Loading [Contrib]/a11y/accessibility-menu.js

Heteroclinic bifurcation for a general predator-prey model with Allee effect and state feedback impulsive control strategy

  • Received: 01 September 2014 Accepted: 29 June 2018 Published: 01 June 2015
  • MSC : Primary: 34A37, 34C23, 34C37, 34D10.

  • In this paper, we analyze a general predator-prey modelwith state feedback impulsive harvesting strategies in which the prey species displays a strongAllee effect. We firstly show the existence of order-$1$ heteroclinic cycle and order-$1$ positive periodic solutions by using the geometric theory of differential equations for the unperturbed system. Based on the theory of rotated vector fields, the order-$1$ positive periodic solutions and heteroclinic bifurcation are studied for the perturbed system. Finally, some numerical simulations are provided to illustrate our main results. All the results indicate that the harvesting rate should be maintained at a reasonable range to keep the sustainable development of ecological systems.

    Citation: Qizhen Xiao, Binxiang Dai. Heteroclinic bifurcation for a general predator-prey model with Allee effect and state feedback impulsive control strategy[J]. Mathematical Biosciences and Engineering, 2015, 12(5): 1065-1081. doi: 10.3934/mbe.2015.12.1065

    Related Papers:

    [1] Fang Liu, Yanfei Du . Spatiotemporal dynamics of a diffusive predator-prey model with delay and Allee effect in predator. Mathematical Biosciences and Engineering, 2023, 20(11): 19372-19400. doi: 10.3934/mbe.2023857
    [2] Yongli Cai, Malay Banerjee, Yun Kang, Weiming Wang . Spatiotemporal complexity in a predator--prey model with weak Allee effects. Mathematical Biosciences and Engineering, 2014, 11(6): 1247-1274. doi: 10.3934/mbe.2014.11.1247
    [3] Moitri Sen, Malay Banerjee, Yasuhiro Takeuchi . Influence of Allee effect in prey populations on the dynamics of two-prey-one-predator model. Mathematical Biosciences and Engineering, 2018, 15(4): 883-904. doi: 10.3934/mbe.2018040
    [4] Kawkab Al Amri, Qamar J. A Khan, David Greenhalgh . Combined impact of fear and Allee effect in predator-prey interaction models on their growth. Mathematical Biosciences and Engineering, 2024, 21(10): 7211-7252. doi: 10.3934/mbe.2024319
    [5] Mengyun Xing, Mengxin He, Zhong Li . Dynamics of a modified Leslie-Gower predator-prey model with double Allee effects. Mathematical Biosciences and Engineering, 2024, 21(1): 792-831. doi: 10.3934/mbe.2024034
    [6] Juan Ye, Yi Wang, Zhan Jin, Chuanjun Dai, Min Zhao . Dynamics of a predator-prey model with strong Allee effect and nonconstant mortality rate. Mathematical Biosciences and Engineering, 2022, 19(4): 3402-3426. doi: 10.3934/mbe.2022157
    [7] A. Q. Khan, I. Ahmad, H. S. Alayachi, M. S. M. Noorani, A. Khaliq . Discrete-time predator-prey model with flip bifurcation and chaos control. Mathematical Biosciences and Engineering, 2020, 17(5): 5944-5960. doi: 10.3934/mbe.2020317
    [8] Parvaiz Ahmad Naik, Muhammad Amer, Rizwan Ahmed, Sania Qureshi, Zhengxin Huang . Stability and bifurcation analysis of a discrete predator-prey system of Ricker type with refuge effect. Mathematical Biosciences and Engineering, 2024, 21(3): 4554-4586. doi: 10.3934/mbe.2024201
    [9] Yuhong Huo, Gourav Mandal, Lakshmi Narayan Guin, Santabrata Chakravarty, Renji Han . Allee effect-driven complexity in a spatiotemporal predator-prey system with fear factor. Mathematical Biosciences and Engineering, 2023, 20(10): 18820-18860. doi: 10.3934/mbe.2023834
    [10] Xin-You Meng, Yu-Qian Wu . Bifurcation analysis in a singular Beddington-DeAngelis predator-prey model with two delays and nonlinear predator harvesting. Mathematical Biosciences and Engineering, 2019, 16(4): 2668-2696. doi: 10.3934/mbe.2019133
  • In this paper, we analyze a general predator-prey modelwith state feedback impulsive harvesting strategies in which the prey species displays a strongAllee effect. We firstly show the existence of order-$1$ heteroclinic cycle and order-$1$ positive periodic solutions by using the geometric theory of differential equations for the unperturbed system. Based on the theory of rotated vector fields, the order-$1$ positive periodic solutions and heteroclinic bifurcation are studied for the perturbed system. Finally, some numerical simulations are provided to illustrate our main results. All the results indicate that the harvesting rate should be maintained at a reasonable range to keep the sustainable development of ecological systems.


    [1] University of Chicago Press, Chicago, 1931.
    [2] Journal of Beihua University (Natural Science), 12 (2011), 1-9. (in Chinese)
    [3] Ecol. Model., 213 (2008), 356-364.
    [4] Proc. R. Soc. Lond. B., 266 (1999), 557-563.
    [5] Theor. Popul. Biol., 64 (2003), 1-10.
    [6] Int. J. Biomath., 5 (2012), 1250059, 19pp.
    [7] Hifr Co, Edmonton, 1980.
    [8] Amer. Naturalist, 151 (1998), 487-496.
    [9] Nonlinear Anal. Hybrid Syst., 15 (2015), 98-111.
    [10] SIAM J. Appl. Math., 72 (2012), 1524-1548.
    [11] Nonlinear Dynam., 73 (2013), 815-826.
    [12] Int. J. Biomath., 7 (2014), 1450035, 21pp.
    [13] Oikos, 82 (1998), 384-392, http://www.jstor.org/stable/3546980.
    [14] Ecol. Model., 154 (2002), 1-7.
    [15] Commun. Nonlinear Sci. Numer. Simulat., 23 (2015), 78-88.
    [16] Biosystems, 104 (2011), 77-86.
    [17] Nonlinear Dynam., 65 (2011), 1-10.
    [18] J. Math. Biol., 62 (2011), 291-331.
    [19] Int. J. Biomath., 6 (2013), 1350031, 15pp.
    [20] Appl. Math. Comput., 237 (2014), 282-292.
    [21] Nonlinear Dynam., 76 (2014), 1109-1117.
    [22] Shanghai Science and Technology Press, Shanghai, 1984. (in Chinese)
    [23] Math. Biosci., 238 (2012), 55-64.
    [24] Theor. Popul. Biol., 67 (2005), 23-31.
    [25] Math. Biosci., 189 (2004), 103-113.
  • This article has been cited by:

    1. Huilan Wang, Binxiang Dai, Qizhen Xiao, Existence of order-1 periodic solutions for a viral infection model with state-dependent impulsive control, 2019, 2019, 1687-1847, 10.1186/s13662-019-1967-x
    2. Jing Xu, Mingzhan Huang, Xinyu Song, Dynamical analysis of a two-species competitive system with state feedback impulsive control, 2020, 13, 1793-5245, 2050007, 10.1142/S1793524520500072
    3. Mingzhan Huang, Shouzong Liu, Xinyu Song, Lansun Chen, Dynamics of Unilateral and Bilateral Control Systems with State Feedback for Renewable Resource Management, 2020, 2020, 1076-2787, 1, 10.1155/2020/9453941
    4. Wenjie Li, Jinchen Ji, Lihong Huang, Global dynamic behavior of a predator–prey model under ratio-dependent state impulsive control, 2020, 77, 0307904X, 1842, 10.1016/j.apm.2019.09.033
    5. Wenjie Li, Lihong Huang, Zhenyuan Guo, Jinchen Ji, Global dynamic behavior of a plant disease model with ratio dependent impulsive control strategy, 2020, 177, 03784754, 120, 10.1016/j.matcom.2020.03.009
    6. Xiangsen Liu, Binxiang Dai, Dynamics of a predator–prey model with double Allee effects and impulse, 2017, 88, 0924-090X, 685, 10.1007/s11071-016-3270-7
    7. Yuan Tian, Yan Gao, Kaibiao Sun, A fishery predator-prey model with anti-predator behavior and complex dynamics induced by weighted fishing strategies, 2023, 20, 1551-0018, 1558, 10.3934/mbe.2023071
    8. Wenjie Li, Jinchen Ji, Lihong Huang, Ying Zhang, Complex dynamics and impulsive control of a chemostat model under the ratio threshold policy, 2023, 167, 09600779, 113077, 10.1016/j.chaos.2022.113077
    9. Wenjie Li, Ying Zhang, Lihong Huang, Dynamics analysis of a predator–prey model with nonmonotonic functional response and impulsive control, 2023, 204, 03784754, 529, 10.1016/j.matcom.2022.09.002
    10. Ming Liu, Zhaowen Zheng, Cui-Qin Ma, Dongpo Hu, Hopf and Bogdanov–Takens Bifurcations of a Delayed Bazykin Model, 2024, 23, 1575-5460, 10.1007/s12346-024-00996-z
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2590) PDF downloads(470) Cited by(10)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog