Citation: Elena Fimmel, Yury S. Semenov, Alexander S. Bratus. On optimal and suboptimal treatment strategies for a mathematical model of leukemia[J]. Mathematical Biosciences and Engineering, 2013, 10(1): 151-165. doi: 10.3934/mbe.2013.10.151
[1] | Pedro José Gutiérrez-Diez, Jose Russo . Design of personalized cancer treatments by use of optimal control problems: The case of chronic myeloid leukemia. Mathematical Biosciences and Engineering, 2020, 17(5): 4773-4800. doi: 10.3934/mbe.2020261 |
[2] | Urszula Ledzewicz, Heinz Schättler . The Influence of PK/PD on the Structure of Optimal Controls in Cancer Chemotherapy Models. Mathematical Biosciences and Engineering, 2005, 2(3): 561-578. doi: 10.3934/mbe.2005.2.561 |
[3] | Haifeng Zhang, Jinzhi Lei . Optimal treatment strategy of cancers with intratumor heterogeneity. Mathematical Biosciences and Engineering, 2022, 19(12): 13337-13373. doi: 10.3934/mbe.2022625 |
[4] | B. M. Adams, H. T. Banks, Hee-Dae Kwon, Hien T. Tran . Dynamic Multidrug Therapies for HIV: Optimal and STI Control Approaches. Mathematical Biosciences and Engineering, 2004, 1(2): 223-241. doi: 10.3934/mbe.2004.1.223 |
[5] | Hongli Yang, Jinzhi Lei . A mathematical model of chromosome recombination-induced drug resistance in cancer therapy. Mathematical Biosciences and Engineering, 2019, 16(6): 7098-7111. doi: 10.3934/mbe.2019356 |
[6] | Shuo Wang, Heinz Schättler . Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity. Mathematical Biosciences and Engineering, 2016, 13(6): 1223-1240. doi: 10.3934/mbe.2016040 |
[7] | Rujing Zhao, Xiulan Lai . Evolutionary analysis of replicator dynamics about anti-cancer combination therapy. Mathematical Biosciences and Engineering, 2023, 20(1): 656-682. doi: 10.3934/mbe.2023030 |
[8] | Urszula Ledzewicz, Shuo Wang, Heinz Schättler, Nicolas André, Marie Amélie Heng, Eddy Pasquier . On drug resistance and metronomic chemotherapy: A mathematical modeling and optimal control approach. Mathematical Biosciences and Engineering, 2017, 14(1): 217-235. doi: 10.3934/mbe.2017014 |
[9] | Joseph Malinzi, Rachid Ouifki, Amina Eladdadi, Delfim F. M. Torres, K. A. Jane White . Enhancement of chemotherapy using oncolytic virotherapy: Mathematical and optimal control analysis. Mathematical Biosciences and Engineering, 2018, 15(6): 1435-1463. doi: 10.3934/mbe.2018066 |
[10] | Urszula Ledzewicz, Heinz Schättler, Mostafa Reisi Gahrooi, Siamak Mahmoudian Dehkordi . On the MTD paradigm and optimal control for multi-drug cancer chemotherapy. Mathematical Biosciences and Engineering, 2013, 10(3): 803-819. doi: 10.3934/mbe.2013.10.803 |
[1] | in "Computational Medicine, Public Health, and Biotechnology Part I. World Scientific" New Jersey, (1995), pp. 397. |
[2] | in "Mathematical Models in Medical and Health Sciences" (eds. M. A. Horn, G. Simonett and G. F. Webb), Vanderbilt University. Nashville, (1998), 1-8. |
[3] | Comm. Theor. Biol., 8 (2003), 225-253. |
[4] | J. Can. Det. Prev.,, 20 (1996), 171-179. |
[5] | Math. Biosci., 138 (1996), 79-100. |
[6] | Zh. Vychisl. Mat. Mat. Fiz., 49 (2009), 1907-1919 |
[7] | Nonlinear Analysis: Real World Applications, 13 (2012), 1044-1059. |
[8] | Cancer, 30 (1972), 1572-1582. |
[9] | Cell Tissue Kinet., 18 (1985), 307-319. |
[10] | Mathematical Biosciences, 229 (2011), 123-134. |
[11] | Springer, 1988. |
[12] | SIAM Journal on Applied Mathematics, 63 (2003), 1954-1971. |
[13] | SIAM Journal on Applied Mathematics, 60 (2000), 1059-1072. |
[14] | SIAM J. Appl. Math., 46 (1986), 614-624. |
[15] | J. Theor. Biol., 225 (2003), 147-151. |
[16] | World Scientific. Vol. 9, 2008. |
[17] | Clin. Pharmacokin, 6 (1981), 429-453. |
[18] | Prentice-Hall, 1970 |
[19] | Mathematical Biosciences, 222 (2009), 13-26. |
[20] | Mathematical Biosciences, 206 (2007), 320-342. |
[21] | IMA J. Math. Appl. Med. Biol., 18 (2001), 25-40. |
[22] | Nature Clinical Practice, 3 Nr. 8, (2006). |
[23] | Cancer Treat Rep., 61(1977) Oct, 1307-1317. PubMed PMID: 589597. |
[24] | Mathematical Biosciences, 146 (1997), 89-113. |
[25] | Biophys. J., 16 (1976), 897-910. |
[26] | Cancer Chemo. Rep., 25 (1964), 1-111. |
[27] | Clin. Pharmacology & Therapeutics, 71 (2002), pp.304. |
[28] | Bull. Math. Biol., 39 (1977), 317-337. |
[29] | Russian Journal of Numerical Analysis and Mathematical Modelling, 26 (2011), 589-604. |
1. | A.S. Bratus, E. Fimmel, S.Yu. Kovalenko, On assessing quality of therapy in non-linear distributed mathematical models for brain tumor growth dynamics, 2014, 248, 00255564, 88, 10.1016/j.mbs.2013.12.007 | |
2. | Chahrazed Benosman, Bedr’Eddine Aïnseba, Arnaud Ducrot, Optimization of Cytostatic Leukemia Therapy in an Advection–Reaction–Diffusion Model, 2015, 167, 0022-3239, 296, 10.1007/s10957-014-0667-7 | |
3. | Ekaterina Guzev, Suchita Suryakant Jadhav, Eleonora Ela Hezkiy, Michael Y. Sherman, Michael A. Firer, Svetlana Bunimovich-Mendrazitsky, Validation of a Mathematical Model Describing the Dynamics of Chemotherapy for Chronic Lymphocytic Leukemia In Vivo, 2022, 11, 2073-4409, 2325, 10.3390/cells11152325 | |
4. | N. L. Grigorenko, E. N. Khailov, E. V. Grigorieva, A. D. Klimenkova, Optimal Strategies in the Treatment of Cancers in the Lotka–Volterra Mathematical Model of Competition, 2021, 313, 0081-5438, S100, 10.1134/S0081543821030111 | |
5. | N. L. Grigorenko, E. N. Khailov, E. V. Grigorieva, A. D. Klimenkova, Lotka–Volterra Competition Model with a Nonmonotone Therapy Function for Finding Optimal Strategies in the Treatment of Blood Cancers, 2022, 317, 0081-5438, S71, 10.1134/S0081543822030063 |