Chaotic spreading of epidemics in complex networks of excitable units

  • Received: 01 February 2004 Accepted: 29 June 2018 Published: 01 March 2004
  • MSC : 92D30, 34D20.

  • We explore the dynamics of an epidemiological disease spreading within a complex network of individuals. The local behavior of the epidemics is modelled by means of an excitable dynamics, and the individuals are connected in the network through a weighted small-world wiring. The global behavior of the epidemics can have stationary as well as chaotic states, depending upon the probability of substituting short-range with long-range interactions. We describe the bifurcation scenario leading to such latter states, and discuss the relevance of the observed chaotic dynamics for the description of the spreading mechanisms of epidemics inside complex networks.

    Citation: F. S. Vannucchi, S. Boccaletti. Chaotic spreading of epidemics in complex networks of excitable units[J]. Mathematical Biosciences and Engineering, 2004, 1(1): 49-55. doi: 10.3934/mbe.2004.1.49

    Related Papers:

    [1] Frederik Riis Mikkelsen . A model based rule for selecting spiking thresholds in neuron models. Mathematical Biosciences and Engineering, 2016, 13(3): 569-578. doi: 10.3934/mbe.2016008
    [2] Wenjie Qin, Jiamin Zhang, Zhengjun Dong . Media impact research: a discrete SIR epidemic model with threshold switching and nonlinear infection forces. Mathematical Biosciences and Engineering, 2023, 20(10): 17783-17802. doi: 10.3934/mbe.2023790
    [3] Maoxing Liu, Shushu He, Yongzheng Sun . The impact of media converge on complex networks on disease transmission. Mathematical Biosciences and Engineering, 2019, 16(6): 6335-6349. doi: 10.3934/mbe.2019316
    [4] Cunjuan Dong, Changcheng Xiang, Wenjin Qin, Yi Yang . Global dynamics for a Filippov system with media effects. Mathematical Biosciences and Engineering, 2022, 19(3): 2835-2852. doi: 10.3934/mbe.2022130
    [5] Andrey Olypher, Jean Vaillant . On the properties of input-to-output transformations in neuronal networks. Mathematical Biosciences and Engineering, 2016, 13(3): 579-596. doi: 10.3934/mbe.2016009
    [6] Sridevi Sriram, Hayder Natiq, Karthikeyan Rajagopal, Ondrej Krejcar, Hamidreza Namazi . Dynamics of a two-layer neuronal network with asymmetry in coupling. Mathematical Biosciences and Engineering, 2023, 20(2): 2908-2919. doi: 10.3934/mbe.2023137
    [7] Dirk Stiefs, Ezio Venturino, Ulrike Feudel . Evidence of chaos in eco-epidemic models. Mathematical Biosciences and Engineering, 2009, 6(4): 855-871. doi: 10.3934/mbe.2009.6.855
    [8] Zhen Jin, Guiquan Sun, Huaiping Zhu . Epidemic models for complex networks with demographics. Mathematical Biosciences and Engineering, 2014, 11(6): 1295-1317. doi: 10.3934/mbe.2014.11.1295
    [9] Zigen Song, Jian Xu, Bin Zhen . Mixed-coexistence of periodic orbits and chaotic attractors in an inertial neural system with a nonmonotonic activation function. Mathematical Biosciences and Engineering, 2019, 16(6): 6406-6425. doi: 10.3934/mbe.2019320
    [10] Junbo Jia, Wei Shi, Pan Yang, Xinchu Fu . Immunization strategies in directed networks. Mathematical Biosciences and Engineering, 2020, 17(4): 3925-3952. doi: 10.3934/mbe.2020218
  • We explore the dynamics of an epidemiological disease spreading within a complex network of individuals. The local behavior of the epidemics is modelled by means of an excitable dynamics, and the individuals are connected in the network through a weighted small-world wiring. The global behavior of the epidemics can have stationary as well as chaotic states, depending upon the probability of substituting short-range with long-range interactions. We describe the bifurcation scenario leading to such latter states, and discuss the relevance of the observed chaotic dynamics for the description of the spreading mechanisms of epidemics inside complex networks.


  • This article has been cited by:

    1. René Yamapi, Stefano Boccaletti, Active control of the synchronization manifold in a ring of mutually coupled oscillators, 2007, 371, 03759601, 48, 10.1016/j.physleta.2007.05.112
    2. T Isele, E Schöll, Effect of small-world topology on wave propagation on networks of excitable elements, 2015, 17, 1367-2630, 023058, 10.1088/1367-2630/17/2/023058
    3. Mike J. Jeger, Marco Pautasso, Ottmar Holdenrieder, Mike W. Shaw, Modelling disease spread and control in networks: implications for plant sciences, 2007, 174, 0028-646X, 279, 10.1111/j.1469-8137.2007.02028.x
    4. Andrew J. Black, Alan J. McKane, Ana Nunes, Andrea Parisi, Stochastic fluctuations in the susceptible-infective-recovered model with distributed infectious periods, 2009, 80, 1539-3755, 10.1103/PhysRevE.80.021922
    5. R. YAMAPI, M. A. AZIZ-ALAOUI, STABILITY OF THE CONTROLLED SYNCHRONIZATION MANIFOLD IN A RING OF MUTUALLY COUPLED CHAOTIC SYSTEMS, 2008, 18, 0218-1274, 2397, 10.1142/S0218127408021774
    6. Alexander Rothkegel, Klaus Lehnertz, Multistability, local pattern formation, and global collective firing in a small-world network of nonleaky integrate-and-fire neurons, 2009, 19, 1054-1500, 015109, 10.1063/1.3087432
    7. Bojin Zheng, 2008, Steady states and critical behavior of epidemic spreading on complex networks, 978-1-4244-2113-8, 3481, 10.1109/WCICA.2008.4593477
    8. Linfeng Huang, Dynamic multi‐objective optimisation of complex networks based on evolutionary computation, 2022, 2047-4954, 10.1049/ntw2.12059
    9. Daniel Galvis, David J. Hodson, Kyle C. A. Wedgwood, Spatial distribution of heterogeneity as a modulator of collective dynamics in pancreatic beta-cell networks and beyond, 2023, 3, 2674-0109, 10.3389/fnetp.2023.1170930
    10. Yang Sun, Sijia Guo, Lei Chen, Shengquan Li, Dongdong Shi, Yipei Ding, Fast identification of critical nodes in complex network based on improved greedy algorithm, 2024, 99, 0031-8949, 125282, 10.1088/1402-4896/ad91eb
  • Reader Comments
  • © 2004 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4010) PDF downloads(899) Cited by(10)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog