A statistical approach to the use of control entropy identifies differences in constraints of gait in highly trained versus untrained runners

  • Received: 01 February 2011 Accepted: 29 June 2018 Published: 01 December 2011
  • MSC : Primary: 37M25, 62H15; Secondary: 92C30.

  • Control entropy (CE) is a complexity analysis suitable for dynamic, non-stationary conditions which allows the inference of the control effort of a dynamical system generating the signal [4]. These characteristics make CE a highly relevant time varying quantity relevant to the dynamic physiological responses associated with running. Using High Resolution Accelerometry (HRA) signals we evaluate here constraints of running gait, from two different groups of runners, highly trained collegiate and untrained runners. To this end, we further develop the control entropy (CE) statistic to allow for group analysis to examine the non-linear characteristics of movement patterns in highly trained runners with those of untrained runners, to gain insight regarding gaits that are optimal for running. Specifically, CE develops response time series of individuals descriptive of the control effort; a group analysis of these shapes developed here uses Karhunen Loeve Analysis (KL) modes of these time series which are compared between groups by application of a Hotelling $T^{2}$ test to these group response shapes. We find that differences in the shape of the CE response exist within groups, between axes for untrained runners (vertical vs anterior-posterior and mediolateral vs anterior-posterior) and trained runners (mediolateral vs anterior-posterior). Also shape differences exist between groups by axes (vertical vs mediolateral). Further, the CE, as a whole, was higher in each axis in trained vs untrained runners. These results indicate that the approach can provide unique insight regarding the differing constraints on running gait in highly trained and untrained runners when running under dynamic conditions. Further, the final point indicates trained runners are less constrained than untrained runners across all running speeds.

    Citation: Rana D. Parshad, Stephen J. McGregor, Michael A. Busa, Joseph D. Skufca, Erik Bollt. A statistical approach to the use of control entropy identifies differences in constraints of gait in highly trained versus untrained runners[J]. Mathematical Biosciences and Engineering, 2012, 9(1): 123-145. doi: 10.3934/mbe.2012.9.123

    Related Papers:

    [1] Lingfei Mo, Lujie Zeng . Running gait pattern recognition based on cross-correlation analysis of single acceleration sensor. Mathematical Biosciences and Engineering, 2019, 16(6): 6242-6256. doi: 10.3934/mbe.2019311
    [2] Leandro Donisi, Giuseppe Cesarelli, Pietro Balbi, Vincenzo Provitera, Bernardo Lanzillo, Armando Coccia, Giovanni D'Addio . Positive impact of short-term gait rehabilitation in Parkinson patients: a combined approach based on statistics and machine learning. Mathematical Biosciences and Engineering, 2021, 18(5): 6995-7009. doi: 10.3934/mbe.2021348
    [3] Xin Liu, Chen Zhao, Bin Zheng, Qinwei Guo, Yuanyuan Yu, Dezheng Zhang, Aziguli Wulamu . Spatiotemporal and kinematic characteristics augmentation using Dual-GAN for ankle instability detection. Mathematical Biosciences and Engineering, 2022, 19(10): 10037-10059. doi: 10.3934/mbe.2022469
    [4] Wajid Aziz, Lal Hussain, Ishtiaq Rasool Khan, Jalal S. Alowibdi, Monagi H. Alkinani . Machine learning based classification of normal, slow and fast walking by extracting multimodal features from stride interval time series. Mathematical Biosciences and Engineering, 2021, 18(1): 495-517. doi: 10.3934/mbe.2021027
    [5] Xuecheng Weng, Chang Mei, Farong Gao, Xudong Wu, Qizhong Zhang, Guangyu Liu . A gait stability evaluation method based on wearable acceleration sensors. Mathematical Biosciences and Engineering, 2023, 20(11): 20002-20024. doi: 10.3934/mbe.2023886
    [6] Zhangjie Wu, Minming Gu . A novel attention-guided ECA-CNN architecture for sEMG-based gait classification. Mathematical Biosciences and Engineering, 2023, 20(4): 7140-7153. doi: 10.3934/mbe.2023308
    [7] Ting Yao, Farong Gao, Qizhong Zhang, Yuliang Ma . Multi-feature gait recognition with DNN based on sEMG signals. Mathematical Biosciences and Engineering, 2021, 18(4): 3521-3542. doi: 10.3934/mbe.2021177
    [8] Erik M. Bollt, Joseph D. Skufca, Stephen J . McGregor . Control entropy: A complexity measure for nonstationary signals. Mathematical Biosciences and Engineering, 2009, 6(1): 1-25. doi: 10.3934/mbe.2009.6.1
    [9] Zhen Liu, Pande Zhang, Ming Yan, Yimin Xie, Guangzhi Huang . Additive manufacturing of specific ankle-foot orthoses for persons after stroke: A preliminary study based on gait analysis data. Mathematical Biosciences and Engineering, 2019, 16(6): 8134-8143. doi: 10.3934/mbe.2019410
    [10] Xiaoguang Liu, Yubo Wu, Meng Chen, Tie Liang, Fei Han, Xiuling Liu . A double-channel multiscale depthwise separable convolutional neural network for abnormal gait recognition. Mathematical Biosciences and Engineering, 2023, 20(5): 8049-8067. doi: 10.3934/mbe.2023349
  • Control entropy (CE) is a complexity analysis suitable for dynamic, non-stationary conditions which allows the inference of the control effort of a dynamical system generating the signal [4]. These characteristics make CE a highly relevant time varying quantity relevant to the dynamic physiological responses associated with running. Using High Resolution Accelerometry (HRA) signals we evaluate here constraints of running gait, from two different groups of runners, highly trained collegiate and untrained runners. To this end, we further develop the control entropy (CE) statistic to allow for group analysis to examine the non-linear characteristics of movement patterns in highly trained runners with those of untrained runners, to gain insight regarding gaits that are optimal for running. Specifically, CE develops response time series of individuals descriptive of the control effort; a group analysis of these shapes developed here uses Karhunen Loeve Analysis (KL) modes of these time series which are compared between groups by application of a Hotelling $T^{2}$ test to these group response shapes. We find that differences in the shape of the CE response exist within groups, between axes for untrained runners (vertical vs anterior-posterior and mediolateral vs anterior-posterior) and trained runners (mediolateral vs anterior-posterior). Also shape differences exist between groups by axes (vertical vs mediolateral). Further, the CE, as a whole, was higher in each axis in trained vs untrained runners. These results indicate that the approach can provide unique insight regarding the differing constraints on running gait in highly trained and untrained runners when running under dynamic conditions. Further, the final point indicates trained runners are less constrained than untrained runners across all running speeds.


  • This article has been cited by:

    1. William Johnston, Martin O’Reilly, Ciara Duignan, Mairead Liston, Rod McLoughlin, Garrett F. Coughlan, Brian Caulfield, Association of Dynamic Balance With Sports-Related Concussion: A Prospective Cohort Study, 2019, 47, 0363-5465, 197, 10.1177/0363546518812820
    2. Daniel Rojas-Valverde, José Pino-Ortega, Rafael Timón, Randall Gutiérrez-Vargas, Braulio Sánchez-Ureña, Guillermo J Olcina, Agreement and reliability of magnetic, angular rate, and gravity (MARG) sensors to assess multiple body segment’s external loads during off-road running, 2021, 1754-3371, 175433712199698, 10.1177/1754337121996986
    3. Allison H. Gruber, James McDonnell, John J. Davis, Jacob E. Vollmar, Jaroslaw Harezlak, Max R. Paquette, Monitoring Gait Complexity as an Indicator for Running-Related Injury Risk in Collegiate Cross-Country Runners: A Proof-of-Concept Study, 2021, 3, 2624-9367, 10.3389/fspor.2021.630975
    4. Rachel Mason, Liam T. Pearson, Gillian Barry, Fraser Young, Oisin Lennon, Alan Godfrey, Samuel Stuart, Wearables for Running Gait Analysis: A Systematic Review, 2023, 53, 0112-1642, 241, 10.1007/s40279-022-01760-6
    5. Ben Hunter, Bettina Karsten, Andrew Greenhalgh, Mark Burnley, Daniel Muniz-Pumares, The Application of non-linear methods to quantify changes to movement dynamics during running: A scoping review, 2023, 0264-0414, 1, 10.1080/02640414.2023.2225014
  • Reader Comments
  • © 2012 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2870) PDF downloads(646) Cited by(5)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog