A comparison of nonlinear filtering approaches in the context of an HIV model

  • Received: 01 July 2009 Accepted: 29 June 2018 Published: 01 April 2010
  • MSC : 65C30, 92D30, 93E10.

  • In this paper three different filtering methods, the Extended Kalman Filter (EKF), the Gauss-Hermite Filter (GHF), and the Unscented Kalman Filter (UKF), are compared for state-only and coupled state and parameter estimation when used with log state variables of a model of the immunologic response to the human immunodeficiency virus (HIV) in individuals. The filters are implemented to estimate model states as well as model parameters from simulated noisy data, and are compared in terms of estimation accuracy and computational time. Numerical experiments reveal that the GHF is the most computationally expensive algorithm, while the EKF is the least expensive one. In addition, computational experiments suggest that there is little difference in the estimation accuracy between the UKF and GHF. When measurements are taken as frequently as every week to two weeks, the EKF is the superior filter. When measurements are further apart, the UKF is the best choice in the problem under investigation.

    Citation: H. Thomas Banks, Shuhua Hu, Zackary R. Kenz, Hien T. Tran. A comparison of nonlinear filtering approaches in the context of anHIV model[J]. Mathematical Biosciences and Engineering, 2010, 7(2): 213-236. doi: 10.3934/mbe.2010.7.213

    Related Papers:

    [1] Gerasimos G. Rigatos, Efthymia G. Rigatou, Jean Daniel Djida . Change detection in the dynamics of an intracellular protein synthesis model using nonlinear Kalman filtering. Mathematical Biosciences and Engineering, 2015, 12(5): 1017-1035. doi: 10.3934/mbe.2015.12.1017
    [2] Weijie Wang, Shaoping Wang, Yixuan Geng, Yajing Qiao, Teresa Wu . An OGI model for personalized estimation of glucose and insulin concentration in plasma. Mathematical Biosciences and Engineering, 2021, 18(6): 8499-8523. doi: 10.3934/mbe.2021420
    [3] Xin Liu, Yingyuan Xiao, Xu Jiao, Wenguang Zheng, Zihao Ling . A novel Kalman Filter based shilling attack detection algorithm. Mathematical Biosciences and Engineering, 2020, 17(2): 1558-1577. doi: 10.3934/mbe.2020081
    [4] Yukun Tan, Durward Cator III, Martial Ndeffo-Mbah, Ulisses Braga-Neto . A stochastic metapopulation state-space approach to modeling and estimating COVID-19 spread. Mathematical Biosciences and Engineering, 2021, 18(6): 7685-7710. doi: 10.3934/mbe.2021381
    [5] Yuelin Yuan, Fei Li, Jialiang Chen, Yu Wang, Kai Liu . An improved Kalman filter algorithm for tightly GNSS/INS integrated navigation system. Mathematical Biosciences and Engineering, 2024, 21(1): 963-983. doi: 10.3934/mbe.2024040
    [6] Junyoung Jang, Kihoon Jang, Hee-Dae Kwon, Jeehyun Lee . Feedback control of an HBV model based on ensemble kalman filter and differential evolution. Mathematical Biosciences and Engineering, 2018, 15(3): 667-691. doi: 10.3934/mbe.2018030
    [7] Sarita Bugalia, Jai Prakash Tripathi, Hao Wang . Estimating the time-dependent effective reproduction number and vaccination rate for COVID-19 in the USA and India. Mathematical Biosciences and Engineering, 2023, 20(3): 4673-4689. doi: 10.3934/mbe.2023216
    [8] Mamadou L. Diouf, Abderrahman Iggidr, Max O. Souza . Stability and estimation problems related to a stage-structured epidemic model. Mathematical Biosciences and Engineering, 2019, 16(5): 4415-4432. doi: 10.3934/mbe.2019220
    [9] Tran Quang-Huy, Phuc Thinh Doan, Nguyen Thi Hoang Yen, Duc-Tan Tran . Shear wave imaging and classification using extended Kalman filter and decision tree algorithm. Mathematical Biosciences and Engineering, 2021, 18(6): 7631-7647. doi: 10.3934/mbe.2021378
    [10] Balázs Csutak, Gábor Szederkényi . Robust control and data reconstruction for nonlinear epidemiological models using feedback linearization and state estimation. Mathematical Biosciences and Engineering, 2025, 22(1): 109-137. doi: 10.3934/mbe.2025006
  • In this paper three different filtering methods, the Extended Kalman Filter (EKF), the Gauss-Hermite Filter (GHF), and the Unscented Kalman Filter (UKF), are compared for state-only and coupled state and parameter estimation when used with log state variables of a model of the immunologic response to the human immunodeficiency virus (HIV) in individuals. The filters are implemented to estimate model states as well as model parameters from simulated noisy data, and are compared in terms of estimation accuracy and computational time. Numerical experiments reveal that the GHF is the most computationally expensive algorithm, while the EKF is the least expensive one. In addition, computational experiments suggest that there is little difference in the estimation accuracy between the UKF and GHF. When measurements are taken as frequently as every week to two weeks, the EKF is the superior filter. When measurements are further apart, the UKF is the best choice in the problem under investigation.


  • This article has been cited by:

    1. András Hartmann, Susana Vinga, João M. Lemos, Online Bayesian Time-varying Parameter Estimation of HIV-1 Time-series*, 2012, 45, 14746670, 1294, 10.3182/20120711-3-BE-2027.00277
  • Reader Comments
  • © 2010 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2339) PDF downloads(452) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog