The dynamics of a simple Laissez-Faire model with two predators

  • Received: 01 May 2008 Accepted: 29 June 2018 Published: 01 December 2008
  • MSC : 34D05, 34D20, 92D25

  • In this paper, we study the dynamics of a laissez-faire predator--prey model with both a specialist and a generalist predator. We analyze the stabilities of equilibria by performing linearized stability analyses. We then reexamine the stability of the equilibrium where the prey and predator coexist by constructing a Lyapunov function. If we hold the generalist predator population constant, treating it as a bifurcation parameter, we show that our model can possess multiple (up to three) limit cycles that surround an equilibrium in the interior of the first quadrant. Our model shows rich dynamics including fold, transcritical, pitchfork, Hopf, cyclic-fold, and Bautin bifurcations as well as heteroclinic connections. If we instead vary the generalist predator population slowly across bifurcations, the model exhibits bursting behavior as it alternates between a repetitive spiking phase and a quiescent phase.

    Citation: Gunog Seo, Mark Kot. The dynamics of a simple Laissez-Faire model with two predators[J]. Mathematical Biosciences and Engineering, 2009, 6(1): 145-172. doi: 10.3934/mbe.2009.6.145

    Related Papers:

  • In this paper, we study the dynamics of a laissez-faire predator--prey model with both a specialist and a generalist predator. We analyze the stabilities of equilibria by performing linearized stability analyses. We then reexamine the stability of the equilibrium where the prey and predator coexist by constructing a Lyapunov function. If we hold the generalist predator population constant, treating it as a bifurcation parameter, we show that our model can possess multiple (up to three) limit cycles that surround an equilibrium in the interior of the first quadrant. Our model shows rich dynamics including fold, transcritical, pitchfork, Hopf, cyclic-fold, and Bautin bifurcations as well as heteroclinic connections. If we instead vary the generalist predator population slowly across bifurcations, the model exhibits bursting behavior as it alternates between a repetitive spiking phase and a quiescent phase.


    加载中
  • Reader Comments
  • © 2009 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(812) PDF downloads(468) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog