A new model with delay for mosquito population dynamics

  • In this paper, we formulate a new model with maturation delay formosquito population incorporating the impact of blood meal resourcefor mosquito reproduction. Our results suggest that except for theusual crowded effect for adult mosquitoes, the impact of blood mealresource in a given region determines the mosquito abundance, it isalso important for the population dynamics of mosquito which mayinduce Hopf bifurcation. The existence of a stable periodic solutionis proved both analytically and numerically. The new model formosquito also suggests that the resources for mosquito reproductionshould not be ignored or mixed with the impact of blood mealresources for mosquito survival and both impacts should beconsidered in the model of mosquito population. The impact ofmaturation delay is also analyzed.

    Citation: Hui Wan, Huaiping Zhu. A new model with delay for mosquito population dynamics[J]. Mathematical Biosciences and Engineering, 2014, 11(6): 1395-1410. doi: 10.3934/mbe.2014.11.1395

    Related Papers:

    [1] João Paulo Curto, Pedro Dinis Gaspar . Traceability in food supply chains: SME focused traceability framework for chain-wide quality and safety-Part 2. AIMS Agriculture and Food, 2021, 6(2): 708-736. doi: 10.3934/agrfood.2021042
    [2] Giuseppe Timpanaro, Paolo Guarnaccia, Silvia Zingale, Vera Teresa Foti, Alessandro Scuderi . The sustainability role in the purchasing choice of agri-food products in the United Arab Emirates and Italy. AIMS Agriculture and Food, 2022, 7(2): 212-240. doi: 10.3934/agrfood.2022014
    [3] João Paulo Curto, Pedro Dinis Gaspar . Traceability in food supply chains: Review and SME focused analysis-Part 1. AIMS Agriculture and Food, 2021, 6(2): 679-707. doi: 10.3934/agrfood.2021041
    [4] Wei Yang, Bryan Anh, Phuc Le . Do consumers care about environmentally sustainable attributes along the food supply chain? —A systematic literature review. AIMS Agriculture and Food, 2023, 8(2): 513-533. doi: 10.3934/agrfood.2023027
    [5] Mohamed-Yousif Ibrahim Mohamed, Ihab Habib . Listeria monocytogenes in food products, and its virulence in North Africa. AIMS Agriculture and Food, 2025, 10(1): 97-128. doi: 10.3934/agrfood.2025006
    [6] Mohamed-Yousif Ibrahim Mohamed . Campylobacteriosis in North Africa. AIMS Agriculture and Food, 2024, 9(3): 801-821. doi: 10.3934/agrfood.2024043
    [7] Monsuru Adekunle Salisu, Yusuf Opeyemi Oyebamiji, Omowunmi Kayode Ahmed, Noraziyah A Shamsudin, Yusoff Siti Fairuz, Oladosu Yusuff, Mohd Rafii Yusop, Zulkefly Sulaiman, Fatai Arolu . A systematic review of emerging trends in crop cultivation using soilless techniques for sustainable agriculture and food security in post-pandemic. AIMS Agriculture and Food, 2024, 9(2): 666-692. doi: 10.3934/agrfood.2024036
    [8] Katharina Biely, Erik Mathijs, Steven Van Passel . Causal loop diagrams to systematically analyze market power in the Belgian sugar value chain. AIMS Agriculture and Food, 2019, 4(3): 711-730. doi: 10.3934/agrfood.2019.3.711
    [9] Penda Sissoko, Gry Synnevag, Jens B. Aune . Effects of low-cost agricultural technology package on income, cereal surplus production, household expenditure, and food security in the drylands of Mali. AIMS Agriculture and Food, 2022, 7(1): 22-36. doi: 10.3934/agrfood.2022002
    [10] Jessie Melo, Chaiane Quevedo, Ana Graça, Célia Quintas . Hygienic quality of dehydrated aromatic herbs marketed in Southern Portugal. AIMS Agriculture and Food, 2020, 5(1): 46-53. doi: 10.3934/agrfood.2020.1.46
  • In this paper, we formulate a new model with maturation delay formosquito population incorporating the impact of blood meal resourcefor mosquito reproduction. Our results suggest that except for theusual crowded effect for adult mosquitoes, the impact of blood mealresource in a given region determines the mosquito abundance, it isalso important for the population dynamics of mosquito which mayinduce Hopf bifurcation. The existence of a stable periodic solutionis proved both analytically and numerically. The new model formosquito also suggests that the resources for mosquito reproductionshould not be ignored or mixed with the impact of blood mealresources for mosquito survival and both impacts should beconsidered in the model of mosquito population. The impact ofmaturation delay is also analyzed.


    The theory of fixed points takes an important place in the transition from classical analysis to modern analysis. One of the most remarkable works on fixed point of functions was done by Banach [9]. Various generalizations of Banach fixed point result were made by numerous mathematicians [1,2,3,6,12,13,14,17,19,20,25,26]. One of the generalizations of the metric space is the quasi metric space that was introduced by Wilson [30]. The commutativity condition does not hold in general in quasi metric spaces. Several authors used these concepts to prove some fixed point theorems, see [7,10,15,21]. On the other hand Bakhtin [8] and Czerwik [11] generalized the triangle inequality by multiplying the right hand side of triangle inequality in metric spaces by a parameter $ b\geq 1 $ and defined $ b $-metric spaces, for more results, see [4,23,24]. Fixed point results for multivalued mappings generalizes the results for single-valued mappings. Many interesting results have been proved in the setting of multivalued mappings, for example, see [5,26,29]. Kamran et al. [12] introduced a new concept of generalized b metric spaces, named as extended $ b $-metric spaces, see also [22]. They replaced the parameter $ b\geq 1 $ in triangle inequality by the control function $ \theta :X\times X\rightarrow \lbrack 1, \infty). $ Mlaiki et al. [16] replaced the triangle inequality in $ b $-metric spaces by using control function in a different style and introduced controlled metric type spaces. Abdeljawad et al. [1] generalized the idea of controlled metric type spaces and introduced double controlled metric type spaces. They replaced the control function $ \xi (x, y) $ in triangle inequality by two functions $ \xi (x, y) $ and $ \top (x, y) $, see also [27,28]$. $ In this paper, the concept of double controlled quasi metric type spaces has been discussed. Fixed point results and several examples are established. First of all, we discuss the previous concepts that will be useful to understand the paper.

    Now, we define double controlled metric type space.

    Definition 1.1.[1] Given non-comparable functions $ \xi, \top :X\times X\rightarrow \lbrack 1, \infty) $. If $ \triangle :X\times X\rightarrow \lbrack 0, \infty) $ satisfies:

    (q1) $ \triangle (\omega, v) = 0 $ if and only if $ \omega = v $,

    (q2) $ \triangle (\omega, v) = \triangle (v, \omega), $

    (q3) $ \triangle (\omega, v)\leq \xi (\omega, e)\triangle (\omega, e)+\top (e, v)\triangle (e, v), $

    for all $ \omega, v, e\in X $. Then, $ \triangle $ is called a double controlled metric with the functions $ \xi $, $ \top $ and the pair $ (X, \triangle) $ is called double controlled metric type space with the functions $ \xi, \top $.

    The classical result to obtain fixed point of a mapping in double controlled metric type space is given below.

    Theorem 1.2. [1] Let $ (X, \triangle) $ be a complete double controlled metric type space with the functions $ \xi, \top $ $ :X\times X $ $ \rightarrow \lbrack 1, \infty) $ and let $ T:X\rightarrow X $ be a given mapping. Suppose that there exists $ k\in (0, 1) $ such that

    $ (T(x),T(y)k(x,y), for all x,yX.
    $

    For $ \omega _{0}\in X, $ choose $ \omega _{g} = T^{g}\omega _{0}. $ Assume that

    $ supm1limiξ(ωi+1,ωi+2)ξ(ωi,ωi+1)(ωi+1,ωm)<1k.
    $

    In the addition, assume that, for every $ \omega \in X $, we have

    $ limgξ(ω,ωg), and limg(ω g,ω) exists and are finite.
    $

    Then $ T $ has a unique fixed point $ \omega ^{\ast }\in X $.

    Now, we are introducing the concept of double controlled quasi metric type space and controlled quasi metric type space.

    Definition 1.3. Given non-comparable functions $ \xi, \top :X\times X\rightarrow \lbrack 1, \infty) $. If $ \triangle :X\times X\rightarrow \lbrack 0, \infty) $ satisfies

    (q1) $ \triangle (\omega, v) = 0 $ if and only if $ \omega = v $,

    (q2) $ \triangle (\omega, v)\leq $ $ \xi (\omega, e)\triangle (\omega, e)+\top (e, v)\triangle (e, v), $

    for all $ \omega, v, e\in X $. Then, $ \triangle $ is called a double controlled quasi metric type with the functions $ \xi $, $ \top $ and $ (X, \triangle) $ is called a double controlled quasi metric type space. If $ \top (e, v) = \xi (e, v) $ then $ (X, \triangle) $ is called a controlled quasi metric type space.

    Remark 1.4. Any quasi metric space or any double controlled metric type space is also a double controlled quasi metric type space but, the converse is not true in general, see examples (1.5, 2.4, 2.12 and 2.15).

    Example 1.5. Let $ X = \left \{ 0, 1, 2\right \}. $ Define $ \triangle :X\times X\rightarrow \lbrack 0 $, $ \infty) $ by $ \triangle (0, 1) = 4, $ $ \triangle (0, 2) = 1, $ $ \triangle (1, 0) = 3 = \triangle \left(1, 2\right), $ $ \triangle (2, 0) = 0, $ $ \triangle (2, 1) = 2, $ $ \triangle (0, 0) = \triangle (1, 1) = \triangle (2, 2) = 0. $

    Define $ \xi, \top :G\times G\rightarrow \lbrack 1 $, $ \infty) $ as $ \xi (0, 1) = $ $ \xi (1, 0) = $ $ \xi \left(1, 2\right) = 1, $ $ \xi (0, 2) = \frac{5}{4}, $ $ \xi (2, 0) = \frac{10}{9}, $ $ \xi (2, 1) = \frac{20}{19}, $ $ \xi (0, 0) = $ $ \xi (1, 1) = $ $ \xi (2, 2) = 1, $ $ \top (0, 1) = \top (1, 0) = \top (0, 2) = \top \left(1, 2\right) = 1, $ $ \top (2, 0) = \frac{3}{2}, $ $ \top (2, 1) = \frac{11}{8}, $ $ \top (0, 0) = \top (1, 1) = \top (2, 2) = 1. $ It is clear that $ \triangle $ is double controlled quasi metric type with the functions $ \xi $, $ \top. $ Let $ w = 0, $ $ e = 2, $ $ v = 1, $ we have

    $ (0,1)=4>3=(0,2)+(2,1).
    $

    So $ \triangle $ is not a quasi metric. Also, it is not a controlled quasi metric type. Indeed,

    $ (0,1)=4>134=ξ(0,2)(0,2)+ξ(2,1)(2,1).
    $

    Moreover, it is not double controlled metric type space because, we have

    $ (0,1)=ξ(0,2)(0,2)+(2,1)(2,1)=5516(1,0).
    $

    The convergence of a sequence in double controlled quasi metric type space is defined as:

    Definition 1.6. Let $ (X, \triangle) $ be a double controlled quasi metric type space with two functions. A sequence $ \{u_{t}\} $ is convergent to some $ u $ in $ X $ if and only if $ \lim_{t\rightarrow \infty }\triangle (u_{t}, u) = \lim_{t\rightarrow \infty }\triangle (u, u_{t}) = 0 $.

    Now, we discuss left Cauchy, right Cauchy and dual Cauchy sequences in double controlled quasi metric type space.

    Definition 1.7. Let $ (X, \triangle) $ be a double controlled quasi metric type space with two functions.

    (i) The sequence $ \{u_{t}\} $ is a left Cauchy if and only if for every $ \varepsilon > 0 $ such that $ \triangle (u_{m}, u_{t}) < \varepsilon $, for all $ t > m > t_{\varepsilon } $, where $ t_{\varepsilon } $ is some integer or $ \lim_{t, m\rightarrow \infty }\triangle (u_{m}, u_{t}) = 0 $.

    (ii) The sequence $ \{u_{t}\} $ is a right Cauchy if and only if for every $ \varepsilon > 0 $ such that $ \triangle (u_{m}, u_{t}) < \varepsilon $, for all $ m > t > t_{\varepsilon } $, where $ t_{\varepsilon } $ is some integer.

    (iii) The sequence $ \{u_{t}\} $ is a dual Cauchy if and only if it is both left as well as right Cauchy.

    Now, we define left complete, right complete and dual complete double controlled quasi metric type spaces.

    Definition 1.8. Let $ (X, \triangle) $ be a double controlled quasi metric type space. Then $ (X, \triangle) $ is left complete, right complete and dual complete if and only if each left-Cauchy, right Cauchy and dual Cauchy sequence in $ X $ is convergent respectively.

    Note that every dual complete double controlled quasi metric type space is left complete but the converse is not true in general, so it is better to prove results in left complete double controlled quasi metric type space instead of dual complete.

    Best approximation in a set and proximinal set are defined as:

    Definition 1.9. Let $ ({\Im }, \triangle) $ be a double controlled quasi metric type space. Let $ A $ be a non-empty set and $ l\in \Im. $ An element $ y_{0}\in A $ is called a best approximation in $ A $ if

    $ (l,A)=(l,y0), where (l,A)=infyA(l,y)and (A,l)=(y0,l), where (A,l)=infyA(y,l).
    $

    If each $ l\in \Im $ has a best approximation in $ A, $ then $ A $ is know as proximinal set. $ P(\Im) $ is equal to the set of all proximinal subsets of $ \Im. $

    Double controlled Hausdorff quasi metric type space is defined as:

    Definition 1.10. The function $ H_{_{\triangle }}:P(E)\times P(E)\rightarrow \lbrack 0, \infty), $ defined by

    $ H(C,F)=max{supaC(a,F), supbF(C,b)}
    $

    is called double controlled quasi Hausdorff metric type on $ P(E). $ Also $ (P(E), H_{_{\triangle }}) $ is known as double controlled Hausdorff quasi metric type space.

    The following lemma plays an important role in the proof of our main result.

    Lemma 1.11. Let $ \left(X, \triangle \right) $ be a double controlled quasi metric type space. Let $ (P(E), H_{_{\triangle }}) $ be a double controlled Hausdorff quasi metric type space on $ P(E). $ Then, for all $ C, F\in P(E) $ and for each $ c\in C, $ there exists $ f_{c}\in F, $ such that $ H_{_{\triangle }}(C, F)\geq \triangle (c, f_{c}) $ and $ H_{\triangle }(F, C)\geq \triangle (f_{c}, c) $.

    Let $ (X, \triangle) $ be a double controlled quasi metric type space$, $ $ u_{0}\in X $ and $ T:X\rightarrow P(X) $ be multifunctions on $ X $. Let $ u_{1}\in Tu_{0} $ be an element such that $ \triangle (u_{0}, {T} u_{0}) = \triangle (u_{0}, u_{1}), $ $ \triangle ({T}u_{0}, u_{0}) = \triangle (u_{1}, u_{0}) $. Let $ u_{2}\in Tu_{1} $ be such that $ \triangle (u_{1}, Tu_{1}) = \triangle (u_{1}, u_{2}), $ $ \triangle (Tu_{1}, u_{1}) = \triangle (u_{2}, u_{1}). $ Let $ u_{3}\in {T}u_{2} $ be such that $ \triangle (u_{2}, {T} u_{2}) = \triangle (u_{2}, u_{3}) $ and so on. Thus, we construct a sequence $ u_{\text{t}}\ $of points in $ X $ such that $ u_{\text{t}+1}\in {T}u_{\text{t}} $ with $ \triangle (u_{\text{t}}, {T}u_{\text{t}}) = \triangle (u_{\text{t}}, u_{ \text{t}+1}), $ $ \triangle ({T}u_{\text{t}}, u_{\text{t}}) = \triangle (u_{\text{ t}+1}, u_{\text{t}}), $ where $ t = 0, 1, 2, \cdots. $ We denote this iterative sequence by $ \{XT(u_{\text{t}})\}. $ We say that $ \{XT(u_{\text{t}})\} $ is a sequence in $ X $ generated by $ u_{0} $ under double controlled quasi metric $ \triangle. $ If $ \triangle $ is quasi $ b $-metric then, we say that $ \{XT(u_{ \text{t}})\} $ is a sequence in $ X $ generated by $ u_{0} $ under quasi $ b $ -metric $ \triangle $. We can define $ \{XT(u_{\text{t}})\} $ in other metrics in a similar way.

    Now, we define double controlled rational contracion which is a generalization of many other classical contractions.

    Definition 2.1. Let $ (X, \triangle) $ be a complete double controlled quasi-metric type space with the functions $ \alpha, \mu $ $ :X\times X $ $ \rightarrow \lbrack 1, \infty) $. A multivalued mapping $ T:X\rightarrow P\left(X\right) $ is called a double controlled rational contracion if the following conditions are satisfied:

    $ H(Tx,Ty)k(Q(x,y)),
    $
    (2.1)

    for all $ x, y\in X, $ $ 0 < k < 1 $ and

    $ Q(x,y)=max{(x,y),(x,Tx),(x,Tx)(x,Ty)+(y,Ty)(y,Tx)(x,Ty)+(y,Tx)}.
    $

    Also$, $ for the terms of the sequence $ \{XT(u_{\text{t}})\}, $ we have

    $ supm1limiα(ui+1,ui+2)α(ui,ui+1)μ(ui,um)<1k
    $
    (2.2)

    and for every $ u\in X $

    $ limtα(u,ut) and limtμ(ut,u) are finite.
    $
    (2.3)

    Now, we prove that an operator $ T $ satisfying certain rational contraction condition has a fixed point in double controlled quasi metric type space.

    Theorem 2.2. Let $ (X, \triangle) $ be a left complete double controlled quasi-metric type space with the functions $ \alpha, \mu :X\times X\rightarrow \lbrack 1, \infty) $ and $ T:X\rightarrow P(X) $ be a double controlled rational contracion. Then, $ T $ has a fixed point $ u^{\ast }\in X $.

    Proof. By Lemma 1.11 and using inequality (2.1), we have

    $ (ut,ut+1)H(Tut1,Tut)k(Q(ut1,ut)).
    $
    $ Q(ut1,ut)max{(ut1,ut),(ut1,ut),(ut1,ut)(ut1,Tut)+(ut,ut+1)(ut,Tut1)(ut1,Tut)+(ut,Tut1)}=(ut1,ut).
    $

    Therefore,

    $ (ut,ut+1)k(ut1,ut).
    $
    (2.4)

    Now,

    $ (ut1,ut)H(Tut2,Tut1)k(Q(ut2,ut1)).
    $
    $ Q(ut2,ut1)=max{(u t2,ut1),(ut2,ut1),
    $
    $ (ut2,ut1)(ut2,Tut1)+(ut1,ut)(ut1,Tut2)(ut2,Tut1)+(ut1,Tut2)}.
    $

    Therefore,

    $ (ut1,ut)k(ut2,ut1).
    $
    (2.5)

    Using (2.5) in (2.4), we have

    $ (ut,ut+1)k2(ut2,ut1).
    $

    Continuing in this way, we obtain

    $ (ut,ut+1)kt(u0,u1).
    $
    (2.6)

    Now, by using (2.6) and by using the technique given in [1], it can easily be proved that $ \left \{ u_{\text{t}}\right \} $ is a left Cauchy sequence. So, for all natural numbers with $ t < m, $ we have

    $ limt,m(ut,um)=0.
    $
    (2.7)

    Since $ (X, \triangle) $ is a left complete double controlled quasi metric type space, there exists some $ u^{\ast }\in X $ such that

    $ limt(ut,u)=limt(u,ut)=0.
    $
    (2.8)

    By using triangle inequality and then (2.1), we have

    $ (u,Tu)α(u,ut+1)(u,ut+1)+μ(ut+1,Tu)(ut+1,Tu)
    $
    $ α(u,ut+1)(u,ut+1)+μ(ut+1,Tu)max{(ut,u),(ut,ut+1),(ut,ut+1)(ut,Tu)+(u,Tu)(u,ut)(ut,Tu)+(u,ut)}.
    $

    Using (2.3), (2.7) and (2.8), we get $ \triangle (u^{\ast }, Tu^{\ast })\leq 0 $. That is, $ u^{\ast }\in Tu^{\ast }. $ Thus $ u^{\ast } $ is a fixed point of $ T $.

    If we take single-valued mapping instead of multivalued mapping, then we obtain the following result.

    Theorem 2.3. Let $ (X, \triangle) $ be a left complete double controlled quasi-metric type space with the functions $ \alpha, \mu :X\times X\rightarrow \lbrack 1, \infty) $ and $ T:X\rightarrow X $ be a mapping such that:

    $ (Tx,Ty)k(Q(x,y)),
    $

    for all $ x, y\in X, $ $ 0 < k < 1 $ and

    $ Q(x,y)=max{(x,y),(x,Tx),(x,Tx)(x,Ty)+(y,Ty)(y,Tx)(x,Ty)+(y,Tx)},
    $

    Suppose that, for every $ u\in X $ and for the Picard sequence $ \left \{ u_{ \text{t}}\right \} $

    $ limtα(u,ut), limtμ(ut,u) are finite and
    $
    $ supm1limiα(ui+1,ui+2)α(ui,ui+1)μ(ui,um)<1k.
    $

    Then, $ T $ has a fixed point $ u^{\ast }\in X $.

    We present the following example to illustrate Theorem 2.3.

    Example 2.4. Let $ X = \left \{ 0, 1, 2, 3\right \}. $ Define $ \triangle :X\times X\rightarrow \lbrack 0 $, $ \infty) $ by: $ \triangle (0, 1) = 1, $ $ \triangle (0, 2) = 4, $ $ \triangle (0, 3) = 5, \ \triangle (1, 0) = 0, $ $ \triangle \left(1, 2\right) = 10, $ $ \triangle (1, 3) = 1, \ \triangle (2, 0) = 7, $ $ \triangle (2, 1) = 3, $ $ \triangle (2, 3) = 5, \ \triangle (3, 0) = 3, \ \triangle (3, 1) = 6, \ \triangle (3, 2) = 2, \ \triangle (0, 0) = \triangle (1, 1) = \triangle (2, 2) = \triangle (3, 3) = 0. $ Define $ \alpha, \mu :X\times X\rightarrow \lbrack 1 $, $ \infty) $ as: $ \alpha (0, 1) = 2, $ $ \alpha \left(1, 2\right) = $ $ \alpha (0, 2) = $ $ \alpha (1, 0) = \alpha (2, 0) = \alpha (3, 1) = \alpha (2, 3) = \alpha (0, 3) = 1, $ $ \alpha (1, 3) = 2, \ \alpha (2, 1) = \frac{7}{3}, $ $ \alpha (3, 0) = \frac{4}{3}, \ \alpha (3, 2) = \frac{3}{2}, \ \alpha (0, 0) = \alpha (1, 1) = \alpha (2, 2) = \alpha (3, 3) = 1, $ $ \mu (1, 2) = \mu \left(2, 1\right) = \mu (2, 0) = \mu (3, 0) = \mu (0, 3) = 1, $ $ \mu (1, 0) = \frac{3}{2}, $ $ \mu (0, 1) = 2, \ \mu (1, 3) = 3, \ \mu (3, 1) = 1, \ \mu (3, 2) = 4, \ \mu (2, 3) = 1, \ \mu (0, 2) = \frac{5}{2}, $ $ \mu (0, 0) = \mu (1, 1) = \mu (2, 2) = \mu (3, 3) = 1. $ Clearly $ (X, \triangle) $ is a double controlled quasi metric type space$, $ but it is not a controlled quasi metric type space. Indeed,

    $ (1,2)=10>4=α(1,0)(1,0)+α(0,2)(0,2).
    $

    Also, it is not a double controlled metric type space. Take $ T0 = T1 = \left \{ 0\right \} $, $ T2 = T3 = \left \{ 1\right \} $ and $ k = \frac{1}{3}. $ We observe that

    $ (Tx,Ty)k(Q(x,y)), for all x,yX.
    $

    Let $ u_{0} = 2, $ we have $ u_{1} = Tu_{0} = T2 = 1, $ $ u_{2} = Tu_{1} = 0, $ $ u_{3} = Tu_{2} = 0, \cdots _{\cdot } $

    $ supm1limiα(ui+1,ui+2)α(ui,ui+1)μ(ui,um)=2<3=1k.
    $

    Also, for every $ u\in X $, we have

    $ limtα(u,ut)< and limtμ(ut,u)<.
    $

    All hypotheses of Theorem 2.3 are satisfied and $ u^{\ast } = 0 $ is a fixed point.

    As every quasi $ b $-metric space is double controlled quasi metric type space but the converse is not true in general, so we obtain a new result in quasi $ b $-metric space as a corollary of Theorem 2.3.

    Theorem 2.5. Let $ (X, \triangle) $ be a left complete quasi $ b $ -metric space and $ T:X\rightarrow X $ be a mapping. Suppose that there exists $ k\in \left(0, 1\right) $ such that

    $ (Tx,Ty)k(Q(x,y))
    $

    whenever,

    $ Q(x,y)=max{(x,y),(x,Tx),(x,Tx)(x,Ty)+(y,Ty)(y,Tx)(x,Ty)+(y,Tx)},
    $

    for all $ x, y\in X $. Assume that $ 0 < bk < 1. $ Then, $ T $ has a fixed point $ u^{\ast }\in X. $

    Remark 2.6. In the Example 2.3, note that $ \triangle $ is quasi $ b $ -metric with $ b = \frac{10}{3}, $ but we can not apply Theorem 2.5 for any $ b = \frac{10}{3} $ and $ k = \frac{1}{3} $, because $ bk\nless 1. $

    Quasi metric version of Theorem 2.2 is given below:

    Theorem 2.7. Let $ (X, \triangle) $ be a left complete quasi metric space and $ T:X\rightarrow P(X) $ be a multivalued mapping. Suppose that there exists $ 0 < k < 1 $ such that

    $ H(Tx,Ty)k(max{(x,y),(x,Tx),(x,Tx)(x,Ty)+(y,Ty)(y,Tx)(x,Ty)+(y,Tx)})
    $

    for all $ x, y\in X. $ Then $ T $ has a fixed point $ u^{\ast }\in X. $

    Now, we extend the sequence $ \{XT(u_{\text{t}})\} $ for two mappings. Let $ ({ X}, \triangle) $ be a double controlled quasi metric type space$, $ $ u_{0}\in X $ and $ S, T:X\rightarrow P(X) $ be the multivalued mappings on $ X $. Let $ u_{1}\in Su_{0} $ such that $ \triangle (u_{0}, Su_{0}) = \triangle (u_{0}, u_{1}) $ and $ \triangle (Su_{0}, u_{0}) = \triangle (u_{1}, u_{0}). $ Now, for $ u_{1}\in X $, there exist $ u_{2}\in Tu_{1} $ such that $ \triangle (u_{1}, Tu_{1}) = \triangle (u_{1}, u_{2}) $ and $ \triangle (Tu_{1}, u_{1}) = \triangle (u_{2}, u_{1}). $ Continuing this process, we construct a sequence $ u_{\text{t}}\ $of points in $ X $ such that $ u_{2\text{t} +1}\in Su_{2\text{t}} $, and $ u_{2\text{t}+2}\in Tu_{2\text{t}+1} $ with $ \triangle (u_{2\text{t}}, Su_{2\text{t}}) = \triangle (u_{2\text{t}}, u_{2\text{t }+1}) $, $ \triangle (Su_{2\text{t}}, u_{2\text{t}}) = \triangle (u_{2\text{t} +1}, u_{2\text{t}}) $ and $ \triangle (u_{2\text{t}+1}, Tu_{2\text{t} +1}) = \triangle (u_{2\text{t}+1}, u_{2\text{t}+2}) $, $ \triangle (Tu_{2\text{t} +1}, u_{2\text{t}+1}) = \triangle (u_{2\text{t}+2}, u_{2\text{t}+1}). $ We denote this iterative sequence by $ \{TS(u_{\text{t}})\} $ and say that $ \{TS(u_{ \text{t}})\} $ is a sequence in $ X $ generated by $ u_{0}. $

    Now, we introduce double controlled Reich type contraction.

    Definition 2.8. Let $ X $ be a non empty set, $ (X, \triangle) $ be a left complete double controlled quasi-metric type space with the functions $ \alpha, \mu :X\times X\rightarrow \lbrack 1, \infty) $ and $ S, T:X\rightarrow P(X) $ be a multivalued mappings. Suppose that the following conditions are satisfied:

    $ H(Sx,Ty)c((x,y))+k((x,Sx)+(y,Ty)),
    $
    (2.9)
    $ H(Tx,Sy)c((x,y))+k((x,Tx)+(y,Sy)),
    $
    (2.10)

    for each $ x, {y}\in X, $ $ 0 < c+2k < 1. $ For $ u_{0}\in X, $ choose $ u_{\text{t} }\in \{TS(u_{\text{t}})\} $, we have

    $ supm1limiα(ui+1,ui+2)α(ui,ui+1)μ(ui+1,um)<1kc+k.
    $
    (2.11)

    Then the pair $ \left(S, T\right) $ is called a double controlled Reich type contraction.

    The following results extend the results of Reich [18].

    Theorem 2.9. Let $ S, T:X\rightarrow P(X) $ be the multivalued mappings, $ (X, \triangle) $ be a left complete double controlled quasi metric type space and $ \left(S, T\right) $ be a pair of double controlled Reich type contraction. Suppose that, for all $ u\in X $

    $ limtα(u,ut) is finite and limtμ(ut,u)<1k.
    $
    (2.12)

    Then, $ S $ and $ T $ have a common fixed point $ \dot{z} $ in $ X $.

    Proof. Consider the sequence $ \{TS(u_{\text{t}})\} $. Now, by Lemma 1.11, we have

    $ (u2t,u2t+1)H(Tu2t1,Su2t)
    $
    (2.13)

    By using the condition (2.10), we get

    $ (u2t,u2t+1)c((u2t1,u2t)+k((u2t1,Tu2t1)+(u2t,Su2t)c((u2t1,u2t)+k((u2t1,u2t)+(u2t,u2t+1))
    $
    $ (u2t,u2t+1)η((u2t1,u2t)),
    $
    (2.14)

    where $ \eta = \frac{c+k}{1-k}. $ Now, by Lemma 1.11, we have

    $ (u2t1,u2t)H(Su2t2,Tu2t1).
    $

    So, by using the condition (2.9), we have

    $ (u2t1,u2t)c(u2t2,u2t1)+k((u2t2,Su2t2)+(u2t1,Tu2t1))c(u2t2,u2t1)+k((u2t2,u2t1)+(u2t1,u2 t))
    $
    $ (u2t1,u2t)c+k1k((u2t2,u2t1))=η((u2t2,u2t1)).
    $
    (2.15)

    Using (2.14) in (2.15), we have

    $ (u2t,u2t+1)η2(u2t2,u2t1).
    $
    (2.16)

    Now, by Lemma 1.11 we have

    $ (u2t2,u2t1)H(Tu2t3,Su2t2).
    $

    Using the condition (2.10), we have

    $ (u2t2,u2t1)c(u2t 3,u2t2)+k((u2t3,u2t2)+(u2t2,u2t1))
    $

    implies

    $ (u2t2,u2t1)η((u2t3,u2t2)).
    $
    (2.17)

    From (2.16) and (2.17), we have

    $ η2((u2t2,u2t1))η3((u2t3,u2t2)).
    $
    (2.18)

    Using (2.18) in (2.14), we have

    $ (u2t,u2t+1)η3((u2t3,u2t2)).
    $

    Continuing in this way, we get

    $ (u2t,u2t+1)η2t((u0,u1)).
    $
    (2.19)

    Similarly, by Lemma 1.11, we have

    $ (u2t1,u2t)η2t1((u0,u1)).
    $

    Now$, $ we can write inequality (2.19) as

    $ (ut,ut+1)ηt((u0,u1)).
    $
    (2.20)

    Now, by using (2.20) and by using the technique given in [1], it can easily be proved that $ \left \{ u_{\text{t}}\right \} $ is a left Cauchy sequence. So, for all natural numbers with $ t < m, $ we have

    $ limt,m(ut,um)=0.
    $
    (2.21)

    Since $ (X, \triangle) $ is a left complete double controlled quasi metric type space. So $ \{u_{\text{t}}\} \rightarrow \dot{z}\in X, $ that is

    $ limt(ut,˙z)=limt(˙z,ut)=0.
    $
    (2.22)

    Now, we show that $ \dot{z} $ is a common fixed point. We claim that $ \triangle \left(\dot{z}, T\dot{z}\right) = 0 $. On contrary suppose $ \triangle (\dot{z}, {T}\dot{z}) > 0. $ Now by Lemma 1.11, we have

    $ (u2t+1,T˙z)H(Su2t,T˙z).
    $
    $ (u2t+1,T˙z)c((u2t,˙z))+k[(u2t,u2t+1)+(˙z,T˙z))]
    $
    (2.23)

    Taking $ \underset{t\rightarrow \infty }{\lim } $ on both sides of inequality (2.23), we get

    $ limt(u2t+1,T˙z)climt(u2t,˙z)+klimt[(u2t,u2t+1)+(˙z,T˙z))]
    $

    By using inequalities (2.21) and (2.22), we get

    $ limt(u2t+1,T˙z)k((˙z,T˙z))
    $
    (2.24)

    Now,

    $ (˙z,T˙z)α(˙z,u2t+1)(˙z,u2t+1)+μ(u2t+1,T˙z)(u2t+1,T˙z)
    $

    Taking $ \underset{t\rightarrow \infty }{\lim } $ and by using inequalities (2.12), (2.22) and (2.24), we get

    $ (˙z,T˙z)<(˙z,T˙z).
    $

    It is a contradiction, therefore

    $ (˙z,T˙z)=0.
    $

    Thus, $ \dot{z}\in T\dot{z}. $ Now, suppose $ \triangle (\dot{z}, S\dot{z}) > 0. $ By Lemma 1.11, we have

    $ (u2t,S˙z)H(Tu2t1,S˙z).
    $

    By inequality (2.10), we get

    $ (u2t,S˙z)c((u2t1,˙z))+k[(u2t1,u2t)+(˙z,S˙z)].
    $

    Taking $ \underset{t\rightarrow \infty }{\lim } $ on both sides of above inequality, we get

    $ limt(u2t,S˙z)k((˙z,S˙z)).
    $
    (2.25)

    Now,

    $ (˙z,S˙z)α(˙z,u2t)(˙z,u2t)+μ(u2t,S˙z)(u2t,S˙z).
    $

    Taking $ \underset{t\rightarrow \infty }{\lim } $ and by using inequality (2.12), (2.22) and (2.25), we get

    $ (˙z,S˙z)<(˙z,S˙z).
    $

    It is a contradiction. Hence, $ \dot{z}\in S\dot{z}. $ Thus, $ \dot{z} $ is a common fixed point for $ S $ and $ T. $

    Theorem 2.10 presents a result for single-valued mapping which is a consequence of the previous result.

    Theorem 2.10. Let $ (X, \triangle) $ be a left complete double controlled quasi-metric type space with the functions $ \alpha, \mu :X\times X\rightarrow \lbrack 1, \infty) $ and $ S, T:X\rightarrow X $ be the mappings such that:

    $ (Sx,Ty)c((x,y))+k((x,Sx)+(y,Ty))
    $

    and

    $ (Tx,Sy)c((x,y))+k((x,Tx)+(y,Sy)),
    $

    for each $ x, {y}\in X, $ $ 0 < c+2k < 1. $ Suppose that, for every $ u\in X $ and for the Picard sequence $ \left \{ u_{\text{t}}\right \} $

    $ limtα(u,ut) is finite, limtμ(ut,u)<1k and
    $
    $ supm1limiα(ui+1,ui+2)α(ui,ui+1)μ(ui,um)<1kc+k.
    $

    Then $ S $ and $ T $ have a common fixed point $ u^{\ast }\in X $.

    Quasi $ b $-metric version of Theorem 2.10 is given below:

    Theorem 2.11. Let $ (X, \triangle) $ be a left complete quasi $ b $-metric type space with the functions $ \alpha, \mu :X\times X\rightarrow \lbrack 1, \infty) $ and $ S, T:X\rightarrow X $ be the mappings such that:

    $ (Sx,Ty)c((x,y))+k((x,Sx)+(y,Ty))
    $

    and

    $ (Tx,Sy)c((x,y))+k((x,Tx)+(y,Sy)),
    $

    for each $ x, {y}\in X, $ $ 0 < c+2k < 1 $ and $ b < \frac{1-k}{c+k} $. Then $ S $ and $ T $ have a common fixed point $ u^{\ast }\in X $.

    The following example shows that how double controlled quasi metric type spaces can be used where the quasi $ b $-metric spaces cannot.

    Example 2.12. Let $ X = \left \{ 0, \frac{1}{2}, \frac{1}{4}, 1\right \}. $ Define $ \triangle :X\times X\rightarrow \lbrack 0 $, $ \infty) $ by $ \triangle (0, \frac{1}{2}) = 1, $ $ \triangle (0, \frac{1}{4}) = \frac{1}{3}, $ $ \triangle (\frac{1}{4}, 0) = \frac{1}{5}, \ \triangle (\frac{1}{2}, 0) = 1, $ $ \triangle \left(\frac{1}{4}, \frac{1}{2}\right) = 3, $ $ \triangle \left(\frac{ 1}{4}, 1\right) = \frac{1}{2}, $ $ \triangle \left(1, \frac{1}{4}\right) = \frac{ 1}{3}\ $and $ \triangle (x, y) = \left \vert x-y\right \vert, $ if otherwise. Define $ \alpha, \mu :X\times X\rightarrow \lbrack 1 $, $ \infty) $ as follows $ \alpha \left(\frac{1}{2}, \frac{1}{4}\right) = \frac{16}{5}, $ $ \alpha (0, \frac{1}{4}) = \frac{3}{2} $, $ \ \alpha (\frac{1}{4}, 1) = 3 $, $ \ \alpha (1, \frac{1}{ 4}) = \frac{12}{5} $ and $ \alpha (x, y) = 1, $ if otherwise. $ \mu (0, \frac{1}{2}) = \frac{14}{5} $, $ \ \mu (1, \frac{1}{2}) = 3 $ and$ \ \mu (x, y) = 1, $ if otherwise$. $ Clearly $ \triangle $ is double controlled quasi metric type for all $ x, y, z\in X. $ Let, $ T0 = \left \{ 0\right \}, $ $ T\frac{1}{2} = \left \{ \frac{1 }{4}\right \}, \ T\frac{1}{4} = \left \{ 0\right \}, $ $ T1 = \left \{ \frac{1}{4} \right \} $, $ \ S0 = S\frac{1}{4} = \left \{ 0\right \} $, $ S\frac{1}{2} = \left \{ \frac{1}{4}\right \}, $ $ S1 = \left \{ 0\right \} $ and $ c = \frac{2}{5} $, $ k = \frac{1}{4}. $ Now, if we take the case $ x = \frac{1}{2} $, $ y = \frac{1}{4}, $ we have

    $ H_{\triangle }({S}\frac{1}{2}, T\frac{1}{4}) = H_{\triangle }\left(\left \{ \frac{1}{4}\right \}, \left \{ 0\right \} \right) = \triangle \left(\frac{1}{ 4}, 0\right) = \frac{1}{5}\leq \frac{17}{80} = c(\triangle (x, {y}))+k(\triangle (x, {S}x)+\triangle (y, Ty)). $ Also, satisfied for all cases $ x, y\in X. $ That are inequalities (2.9) and (2.10) hold. Take $ u_{0} = 1, $ then $ u_{1} = Su_{0} = 0, $ $ u_{2} = Tu_{1} = 0 $, $ u_{3} = Su_{2} = 0\cdots. $

    $ supm1limiα(ui+1,ui+2)α(ui,ui+1)μ(ui+1,um)=1<1513=1kc+k.
    $

    which shows that inequality (2.11) holds. Thus the pair $ \left(S, T\right) $ is double controlled Reich type contraction. Finally, for every $ u\in X, $ we obtain

    $ limtα(u,ut) is finite, limtμ(ut,u)1k.
    $

    All hypotheses of Theorem 2.9 are satisfied and $ \dot{z} = 0 $ is a common fixed point.

    Note that $ \triangle $ is quasi $ b $-metric with $ b = 3, $ but Theorem 2.11 can not be applied because $ b\nless \frac{1-k}{c+k}, $ for all $ b = 3. $ Therefore, this example shows that generalization from a quasi $ b $-metric spaces to a double controlled quasi metric type spaces is real.

    Taking $ c = 0 $ in Theorem 2.9, we get the following result of Kannan-type.

    Theorem 2.13. Let $ (X, \triangle) $ be a left complete double controlled quasi-metric type space with the functions $ \alpha, \mu :X\times X\rightarrow \lbrack 1, \infty) $ and $ S, T:X\rightarrow P(X) $ be the multivalued mappings such that:

    $ H(Sx,Ty)k((x,Sx)+(y,Ty))
    $

    and

    $ H(Tx,Sy)k((x,Tx)+(y,Sy)),
    $

    for each $ x, {y}\in X, $ $ 0 < c+2k < 1. $ Suppose that, for every $ u\in X $ and for the sequence $ \{TS(u_{\text{t}})\} $, we have

    $ limtα(u,ut) is finite, limtμ(ut,u)<1k and
    $
    $ supm1limiα(ui+1,ui+2)α(ui,ui+1)μ(ui,um)<1kk.
    $

    Then $ S $ and $ T $ have a common fixed point $ u^{\ast }\in X $. Then, $ S $ and $ T $ have a common fixed point $ \dot{z} $ in $ X $.

    Taking $ c = 0 $ and $ S = T $ in Theorem 2.9, we get the following result.

    Theorem 2.14. Let $ (X, \triangle) $ be a left complete double controlled quasi-metric type space with the functions $ \alpha, \mu :X\times X\rightarrow \lbrack 1, \infty) $ and $ T:X\rightarrow P(X) $ be a multivalued mapping such that:

    $ H(Tx,Ty)k((x,Tx)+(y,Ty))
    $

    for each $ x, {y}\in X, $ $ 0 < c+2k < 1. $ Suppose that, for every $ u\in X $ and for the sequence $ \{T(u_{\text{t}})\} $, we have

    $ limtα(u,ut) is finite, limtμ(ut,u)<1k and
    $
    $ supm1limiα(ui+1,ui+2)α(ui,ui+1)μ(ui,um)<1kk.
    $

    Then $ T $ has a fixed point.

    Now, the following example illustrates Theorem 2.14.

    Example 2.15. Let $ X = [0, 3). $ Define $ \triangle :X\times X\rightarrow \lbrack 0 $, $ \infty) $ as

    $ (x,y)={0, if x=y,(xy)2+x, if xy.
    $

    with

    $ α(x,y)={2, if x,y1,x+22, otherwise., μ(x,y)={1, if x,y1y+22, otherwise.
    $

    Clearly $ \left(X, \triangle \right) $ is double controlled quasi metric type space. Choose $ Tx = \left \{ \frac{x}{4}\right \} $ and $ k = \frac{2}{5} $. It is clear that $ T $ is Kannan type double controlled contraction. Also, for each $ u $ $ \in X $, we have

    $ limtα(u,ut)<, limtμ(ut,u)<1k.
    $

    Thus, all hypotheses of Theorem 2.14 are satisfied and $ \dot{z} = 0 $ is the fixed point.

    Quasi $ b $-metric version of Theorem 2.14 is given below:

    Theorem 2.16. Let $ (X, \triangle) $ be a left complete quasi $ b $ -metric space and $ T:X\rightarrow P\left(X\right) $ be a mapping such that:

    $ H(Tx,Ty)k[(x,Tx)+(y,Ty)],
    $

    for all $ x, y\in X, $ $ k\in \lbrack 0, \frac{1}{2}) $ and

    $ b<1kk.
    $

    Then $ T $ has a fixed point $ u^{\ast }\in X $.

    The following remark compare, distinguish and relate the quasi $ b $-metric with the double controlled quasi metric type spaces and illustrate the importance of double controlled quasi metric type spaces.

    Remark 2.17. In the Example 2.15, $ \triangle (x, y) = \left(x-y\right) ^{2}+x $ is a quasi $ b $-metric with $ b\geq 2, $ but we can not apply Theorem 2.16 because $ T $ is not Kannan type $ b $-contraction. Indeed $ b\nless \frac{ 1-k}{k}, $ for all $ b\geq 2. $

    It has been shown that double controlled quasi metric is general and better than other metrics, like controlled quasi metric, controlled metric, extended quasi-b-metric, extended b-metric, quasi-b-metric and quasi metric. Also, left, right and dual completeness has been discussed. Results in dual complete spaces can be obtained as corollaries. These results may be extended to obtain results for other contractions. Double controlled quasi metric like ordered spaces can be introduced to establish new results. These results may be applied to find applications to random impulsive differential equations, dynamical systems, graph theory and integral equations.

    The authors would also like to thank the editor and the reviewers for their helpful comments and suggestions. This research was funded by the Center of Excellence in Theoretical and Computational Science (TaCS-CoE), KMUTT.

    The authors declare that they do not have any competing interests.

    [1] J. Theor. Biolo., 241 (2006), 109-119.
    [2] Academic Press, New York, 1963.
    [3] Theor. Population Biol., 22 (1982), 147-176.
    [4] Bull. Math. Biol., 67 (2005), 1107-1133.
    [5] SIAM J. Appl. Math., 67 (2006), 24-45.
    [6] J. Math. Biol., 39 (1999), 332-352.
    [7] Bulletin of Mathematical Biology, 67 (2005), 1157-1172.
    [8] J. Math. Biol., 38 (1999), 220-240.
    [9] Mathematical Biosciences, 150 (1998), 131-151.
    [10] Mathematical Biosciences, 167 (2000), 51-64.
    [11] J. Math. Biol., 35 (1997), 523-544.
    [12] $3^{rd}$ Edition, Heinemann Medical Books, Portsmouth, NH, 1993.
    [13] Journal of Mathematical Biology, 54 (2007), 309-335.
    [14] SIAM J. Appl. Math., 67 (2007), 408-433.
    [15] Springer- Verlag, New York, 1993.
    [16] OIKOS, 66 (1993), 55-65.
    [17] Ann. NY Acad. Sci., 50 (1948), 221-246.
    [18] Academic Press Inc., Boston, 1993.
    [19] Vector Borne and Zoonotic Diseases, 1 (2001), 317-329.
    [20] Journal of Medical Entomology, 44 (2007), 58-764.
    [21] Mathematical and Computer Modelling, 32 (2000), 747-763.
    [22] J. Theor. Biol., 191 (1998), 95-101.
    [23] in Delay Differential Equations and Applications (eds. O. Arino, M. L. Hbid and E. Ait Dads), NATO Sci. Ser. II Math. Phys. Chem., 205, Springer, Dordrecht, 2006, 477-517.
    [24] Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 1995.
    [25] Correspondance mathématique et physique, 10 (1838), 113-121.
    [26] Proceedings of the Royal Society. London Ser. B, 271 (2004), 501-507.
    [27] "http://en.wikipedia.org/wiki/" target="_blank">http://en.wikipedia.org/wiki/
    [28] "http://www.mosquitoes.org/LifeCycle.html" target="_blank">http://www.mosquitoes.org/LifeCycle.html
  • This article has been cited by:

    1. Abdullah Eqal Al-Mazrooei, Jamshaid Ahmad, Fixed Point Results in Controlled Metric Spaces with Applications, 2022, 10, 2227-7390, 490, 10.3390/math10030490
    2. Haroon Ahmad, Mudasir Younis, Mehmet Emir Köksal, Sun Young Cho, Double Controlled Partial Metric Type Spaces and Convergence Results, 2021, 2021, 2314-4785, 1, 10.1155/2021/7008737
    3. Abdullah Shoaib, Qasim Mahmood, Aqeel Shahzad, Mohd Salmi Md Noorani, Stojan Radenović, Fixed point results for rational contraction in function weighted dislocated quasi-metric spaces with an application, 2021, 2021, 1687-1847, 10.1186/s13662-021-03458-x
    4. Nabil Mlaiki, Nihal Taş, Salma Haque, Doaa Rizk, Some Fixed-Disc Results in Double Controlled Quasi-Metric Type Spaces, 2022, 6, 2504-3110, 107, 10.3390/fractalfract6020107
    5. Tahair Rasham, Abdullah Shoaib, Shaif Alshoraify, Choonkil Park, Jung Rye Lee, Study of multivalued fixed point problems for generalized contractions in double controlled dislocated quasi metric type spaces, 2021, 7, 2473-6988, 1058, 10.3934/math.2022063
    6. Hasanen A. Hammad, Mohra Zayed, New Generalized Contractions by Employing Two Control Functions and Coupled Fixed-Point Theorems with Applications, 2022, 10, 2227-7390, 3208, 10.3390/math10173208
    7. Wasfi Shatanawi, Taqi A. M. Shatnawi, Some fixed point results based on contractions of new types for extended $ b $-metric spaces, 2023, 8, 2473-6988, 10929, 10.3934/math.2023554
    8. Amit Gangwar, Shivam Rawat, R. C. Dimri, Solution of differential inclusion problem in controlled S-metric spaces via new multivalued fixed point theorem, 2023, 31, 0971-3611, 2459, 10.1007/s41478-023-00574-7
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3310) PDF downloads(571) Cited by(15)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog