Robustness of optimal controls for a class of mathematical models for tumor anti-angiogenesis

  • Received: 01 February 2010 Accepted: 29 June 2018 Published: 01 April 2011
  • MSC : Primary: 49N35; Secondary: 49K15, 92C50.

  • We describe optimal protocols for a class of mathematical models for tumor anti-angiogenesis for the problem of minimizing the tumor volume with an a priori given amount of vessel disruptive agents. The family of models is based on a biologically validated model by Hahnfeldt et al. [9] and includes a modification by Ergun et al. [6], but also provides two new variations that interpolate the dynamics for the vascular support between these existing models. The biological reasoning for the modifications of the models will be presented and we will show that despite quite different modeling assumptions, the qualitative structure of optimal controls is robust. For all the systems in the class of models considered here, an optimal singular arc is the defining element and all the syntheses of optimal controlled trajectories are qualitatively equivalent with quantitative differences easily computed.

    Citation: Heinz Schättler, Urszula Ledzewicz, Benjamin Cardwell. Robustness of optimal controls for a class of mathematical models for tumor anti-angiogenesis[J]. Mathematical Biosciences and Engineering, 2011, 8(2): 355-369. doi: 10.3934/mbe.2011.8.355

    Related Papers:

    [1] Mahya Mohammadi, M. Soltani, Cyrus Aghanajafi, Mohammad Kohandel . Investigation of the evolution of tumor-induced microvascular network under the inhibitory effect of anti-angiogenic factor, angiostatin: A mathematical study. Mathematical Biosciences and Engineering, 2023, 20(3): 5448-5480. doi: 10.3934/mbe.2023252
    [2] Urszula Ledzewicz, Helmut Maurer, Heinz Schättler . Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy. Mathematical Biosciences and Engineering, 2011, 8(2): 307-323. doi: 10.3934/mbe.2011.8.307
    [3] Avner Friedman, Kang-Ling Liao . The role of the cytokines IL-27 and IL-35 in cancer. Mathematical Biosciences and Engineering, 2015, 12(6): 1203-1217. doi: 10.3934/mbe.2015.12.1203
    [4] Luis L. Bonilla, Vincenzo Capasso, Mariano Alvaro, Manuel Carretero, Filippo Terragni . On the mathematical modelling of tumor-induced angiogenesis. Mathematical Biosciences and Engineering, 2017, 14(1): 45-66. doi: 10.3934/mbe.2017004
    [5] John D. Nagy, Dieter Armbruster . Evolution of uncontrolled proliferation and the angiogenic switch in cancer. Mathematical Biosciences and Engineering, 2012, 9(4): 843-876. doi: 10.3934/mbe.2012.9.843
    [6] Shuo Wang, Heinz Schättler . Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity. Mathematical Biosciences and Engineering, 2016, 13(6): 1223-1240. doi: 10.3934/mbe.2016040
    [7] Urszula Ledzewicz, Shuo Wang, Heinz Schättler, Nicolas André, Marie Amélie Heng, Eddy Pasquier . On drug resistance and metronomic chemotherapy: A mathematical modeling and optimal control approach. Mathematical Biosciences and Engineering, 2017, 14(1): 217-235. doi: 10.3934/mbe.2017014
    [8] Donggu Lee, Sunju Oh, Sean Lawler, Yangjin Kim . Bistable dynamics of TAN-NK cells in tumor growth and control of radiotherapy-induced neutropenia in lung cancer treatment. Mathematical Biosciences and Engineering, 2025, 22(4): 744-809. doi: 10.3934/mbe.2025028
    [9] Filippo Cacace, Valerio Cusimano, Alfredo Germani, Pasquale Palumbo, Federico Papa . Closed-loop control of tumor growth by means of anti-angiogenic administration. Mathematical Biosciences and Engineering, 2018, 15(4): 827-839. doi: 10.3934/mbe.2018037
    [10] Yuyang Xiao, Juan Shen, Xiufen Zou . Mathematical modeling and dynamical analysis of anti-tumor drug dose-response. Mathematical Biosciences and Engineering, 2022, 19(4): 4120-4144. doi: 10.3934/mbe.2022190
  • We describe optimal protocols for a class of mathematical models for tumor anti-angiogenesis for the problem of minimizing the tumor volume with an a priori given amount of vessel disruptive agents. The family of models is based on a biologically validated model by Hahnfeldt et al. [9] and includes a modification by Ergun et al. [6], but also provides two new variations that interpolate the dynamics for the vascular support between these existing models. The biological reasoning for the modifications of the models will be presented and we will show that despite quite different modeling assumptions, the qualitative structure of optimal controls is robust. For all the systems in the class of models considered here, an optimal singular arc is the defining element and all the syntheses of optimal controlled trajectories are qualitatively equivalent with quantitative differences easily computed.


  • This article has been cited by:

    1. Urszula Ledzewicz, Alberto d’Onofrio, Heinz Schättler, 2013, Chapter 11, 978-1-4614-4177-9, 311, 10.1007/978-1-4614-4178-6_11
    2. T model of growth and its application in systems of tumor-immunedynamics, 2013, 10, 1551-0018, 925, 10.3934/mbe.2013.10.925
    3. Lance L. Munn, Christian Kunert, J. Alex Tyrrell, 2013, Chapter 5, 978-1-4614-4177-9, 117, 10.1007/978-1-4614-4178-6_5
    4. Heinz Schättler, Urszula Ledzewicz, 2015, Chapter 5, 978-1-4939-2971-9, 171, 10.1007/978-1-4939-2972-6_5
    5. Heinz Schättler, Urszula Ledzewicz, Behrooz Amini, Dynamical properties of a minimally parameterized mathematical model for metronomic chemotherapy, 2016, 72, 0303-6812, 1255, 10.1007/s00285-015-0907-y
    6. Arjan W. Griffioen, Andrea Weiss, Robert H. Berndsen, U. Kulsoom Abdul, Marije T. te Winkel, Patrycja Nowak-Sliwinska, The emerging quest for the optimal angiostatic combination therapy, 2014, 42, 0300-5127, 1608, 10.1042/BST20140193
    7. Urszula Ledzewicz, Heinz Schättler, 2014, Chapter 10, 978-1-4939-0457-0, 295, 10.1007/978-1-4939-0458-7_10
    8. Heinz Schättler, Urszula Ledzewicz, 2015, Chapter 8, 978-3-319-06916-6, 209, 10.1007/978-3-319-06917-3_8
    9. U. Ledzewicz, H. Schättler, Multi-input Optimal Control Problems for Combined Tumor Anti-angiogenic and Radiotherapy Treatments, 2012, 153, 0022-3239, 195, 10.1007/s10957-011-9954-8
    10. Kolade M. Owolabi, Kailash C. Patidar, Albert Shikongo, Numerical solution for a problem arising in angiogenic signalling, 2019, 4, 2473-6988, 43, 10.3934/Math.2019.1.43
    11. Gaowang Zhang, Feng Wang, Jian Chen, Huayi Li, Fixed-time sliding mode attitude control of a flexible spacecraft with rotating appendages connected by magnetic bearing, 2022, 19, 1551-0018, 2286, 10.3934/mbe.2022106
    12. Fernando Saldaña, Amira Kebir, José Ariel Camacho-Gutiérrez, Maíra Aguiar, Optimal vaccination strategies for a heterogeneous population using multiple objectives: The case of L1− and L2−formulations, 2023, 366, 00255564, 109103, 10.1016/j.mbs.2023.109103
    13. Martin Dodek, Zuzana Vitková, Anton Vitko, Jarmila Pavlovičová, Eva Miklovičová, Personalization of Optimal Chemotherapy Dosing Based on Estimation of Uncertain Model Parameters Using Artificial Neural Network, 2025, 15, 2076-3417, 3145, 10.3390/app15063145
  • Reader Comments
  • © 2011 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3100) PDF downloads(474) Cited by(13)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog