Research article

Mean-field backward stochastic differential equations with conditional reflection

  • Published: 16 September 2025
  • MSC : 60H25, 60H30

  • This paper investigated the well-posedness of solutions for a class of mean-field backward stochastic differential equations(BSDEs) with conditional reflection. First, based on the Skorohod lemma, we derived explicit estimates for the solutions and rigorously proved their uniqueness. For the special case where the generator was independent of the solution$ (Y, Z) $ and their distribution, we introduced the Snell envelope approach, which not only established the existence of solutions but also revealed their intrinsic connection to optimal stopping problems under partial information. Furthermore, for general generators (dependent on the solution and distribution), we proved the existence of solutions via the contraction mapping arguments. Our work extended the theoretical framework of mean-field BSDEs and provided novel analytical tools for related stochastic control problems.

    Citation: Yanrong Chang, Heng Du. Mean-field backward stochastic differential equations with conditional reflection[J]. AIMS Mathematics, 2025, 10(9): 21273-21286. doi: 10.3934/math.2025950

    Related Papers:

  • This paper investigated the well-posedness of solutions for a class of mean-field backward stochastic differential equations(BSDEs) with conditional reflection. First, based on the Skorohod lemma, we derived explicit estimates for the solutions and rigorously proved their uniqueness. For the special case where the generator was independent of the solution$ (Y, Z) $ and their distribution, we introduced the Snell envelope approach, which not only established the existence of solutions but also revealed their intrinsic connection to optimal stopping problems under partial information. Furthermore, for general generators (dependent on the solution and distribution), we proved the existence of solutions via the contraction mapping arguments. Our work extended the theoretical framework of mean-field BSDEs and provided novel analytical tools for related stochastic control problems.



    加载中


    [1] J. Bismut, Conjugate convex functions in optimal stochastic control, J. Math. Anal. Appl., 44 (1973), 384–404. https://doi.org/10.1016/0022-247X(73)90066-8 doi: 10.1016/0022-247X(73)90066-8
    [2] E. Pardoux, S. G. Peng, Adapted solution of a backward stochastic differential equation, Syst. Control Lett., 14 (1990), 55–61. https://doi.org/10.1016/0167-6911(90)90082-6 doi: 10.1016/0167-6911(90)90082-6
    [3] N. El Karoui, E. Pardoux, M. C. Quenez, Reflected backward SDEs and American options, In: Numerical methods in finance, Cambridge University Press, 1997,215–231.
    [4] P. Briand, R. Elie, Y. Hu, BSDEs with mean reflection, Ann. Appl. Probab., 28 (2018), 482–510. https://doi.org/10.1214/17-AAP1310
    [5] H. Helene, Y. Hu, Y. Lin, P. Luo, F. Wang, Quadratic BSDEs with mean reflection, Math. Control Relat. F., 8 (2018), 721–738. https://doi.org/10.3934/mcrf.2018031 doi: 10.3934/mcrf.2018031
    [6] G. Liu, F. Wang, BSDEs with mean reflection driven by G-Brownian motion, J. Math. Anal. Appl., 470 (2019), 599–618. https://doi.org/10.1016/j.jmaa.2018.10.025 doi: 10.1016/j.jmaa.2018.10.025
    [7] T. Chan, Dynamics of the McKean-CVlasov equation, Ann. Probab., 22 (1994), 431–441. https://doi.org/10.1214/aop/1176988866 doi: 10.1214/aop/1176988866
    [8] M. Bossy, Some stochastic particle methods for nonlinear parabolic PDEs, ESAIM: Proc., 15 (2005), 18–57. http://doi.org/10.1051/proc:2005019 doi: 10.1051/proc:2005019
    [9] A. Sznitman, Topics in propagation of chaos, In: Ecole d'Eté de Probabilités de Saint-Flour XIX — 1989, Berlin, Heidelberg: Springer, 1991,165–251. https://doi.org/10.1007/BFb0085169
    [10] P. Cardaliaguet, Notes on mean field games, P.-L. Lions' lectures at College de France, 2012.
    [11] J. M. Lasry, P. L. Lions, Mean field games, Jap. J. Math., 2 (2007), 229–260. https://doi.org/10.1007/s11537-007-0657-8
    [12] R. Buckdahn, B. Djehiche, J. Li, S. Peng, Mean-field backward stochastic differential equations: A limit approach, Ann. Probab., 37 (2009), 1524–1565. https://doi.org/10.1214/08-aop442 doi: 10.1214/08-aop442
    [13] R. Buckdahn, J. Li, S. Peng, Mean-field backward stochastic differential equations and related partial differential equations, Stoch. Proc. Appl., 119 (2009), 3133–3154. https://doi.org/10.1016/j.spa.2009.05.002 doi: 10.1016/j.spa.2009.05.002
    [14] R. Carmona, F. Delarue, Forward-backward stochastic differential equations and controlled Mckean-Vlasov dynamics, Ann. Probab., 43 (2015), 2647–2700.
    [15] R. Carnoma, F. Delarue, A. Lachapelle, Control of McKean-Vlasov dynamics versus mean field games, Math. Finan. Econ., 7 (2013), 131–166. https://doi.org/10.1007/s11579-012-0089-y doi: 10.1007/s11579-012-0089-y
    [16] H. Du, J. Huang, Y. Qin, A stochastic maximum principle for delayed mean-field stochastic differential equations and its applications, IEEE T. Automat. Contr., 58 (2013), 3212–3217. https://doi.org/10.1109/TAC.2013.2264550 doi: 10.1109/TAC.2013.2264550
    [17] W. Yin, Z. Shen, P. Meng, H. Liu. An online interactive physics-informed adversarial network for solving mean field games, Eng. Anal. Bound. Elem., 169 (2024), 106002. https://doi.org/10.1016/j.enganabound.2024.106002 doi: 10.1016/j.enganabound.2024.106002
    [18] O. Imanuvilov, H. Liu, M. Yamamoto. Unique continuation for a mean field game system, Appl. Math. Lett., 145 (2023), 108757. https://doi.org/10.1016/j.aml.2023.108757 doi: 10.1016/j.aml.2023.108757
    [19] H. Liu, C. W. K. Lo. Determining state space anomalies in mean field games, Nonlinearity, 38 (2025), 025010. https://doi.org/10.1088/1361-6544/ada67d doi: 10.1088/1361-6544/ada67d
    [20] Y. Hu, J. Huang, W. Li, Backward stochastic differential equations with conditional reflection and related recursive optimal control problems, SIAM J. Control Optim., 62 (2024), 2557–2589. https://doi.org/10.1137/22M1534985 doi: 10.1137/22M1534985
    [21] N. El Karoui, Les aspects probabilistes du controle stochastique, In: Ecole d'Eté de Probabilités de Saint-Flour IX-1979, Berlin: Springer, 1979, 73–238. https://doi.org/10.1007/BFb0097499
    [22] M. Kobylanski, M. C. Quenez, Optimal stopping time problem in a general framework, Electron. J. Probab., 17 (2012), 1–28.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(532) PDF downloads(18) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog