A singularly perturbed SIS model with age structure

  • Received: 01 May 2012 Accepted: 29 June 2018 Published: 01 April 2013
  • MSC : Primary: 34E15, 92D30; Secondary: 34E13.

  • We present a preliminary study of an SIS model with a basic age structure and we focus on a disease with quick turnover, such as influenza or common cold. In such a case the difference between the characteristic demographic and epidemiological times naturally introduces two time scales in the model which makes it singularly perturbed. Using the Tikhonov theorem we prove that for certain classes of initial conditions the nonlinear structured SIS model can be approximated with very good accuracy by lower dimensional linear models.

    Citation: Jacek Banasiak, Eddy Kimba Phongi, MirosŁaw Lachowicz. A singularly perturbed SIS model with age structure[J]. Mathematical Biosciences and Engineering, 2013, 10(3): 499-521. doi: 10.3934/mbe.2013.10.499

    Related Papers:

    [1] Nara Bobko, Jorge P. Zubelli . A singularly perturbed HIV model with treatment and antigenic variation. Mathematical Biosciences and Engineering, 2015, 12(1): 1-21. doi: 10.3934/mbe.2015.12.1
    [2] Niclas Kruff, Sebastian Walcher . Coordinate-independent singular perturbation reduction for systems with three time scales. Mathematical Biosciences and Engineering, 2019, 16(5): 5062-5091. doi: 10.3934/mbe.2019255
    [3] Peter Rashkov, Ezio Venturino, Maira Aguiar, Nico Stollenwerk, Bob W. Kooi . On the role of vector modeling in a minimalistic epidemic model. Mathematical Biosciences and Engineering, 2019, 16(5): 4314-4338. doi: 10.3934/mbe.2019215
    [4] OPhir Nave, Shlomo Hareli, Miriam Elbaz, Itzhak Hayim Iluz, Svetlana Bunimovich-Mendrazitsky . BCG and IL − 2 model for bladder cancer treatment with fast and slow dynamics based on SPVF method—stability analysis. Mathematical Biosciences and Engineering, 2019, 16(5): 5346-5379. doi: 10.3934/mbe.2019267
    [5] Yicang Zhou, Zhien Ma . Global stability of a class of discrete age-structured SIS models with immigration. Mathematical Biosciences and Engineering, 2009, 6(2): 409-425. doi: 10.3934/mbe.2009.6.409
    [6] Joan Ponce, Horst R. Thieme . Can infectious diseases eradicate host species? The effect of infection-age structure. Mathematical Biosciences and Engineering, 2023, 20(10): 18717-18760. doi: 10.3934/mbe.2023830
    [7] Meici Sun, Qiming Liu . An SIS epidemic model with time delay and stochastic perturbation on heterogeneous networks. Mathematical Biosciences and Engineering, 2021, 18(5): 6790-6805. doi: 10.3934/mbe.2021337
    [8] Shaoli Wang, Jianhong Wu, Libin Rong . A note on the global properties of an age-structured viral dynamic model with multiple target cell populations. Mathematical Biosciences and Engineering, 2017, 14(3): 805-820. doi: 10.3934/mbe.2017044
    [9] Andreas Widder, Christian Kuehn . Heterogeneous population dynamics and scaling laws near epidemic outbreaks. Mathematical Biosciences and Engineering, 2016, 13(5): 1093-1118. doi: 10.3934/mbe.2016032
    [10] Jacques A. L. Silva, Flávia T. Giordani . Density-dependent dispersal in multiple species metapopulations. Mathematical Biosciences and Engineering, 2008, 5(4): 843-857. doi: 10.3934/mbe.2008.5.843
  • We present a preliminary study of an SIS model with a basic age structure and we focus on a disease with quick turnover, such as influenza or common cold. In such a case the difference between the characteristic demographic and epidemiological times naturally introduces two time scales in the model which makes it singularly perturbed. Using the Tikhonov theorem we prove that for certain classes of initial conditions the nonlinear structured SIS model can be approximated with very good accuracy by lower dimensional linear models.


    [1] Physics of Life Reviews, 8 (2011), 19-20.
    [2] preprint.
    [3] in preparation.
    [4] Physics of Life Reviews, 8 (2011), 1-18.
    [5] Springer-Verlag, New York, 1993.
    [6] Math. Intelligencer, 12 (1990), 57-64.
    [7] in "Mathematical Epidemiology" (eds. F. Brauer, P. van den Driessche and J. Wu), LNM 1945, Springer, Berlin, (2008), 3-18.
    [8] J. Differ. Equ., 31 (1979), 53-98.
    [9] J. Math. Biol., 60 (2010), 347-386.
    [10] J. Math. Anal. Appl., 18 (1967), 129-134.
    [11] in "Dynamical Systems" (ed. R. Johnson), LNM 1609, Springer, Berlin, (1995), 44-118.
    [12] SIAM J. Math. Anal., 33 (2001), 286-314.
    [13] in "Multiscale Problems in the Life Sciences. From Microscopic to Macroscopic" (eds. V. Capasso and M. Lachowicz), LNM 1940, Springer, (2008), 201-68.
    [14] Prob. Engin. Mech., 26 (2011), 54-60.
    [15] SIAM J. Appl. Math., 52 (1992), 1688-1706.
    [16] Springer, New York, 2003.
    [17] http://www.tdi.texas.gov/pubs/videoresource/fscommoncold.pdf.
    [18] Ecol. Model., 6 (1992), 287-308.
    [19] 174 (2011), 109-117.
    [20] SIAM Reviews, 31 (1989), 446-477.
    [21] African Institute of Mathematical Sciences Postgraduate Diploma Essay 2011/12, http://archive.aims.ac.za/2011-12.
    [22] PLoS ONE, 6, e27140.
    [23] Princeton University Press, Princeton, 2003.
    [24] Springer, Berlin, 1985.
    [25] Nauka, Moscow, 1973, in Russian.
    [26] Moscow State University, 1978 (in Russian) (translation: Mathematical Research Center Technical Summary Report 2039, Madison, 1980).
    [27] SIAM Review, 36 (1994), 440-452.
    [28] Springer, New York, 2005.
  • This article has been cited by:

    1. Eddy Kimba Phongi, Jacek Banasiak, 2015, Canard-type solutions in epidemiological models, 1-60133-018-9, 85, 10.3934/proc.2015.0085
    2. Jacek Banasiak, Mirosław Lachowicz, 2014, Chapter 1, 978-3-319-05139-0, 1, 10.1007/978-3-319-05140-6_1
    3. Jacek Banasiak, Mirosław Lachowicz, 2014, Chapter 4, 978-3-319-05139-0, 105, 10.1007/978-3-319-05140-6_4
    4. Jacek Banasiak, Aleksandra Falkiewicz, Milaine S. S. Tchamga, 2018, Chapter 13, 978-3-319-71485-1, 249, 10.1007/978-3-319-71486-8_13
    5. Christian Kuehn, 2015, Chapter 20, 978-3-319-12315-8, 665, 10.1007/978-3-319-12316-5_20
    6. J. Banasiak, M.S. Seuneu Tchamga, Delayed stability switches in singularly perturbed predator–prey models, 2017, 35, 14681218, 312, 10.1016/j.nonrwa.2016.10.013
    7. Rodrigue Yves M'pika Massoukou, Hermane Mambili-Mamboundou, Singular perturbation analysis of a two-site model for an epidemic in age-structured population, 2018, 11, 1793-5245, 1850087, 10.1142/S1793524518500870
    8. Yuri Kozitsky, Agnieszka Tanaś, Evolution of an infinite fission-death system in the continuum, 2021, 501, 0022247X, 125222, 10.1016/j.jmaa.2021.125222
    9. Yunyun Niu, Yulin Chen, Detian Kong, Bo Yuan, Jieqiong Zhang, Jianhua Xiao, Strategy evolution of panic pedestrians in emergent evacuation with assailants based on susceptible-infected-susceptible model, 2021, 570, 00200255, 105, 10.1016/j.ins.2021.04.040
    10. J. Banasiak, S.Y. Tchoumi, Multiscale malaria models and their uniform in-time asymptotic analysis, 2024, 03784754, 10.1016/j.matcom.2024.02.015
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3018) PDF downloads(574) Cited by(10)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog