi: 10.3934/mbe.2020308 |
[8] | Xiaomeng Ma, Zhanbing Bai, Sujing Sun . Stability and bifurcation control for a fractional-order chemostat model with time delays and incommensurate orders. Mathematical Biosciences and Engineering, 2023, 20(1): 437-455. doi: 10.3934/mbe.2023020 |
[9] | Huan Kong, Guohong Zhang, Kaifa Wang . Stability and Hopf bifurcation in a virus model with self-proliferation and delayed activation of immune cells. Mathematical Biosciences and Engineering, 2020, 17(5): 4384-4405. doi: 10.3934/mbe.2020242 |
[10] | Yuan Ma, Yunxian Dai . Stability and Hopf bifurcation analysis of a fractional-order ring-hub structure neural network with delays under parameters delay feedback control. Mathematical Biosciences and Engineering, 2023, 20(11): 20093-20115. doi: 10.3934/mbe.2023890 |
[1] | Nature, 280 (1979), 361-367. |
[2] | Oxford University Press, Oxford and New York, 1991. |
[3] | Math. Biosci. Eng., 8 (2011), 931-952. |
[4] | SIAM J. Math. Anal., 33 (2002), 1144-1165. |
[5] | J. Math. Biol., 33 (1995), 250-260. |
[6] | John Wiley and Sons, Boston, 1982. |
[7] | Appl. Math. Comput., 232 (2014), 858-871. |
[8] | Springer, Berlin, 1993. |
[9] | Math. Biosci. Engin., 1 (2004), 361-404. |
[10] | J. Royal Soc. Interface, 7 (2010), 439-451. |
[11] | J. Theor. Biol., 278 (2011), 32-43. |
[12] | Phytopathology, 102 (2012), 365-380. |
[13] | J. Math. Biol., 36 (1998), 227-248. |
[14] | Adv. Bot. Res., 38 (2002), 1-64. |
[15] | Philos. T. Roy. Soc. B, 363 (2008), 741-759. |
[16] | Annu. Rev. Phytopathol., 46 (2008), 385-418. |
[17] | Theor. Pop. Biol., 57 (2000), 219-233. |
[18] | Springer-Verlag, Berlin, 1983. |
[19] | SIAM J. Math. Anal., 20 (1989), 388-395. |
[20] | J. Math. Biol., 63 (2011), 125-139. |
[21] | Plant Pathol., 35 (1986), 355-361. |
[22] | Physiol. Entomol., 29 (2004), 291-304. |
[23] | J. Theor. Biol., 256 (2009), 201-214. |
[24] | Phytopathology, 84 (1994), 24-27. |
[25] | Virus Res., 159 (2011), 215-222. |
[26] | Math. Med. Biol., 15 (1998), 1-18. |
[27] | Math. Biosci. Eng., 3 (2006), 101-109. |
[28] | Academic Press, 1993. |
[29] | Math. Biosci., 160 (1999), 191-213. |
[30] | J. Math. Anal. Appl., 182 (1994), 250-256. |
[31] | Appl. Math. Lett., 17 (2004), 1141-1145. |
[32] | Tohoku Math. J., 54 (2002), 581-591. |
[33] | Eur. J. Plant Path., 115 (2006), 3-23. |
[34] | American Phytopathological Society, St Paul, MN, 2007. |
[35] | Nature, 280 (1979), 455-461. |
[36] | Nonlinear Anal. RWA, 11 (2010), 55-59. |
[37] | Plant Disease, 85 (2001), 1122-1122. |
[38] | SIAM J. Appl. Math., 62 (2001), 58-69. |
[39] | John Wiley & Sons, 2006. |
[40] | Nonlinear Anal., 42 (2000), 931-947. |
[41] | Dynamical Systems, 27 (2012), 145-160. |
[42] | Math. Methods Appl. Sci., 30 (2007), 733-749. |
[43] | J. Appl. Ecol., 43 (2006), 506-516. |
[44] | Proc. Royal Soc. Lond. B Biol., 274 (2007), 11-18. |
[45] | Phytopathology, 98 (2008), 239-249 |
[46] | Math. Biosci., 180 (2002), 29-48. |
[47] | Academic Press, 1963. |
[48] | J. Appl. Math. Comput., 35 (2011), 229-250. |
[49] | Nonlinear Dynam., 61 (2010), 229-239. |
[50] | Phytopathology, 61 (1971), 600-610. |
[51] | Nonlinear Anal. RWA, 9 (2008), 1714-1726. |
[52] | Discrete Dyn. Nat. Soc., 2008 (2008), 16pp. |
1. | Abhishek Kumar, , Dynamic Behavior of an SIR Epidemic Model along with Time Delay; Crowley–Martin Type Incidence Rate and Holling Type II Treatment Rate, 2019, 20, 1565-1339, 757, 10.1515/ijnsns-2018-0208 | |
2. | Abhishek Kumar, Kanica Goel, , A deterministic time-delayed SIR epidemic model: mathematical modeling and analysis, 2020, 139, 1431-7613, 67, 10.1007/s12064-019-00300-7 | |
3. | Santanu Ray, Fahad Al Basir, Impact of incubation delay in plant–vector interaction, 2020, 170, 03784754, 16, 10.1016/j.matcom.2019.09.001 | |
4. | Cristiana J. Silva, Helmut Maurer, Delfim F. M. Torres, Optimal control of a Tuberculosis model with state and control delays, 2017, 14, 1551-0018, 321, 10.3934/mbe.2017021 | |
5. | Nabyendu Rakshit, Fahad Al Basir, Arnab Banerjee, Santanu Ray, Dynamics of plant mosaic disease propagation and the usefulness of roguing as an alternative biological control, 2019, 38, 1476945X, 15, 10.1016/j.ecocom.2019.01.001 | |
6. | Kanica Goel, Abhishek Kumar, , Nonlinear dynamics of a time-delayed epidemic model with two explicit aware classes, saturated incidences, and treatment, 2020, 101, 0924-090X, 1693, 10.1007/s11071-020-05762-9 | |
7. | Fahad Al Basir, Ezio Venturino, Santanu Ray, Priti Kumar Roy, Impact of farming awareness and delay on the dynamics of mosaic disease in Jatropha curcas plantations, 2018, 37, 0101-8205, 6108, 10.1007/s40314-018-0675-6 | |
8. | F. Al Basir, Y. N. Kyrychko, K. B. Blyuss, S. Ray, Effects of Vector Maturation Time on the Dynamics of Cassava Mosaic Disease, 2021, 83, 0092-8240, 10.1007/s11538-021-00921-4 | |
9. | Phongchai Jittamai, Natdanai Chanlawong, Wanyok Atisattapong, Wanwarat Anlamlert, Natthiya Buensanteai, Reproduction number and sensitivity analysis of cassava mosaic disease spread for policy design, 2021, 18, 1551-0018, 5069, 10.3934/mbe.2021258 | |
10. | Leo Turner, Andrew Burbanks, Marianna Cerasuolo, PCa dynamics with neuroendocrine differentiation and distributed delay, 2021, 18, 1551-0018, 8577, 10.3934/mbe.2021425 | |
11. | Barducci Alessandro, Convolutional modelling of epidemics, 2022, 5, 26897636, 180, 10.17352/amp.000063 | |
12. | Fahad Al Basir, Konstantin B. Blyuss, Ezio Venturino, Stability and bifurcation analysis of a multi-delay model for mosaic disease transmission, 2023, 8, 2473-6988, 24545, 10.3934/math.20231252 | |
13. | Fahad Al Basir, Role of the whitefly maturation period on mosaic disease propagation in Jatropha curcas plant, 2023, 9, 2297-4687, 10.3389/fams.2023.1238497 | |
14. | Laid Boudjellal, Cristiana J. Silva, 2025, 9780443154454, 1, 10.1016/B978-0-44-315445-4.00007-X | |
15. | Niko Sauer, Epidemics: towards understanding undulation and decay, 2025, 36, 1012-9405, 10.1007/s13370-025-01318-5 |