Epidemic models for complex networks with demographics

  • Received: 01 March 2014 Accepted: 29 June 2018 Published: 01 September 2014
  • MSC : Primary: 58F15, 58F17; Secondary: 53C35.

  • In this paper, we propose and study network epidemic models withdemographics for disease transmission. We obtain the formula of thebasic reproduction number $R_{0}$ of infection for an SIS model withbirths or recruitment and death rate. We prove that if $R_{0}\leq1$,infection-free equilibrium of SIS model is globally asymptoticallystable; if $R_{0}>1$, there exists a unique endemic equilibrium whichis globally asymptotically stable. It is also found thatdemographics has great effect on basic reproduction number $R_{0}$.Furthermore, the degree distribution of population varies with timebefore it reaches the stationary state.

    Citation: Zhen Jin, Guiquan Sun, Huaiping Zhu. Epidemic models for complex networks with demographics[J]. Mathematical Biosciences and Engineering, 2014, 11(6): 1295-1317. doi: 10.3934/mbe.2014.11.1295

    Related Papers:

    [1] Yuhong Huo, Gourav Mandal, Lakshmi Narayan Guin, Santabrata Chakravarty, Renji Han . Allee effect-driven complexity in a spatiotemporal predator-prey system with fear factor. Mathematical Biosciences and Engineering, 2023, 20(10): 18820-18860. doi: 10.3934/mbe.2023834
    [2] Fang Liu, Yanfei Du . Spatiotemporal dynamics of a diffusive predator-prey model with delay and Allee effect in predator. Mathematical Biosciences and Engineering, 2023, 20(11): 19372-19400. doi: 10.3934/mbe.2023857
    [3] Yong Luo . Global existence and stability of the classical solution to a density-dependent prey-predator model with indirect prey-taxis. Mathematical Biosciences and Engineering, 2021, 18(5): 6672-6699. doi: 10.3934/mbe.2021331
    [4] Tingting Ma, Xinzhu Meng . Global analysis and Hopf-bifurcation in a cross-diffusion prey-predator system with fear effect and predator cannibalism. Mathematical Biosciences and Engineering, 2022, 19(6): 6040-6071. doi: 10.3934/mbe.2022282
    [5] Yuxuan Zhang, Xinmiao Rong, Jimin Zhang . A diffusive predator-prey system with prey refuge and predator cannibalism. Mathematical Biosciences and Engineering, 2019, 16(3): 1445-1470. doi: 10.3934/mbe.2019070
    [6] Yue Xing, Weihua Jiang, Xun Cao . Multi-stable and spatiotemporal staggered patterns in a predator-prey model with predator-taxis and delay. Mathematical Biosciences and Engineering, 2023, 20(10): 18413-18444. doi: 10.3934/mbe.2023818
    [7] Juan Ye, Yi Wang, Zhan Jin, Chuanjun Dai, Min Zhao . Dynamics of a predator-prey model with strong Allee effect and nonconstant mortality rate. Mathematical Biosciences and Engineering, 2022, 19(4): 3402-3426. doi: 10.3934/mbe.2022157
    [8] Nazanin Zaker, Christina A. Cobbold, Frithjof Lutscher . The effect of landscape fragmentation on Turing-pattern formation. Mathematical Biosciences and Engineering, 2022, 19(3): 2506-2537. doi: 10.3934/mbe.2022116
    [9] Tingfu Feng, Leyun Wu . Global dynamics and pattern formation for predator-prey system with density-dependent motion. Mathematical Biosciences and Engineering, 2023, 20(2): 2296-2320. doi: 10.3934/mbe.2023108
    [10] Kalyan Manna, Malay Banerjee . Stability of Hopf-bifurcating limit cycles in a diffusion-driven prey-predator system with Allee effect and time delay. Mathematical Biosciences and Engineering, 2019, 16(4): 2411-2446. doi: 10.3934/mbe.2019121
  • In this paper, we propose and study network epidemic models withdemographics for disease transmission. We obtain the formula of thebasic reproduction number $R_{0}$ of infection for an SIS model withbirths or recruitment and death rate. We prove that if $R_{0}\leq1$,infection-free equilibrium of SIS model is globally asymptoticallystable; if $R_{0}>1$, there exists a unique endemic equilibrium whichis globally asymptotically stable. It is also found thatdemographics has great effect on basic reproduction number $R_{0}$.Furthermore, the degree distribution of population varies with timebefore it reaches the stationary state.


    [1] Oxford University Press, Oxford, 1992.
    [2] Science, 286 (1999), 509-511.
    [3] Journal of Theoretical Biology, 235 (2005), 275-288.
    [4] J. Phys. A: Math. Theor., 40 (2007), 8607-8619.
    [5] e-print cond-mat/0301149, (2003).
    [6] J. Math. Biol., 28 (1990), 257-270.
    [7] in Mathematical Population Dynamics: Analysis of Heterogeneity (eds. O. Arino, D. Axelrod, M. Kimmel and M. Langlais), Theory of Epidemics, 1, Wuerz, Winnipeg, 1993, 33-50.
    [8] Applied Mathematics and Computation, 197 (2008), 345-357.
    [9] J. Math. Biol., 30 (1992), 717-731.
    [10] Proc. Natl. Acad. Sci. U.S.A., 101 (2004), 15124.
    [11] J. Math. Anal. Appl., 308 (2005), 343-364.
    [12] Phys. Rev. E, 69 (2004), 066105.
    [13] J. R. Soc. Interface, 2 (2005), 295-307.
    [14] Princeton University Press, 2007.
    [15] Proc. R. Soc. A, 115 (1927), 700-711.
    [16] Mathematical Biosciences, 203 (2006), 124-136.
    [17] Bulletin of Mathematical Biology, 71 (2009), 888-905.
    [18] Physica D, 238 (2009), 370-378.
    [19] World Scientific, 2009.
    [20] Phys. Rev. E, 64 (2001), 066112.
    [21] Eur. Phys. J. B, 26 (2002), 521-529.
    [22] Phys. Rev. E, 70 (2004), 030902.
    [23] Phys. Rev. E, 63 (2001), 066117.
    [24] Phys. Rev. Let., 86 (2001), 3200.
    [25] IMA Journal of Mathematics Applied in Medicine & Biology, 13 (1996), 245-257.
    [26] Phys. Rev. E, 77 (2008), 066101.
    [27] SIAM J. Appl. Math., 46 (1986), 368-375.
    [28] Rocky Mountain J. Math., 24 (1994), 351-380.
    [29] Mathematical Biosciences, 180 (2002), 29-48.
    [30] Siam J. Appl. Math., 68 (2008), 1495-1502.
    [31] Mathematical Biosciences, 190 (2004), 97-112.
    [32] Springer-Verlag, New York, 2003.
    [33] Canad. Appl. Math. Quart., 4 (1996), 421-444.
  • This article has been cited by:

    1. Isam Al-Darabsah, Xianhua Tang, Yuan Yuan, A prey-predator model with migrations and delays, 2016, 21, 1531-3492, 737, 10.3934/dcdsb.2016.21.737
    2. Dana Contreras Julio, Pablo Aguirre, Allee thresholds and basins of attraction in a predation model with double Allee effect, 2018, 41, 0170-4214, 2699, 10.1002/mma.4774
    3. Manoj Kumar Singh, 2020, 2253, 0094-243X, 020003, 10.1063/5.0019202
    4. Swadesh Pal, S. Ghorai, Malay Banerjee, Effect of kernels on spatio-temporal patterns of a non-local prey-predator model, 2019, 310, 00255564, 96, 10.1016/j.mbs.2019.01.011
    5. Yao Shi, Jianhua Wu, Qian Cao, Analysis on a diffusive multiple Allee effects predator–prey model induced by fear factors, 2021, 59, 14681218, 103249, 10.1016/j.nonrwa.2020.103249
    6. Yexuan Li, Hua Liu, Yumei Wei, Ming Ma, Turing pattern of a reaction-diffusion predator-prey model with weak Allee effect and delay, 2020, 1707, 1742-6588, 012025, 10.1088/1742-6596/1707/1/012025
    7. Feng Rao, Yun Kang, The complex dynamics of a diffusive prey–predator model with an Allee effect in prey, 2016, 28, 1476945X, 123, 10.1016/j.ecocom.2016.07.001
    8. Xiaoyan Gao, Sadia Ishag, Shengmao Fu, Wanjun Li, Weiming Wang, Bifurcation and Turing pattern formation in a diffusive ratio-dependent predator–prey model with predator harvesting, 2020, 51, 14681218, 102962, 10.1016/j.nonrwa.2019.102962
    9. Kalyan Manna, Swadesh Pal, Malay Banerjee, Analytical and numerical detection of traveling wave and wave-train solutions in a prey–predator model with weak Allee effect, 2020, 100, 0924-090X, 2989, 10.1007/s11071-020-05655-x
    10. Sten Madec, Jérôme Casas, Guy Barles, Christelle Suppo, Bistability induced by generalist natural enemies can reverse pest invasions, 2017, 75, 0303-6812, 543, 10.1007/s00285-017-1093-x
    11. G. Gambino, M. C. Lombardo, M. Sammartino, Cross-diffusion-induced subharmonic spatial resonances in a predator-prey system, 2018, 97, 2470-0045, 10.1103/PhysRevE.97.012220
    12. Kalyan Manna, Malay Banerjee, Stationary, non-stationary and invasive patterns for a prey-predator system with additive Allee effect in prey growth, 2018, 36, 1476945X, 206, 10.1016/j.ecocom.2018.09.001
    13. Yun Kang, Dynamics of a generalized Ricker–Beverton–Holt competition model subject to Allee effects, 2016, 22, 1023-6198, 687, 10.1080/10236198.2015.1135910
    14. Conghui Zhang, Hailong Yuan, Positive Solutions of a Predator–Prey Model with Additive Allee Effect, 2020, 30, 0218-1274, 2050068, 10.1142/S0218127420500686
    15. Kaigang Huang, Yongli Cai, Feng Rao, Shengmao Fu, Weiming Wang, Positive steady states of a density-dependent predator-prey model with diffusion, 2017, 22, 1531-3492, 16, 10.3934/dcdsb.2017209
    16. Yongli Song, Xiaosong Tang, Stability, Steady-State Bifurcations, and Turing Patterns in a Predator-Prey Model with Herd Behavior and Prey-taxis, 2017, 139, 00222526, 371, 10.1111/sapm.12165
    17. Yuri V. Tyutyunov, Deeptajyoti Sen, Lyudmila I. Titova, Malay Banerjee, Predator overcomes the Allee effect due to indirect prey–taxis, 2019, 39, 1476945X, 100772, 10.1016/j.ecocom.2019.100772
    18. Kolade M. Owolabi, Dumitru Baleanu, Emergent patterns in diffusive Turing-like systems with fractional-order operator, 2021, 0941-0643, 10.1007/s00521-021-05917-8
    19. Ye Xuan Li, Hua Liu, Yu Mei Wei, Ming Ma, Gang Ma, Jing Yan Ma, Ljubisa Kocinac, Population Dynamic Study of Prey-Predator Interactions with Weak Allee Effect, Fear Effect, and Delay, 2022, 2022, 2314-4785, 1, 10.1155/2022/8095080
    20. Feng Yang, Yongli Song, Stability and spatiotemporal dynamics of a diffusive predator–prey system with generalist predator and nonlocal intraspecific competition, 2022, 194, 03784754, 159, 10.1016/j.matcom.2021.11.013
    21. Naveed Ahmad Khan, Muhammad Sulaiman, Jamel Seidu, Fahad Sameer Alshammari, Chenguang Yang, Mathematical Analysis of the Prey-Predator System with Immigrant Prey Using the Soft Computing Technique, 2022, 2022, 1607-887X, 1, 10.1155/2022/1241761
    22. Manal Alqhtani, Kolade M. Owolabi, Khaled M. Saad, Spatiotemporal (target) patterns in sub-diffusive predator-prey system with the Caputo operator, 2022, 160, 09600779, 112267, 10.1016/j.chaos.2022.112267
    23. Malay Banerjee, Swadesh Pal, Pranali Roy Chowdhury, Stationary and non-stationary pattern formation over fragmented habitat, 2022, 162, 09600779, 112412, 10.1016/j.chaos.2022.112412
    24. Yingzi Liu, Zhong Li, Mengxin He, Bifurcation analysis in a Holling-Tanner predator-prey model with strong Allee effect, 2023, 20, 1551-0018, 8632, 10.3934/mbe.2023379
    25. Wenbin Yang, Xin Chang, Hopf bifurcation and Turing patterns for a diffusive predator–prey system with weak Allee effect, 2023, 0035-5038, 10.1007/s11587-023-00824-7
    26. Kalyan Manna, Malay Banerjee, Dynamics of a prey–predator model with reproductive Allee effect for prey and generalist predator, 2024, 0924-090X, 10.1007/s11071-024-09451-9
    27. Kalyan Manna, Swadesh Pal, Malay Banerjee, Effects of spatiotemporal, temporal and spatial nonlocal prey competitions on population distributions for a prey-predator system with generalist predation, 2025, 0, 1531-3492, 0, 10.3934/dcdsb.2025106
    28. R.P. Gupta, Shristi Tiwari, Arun Kumar, The study of non-constant steady states and pattern formation for an interacting population model in a spatial environment, 2025, 229, 03784754, 652, 10.1016/j.matcom.2024.10.022
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4032) PDF downloads(795) Cited by(47)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog