Loading [Contrib]/a11y/accessibility-menu.js

Rotating antibiotics does not minimize selection for resistance

  • Received: 01 August 2010 Accepted: 29 June 2018 Published: 01 October 2010
  • MSC : 92B05, 92C50, 92D30, 93C15.

  • N/A

    Citation: Sebastian Bonhoeffer, Pia Abel zur Wiesch, Roger D. Kouyos. Rotating antibiotics does not minimize selection for resistance[J]. Mathematical Biosciences and Engineering, 2010, 7(4): 919-922. doi: 10.3934/mbe.2010.7.919

    Related Papers:

    [1] Robert E. Beardmore, Rafael Peña-Miller . Antibiotic cycling versus mixing: The difficulty of using mathematical models to definitively quantify their relative merits. Mathematical Biosciences and Engineering, 2010, 7(4): 923-933. doi: 10.3934/mbe.2010.7.923
    [2] Robert E. Beardmore, Rafael Peña-Miller . Rotating antibiotics selects optimally against antibiotic resistance, in theory. Mathematical Biosciences and Engineering, 2010, 7(3): 527-552. doi: 10.3934/mbe.2010.7.527
    [3] Xiaxia Kang, Jie Yan, Fan Huang, Ling Yang . On the mechanism of antibiotic resistance and fecal microbiota transplantation. Mathematical Biosciences and Engineering, 2019, 16(6): 7057-7084. doi: 10.3934/mbe.2019354
    [4] Jing Jia, Yanfeng Zhao, Zhong Zhao, Bing Liu, Xinyu Song, Yuanxian Hui . Dynamics of a within-host drug resistance model with impulsive state feedback control. Mathematical Biosciences and Engineering, 2023, 20(2): 2219-2231. doi: 10.3934/mbe.2023103
    [5] Michele L. Joyner, Cammey C. Manning, Brandi N. Canter . Modeling the effects of introducing a new antibiotic in a hospital setting: A case study. Mathematical Biosciences and Engineering, 2012, 9(3): 601-625. doi: 10.3934/mbe.2012.9.601
    [6] Avner Friedman, Najat Ziyadi, Khalid Boushaba . A model of drug resistance with infection by health care workers. Mathematical Biosciences and Engineering, 2010, 7(4): 779-792. doi: 10.3934/mbe.2010.7.779
    [7] Xiaoxiao Yan, Zhong Zhao, Yuanxian Hui, Jingen Yang . Dynamic analysis of a bacterial resistance model with impulsive state feedback control. Mathematical Biosciences and Engineering, 2023, 20(12): 20422-20436. doi: 10.3934/mbe.2023903
    [8] Natalia L. Komarova . Mathematical modeling of cyclic treatments of chronic myeloid leukemia. Mathematical Biosciences and Engineering, 2011, 8(2): 289-306. doi: 10.3934/mbe.2011.8.289
    [9] Qimin Huang, Mary Ann Horn, Shigui Ruan . Modeling the effect of antibiotic exposure on the transmission of methicillin-resistant Staphylococcus aureus in hospitals with environmental contamination. Mathematical Biosciences and Engineering, 2019, 16(5): 3641-3673. doi: 10.3934/mbe.2019181
    [10] Hermann Mena, Lena-Maria Pfurtscheller, Jhoana P. Romero-Leiton . Random perturbations in a mathematical model of bacterial resistance: Analysis and optimal control. Mathematical Biosciences and Engineering, 2020, 17(5): 4477-4499. doi: 10.3934/mbe.2020247
  • N/A


  • This article has been cited by:

    1. Pleun J van Duijn, Marc JM Bonten, Antibiotic rotation strategies to reduce antimicrobial resistance in Gram-negative bacteria in European intensive care units: study protocol for a cluster-randomized crossover controlled trial, 2014, 15, 1745-6215, 10.1186/1745-6215-15-277
    2. Hildegard Uecker, Sebastian Bonhoeffer, Modeling antimicrobial cycling and mixing: Differences arising from an individual-based versus a population-based perspective, 2017, 294, 00255564, 85, 10.1016/j.mbs.2017.09.002
    3. Nicolas Houy, Julien Flaig, Optimal dynamic empirical therapy in a health care facility: A Monte-Carlo look-ahead method, 2021, 198, 01692607, 105767, 10.1016/j.cmpb.2020.105767
    4. Antibiotic cycling versus mixing: The difficulty of using mathematical models to definitively quantify their relative merits, 2010, 7, 1551-0018, 923, 10.3934/mbe.2010.7.923
    5. Nicolas Houy, Julien Flaig, Hospital-wide surveillance-based antimicrobial treatments: a Monte-Carlo look-ahead method, 2021, 01692607, 106050, 10.1016/j.cmpb.2021.106050
    6. Daniel Nichol, Peter Jeavons, Alexander G. Fletcher, Robert A. Bonomo, Philip K. Maini, Jerome L. Paul, Robert A. Gatenby, Alexander R.A. Anderson, Jacob G. Scott, Rustom Antia, Steering Evolution with Sequential Therapy to Prevent the Emergence of Bacterial Antibiotic Resistance, 2015, 11, 1553-7358, e1004493, 10.1371/journal.pcbi.1004493
    7. François Blanquart, Evolutionary epidemiology models to predict the dynamics of antibiotic resistance, 2019, 12, 1752-4571, 365, 10.1111/eva.12753
    8. Nienke L Plantinga, Bastiaan HJ Wittekamp, Pleun J van Duijn, Marc JM Bonten, Fighting antibiotic resistance in the intensive care unit using antibiotics, 2015, 10, 1746-0913, 391, 10.2217/fmb.14.146
    9. Roger D. Kouyos, Pia Abel zur Wiesch, Sebastian Bonhoeffer, Christophe Fraser, Informed Switching Strongly Decreases the Prevalence of Antibiotic Resistance in Hospital Wards, 2011, 7, 1553-7358, e1001094, 10.1371/journal.pcbi.1001094
    10. Roderich Roemhild, Hinrich Schulenburg, Evolutionary ecology meets the antibiotic crisis, 2019, 2019, 2050-6201, 37, 10.1093/emph/eoz008
    11. Antonio L. C. Gomes, James E. Galagan, Daniel Segrè, James M. McCaw, Resource Competition May Lead to Effective Treatment of Antibiotic Resistant Infections, 2013, 8, 1932-6203, e80775, 10.1371/journal.pone.0080775
    12. Gabriel G. Perron, Sergey Kryazhimskiy, Daniel P. Rice, Angus Buckling, Multidrug Therapy and Evolution of Antibiotic Resistance: When Order Matters, 2012, 78, 0099-2240, 6137, 10.1128/AEM.01078-12
    13. D. E. Ramsay, J. Invik, S. L. Checkley, S. P. Gow, N. D. Osgood, C. L. Waldner, Application of dynamic modelling techniques to the problem of antibacterial use and resistance: a scoping review, 2018, 146, 0950-2688, 2014, 10.1017/S0950268818002091
    14. Xiao‐Jin Li, Yong Liu, Liang Du, Yan Kang, The Effect of Antibiotic‐Cycling Strategy on Antibiotic‐Resistant Bacterial Infections or Colonization in Intensive Care Units: A Systematic Review and Meta‐Analysis, 2020, 17, 1545-102X, 319, 10.1111/wvn.12454
    15. Hildegard Uecker, Sebastian Bonhoeffer, Antibiotic treatment protocols revisited: the challenges of a conclusive assessment by mathematical modelling, 2021, 18, 1742-5662, 20210308, 10.1098/rsif.2021.0308
  • Reader Comments
  • © 2010 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3406) PDF downloads(507) Cited by(15)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog