Loading [Contrib]/a11y/accessibility-menu.js

The Effect of Different Forms for the Delay in A Model of the Nephron

  • Received: 01 August 2004 Accepted: 29 June 2018 Published: 01 November 2004
  • MSC : 92C99,37N25,34K60.

  • We investigate how the dynamics of a mathematical model of a nephron depend on the precise form of the delay in the tubuloglomerular feedback loop. Although qualitative behavioral similarities emerge for different orders of delay, we find that significant quantitative differences occur. Without more knowledge of the form of the delay, this places restrictions on how reasonable it is to expect close quantitative agreement between the mathematical model and experimental data.

    Citation: Anne C. Skeldon, Ian Purvey. The Effect of Different Forms for the Delay in A Model of the Nephron[J]. Mathematical Biosciences and Engineering, 2005, 2(1): 97-109. doi: 10.3934/mbe.2005.2.97

    Related Papers:

    [1] Niksa Praljak, Shawn D. Ryan, Andrew Resnick . Pulsatile flow through idealized renal tubules: Fluid-structure interaction and dynamic pathologies. Mathematical Biosciences and Engineering, 2020, 17(2): 1787-1807. doi: 10.3934/mbe.2020094
    [2] Zenab Alrikaby, Xia Liu, Tonghua Zhang, Federico Frascoli . Stability and Hopf bifurcation analysis for a Lac operon model with nonlinear degradation rate and time delay. Mathematical Biosciences and Engineering, 2019, 16(4): 1729-1749. doi: 10.3934/mbe.2019083
    [3] Yueping Dong, Jianlu Ren, Qihua Huang . Dynamics of a toxin-mediated aquatic population model with delayed toxic responses. Mathematical Biosciences and Engineering, 2020, 17(5): 5907-5924. doi: 10.3934/mbe.2020315
    [4] Marek Bodnar, Urszula Foryś . Time Delay In Necrotic Core Formation. Mathematical Biosciences and Engineering, 2005, 2(3): 461-472. doi: 10.3934/mbe.2005.2.461
    [5] Leo Turner, Andrew Burbanks, Marianna Cerasuolo . PCa dynamics with neuroendocrine differentiation and distributed delay. Mathematical Biosciences and Engineering, 2021, 18(6): 8577-8602. doi: 10.3934/mbe.2021425
    [6] Hongfan Lu, Yuting Ding, Silin Gong, Shishi Wang . Mathematical modeling and dynamic analysis of SIQR model with delay for pandemic COVID-19. Mathematical Biosciences and Engineering, 2021, 18(4): 3197-3214. doi: 10.3934/mbe.2021159
    [7] Jinhu Xu, Yicang Zhou . Bifurcation analysis of HIV-1 infection model with cell-to-cell transmission and immune response delay. Mathematical Biosciences and Engineering, 2016, 13(2): 343-367. doi: 10.3934/mbe.2015006
    [8] Fang Liu, Yanfei Du . Spatiotemporal dynamics of a diffusive predator-prey model with delay and Allee effect in predator. Mathematical Biosciences and Engineering, 2023, 20(11): 19372-19400. doi: 10.3934/mbe.2023857
    [9] Edward J. Allen . Derivation and computation of discrete-delayand continuous-delay SDEs in mathematical biology. Mathematical Biosciences and Engineering, 2014, 11(3): 403-425. doi: 10.3934/mbe.2014.11.403
    [10] Qingwen Hu . A model of regulatory dynamics with threshold-type state-dependent delay. Mathematical Biosciences and Engineering, 2018, 15(4): 863-882. doi: 10.3934/mbe.2018039
  • We investigate how the dynamics of a mathematical model of a nephron depend on the precise form of the delay in the tubuloglomerular feedback loop. Although qualitative behavioral similarities emerge for different orders of delay, we find that significant quantitative differences occur. Without more knowledge of the form of the delay, this places restrictions on how reasonable it is to expect close quantitative agreement between the mathematical model and experimental data.


  • This article has been cited by:

    1. Aline Duarte, Eva Löcherbach, Guilherme Ost, Stability, convergence to equilibrium and simulation of non-linear Hawkes processes with memory kernels given by the sum of Erlang kernels, 2019, 23, 1262-3318, 770, 10.1051/ps/2019005
    2. Susanne Ditlevsen, Eva Löcherbach, Multi-class oscillating systems of interacting neurons, 2017, 127, 03044149, 1840, 10.1016/j.spa.2016.09.013
    3. Anita T. Layton, Leon C. Moore, Harold E. Layton, Multistable Dynamics Mediated by Tubuloglomerular Feedback in a Model of Coupled Nephrons, 2009, 71, 0092-8240, 515, 10.1007/s11538-008-9370-x
    4. Jerry J. Batzel, Franz Kappel, Time delay in physiological systems: Analyzing and modeling its impact, 2011, 234, 00255564, 61, 10.1016/j.mbs.2011.08.006
  • Reader Comments
  • © 2005 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2683) PDF downloads(471) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog