In this study, the transmission dynamics of zoonotic diseases between baboons and humans were explored by examining increased interactions between humans and wild animals. We established the model's well-posedness through proofs of existence, uniqueness, non-negativity, and boundedness of solutions. Stability and sensitivity analyses identified key parameters affecting disease dynamics, particularly the baboon-to-human transmission rate $ (\beta_h) $, the human recovery rate $ (\gamma_h) $, and the human-side contact control parameter $ (H_i) $. The basic reproduction number $ (R_0) $ governed disease outcomes: If $ R_0 < 1 $, the disease died out and the infection-free equilibrium was globally asymptotically stable; if $ R_0 > 1 $, a unique endemic equilibrium emerged and was locally asymptotically stable, indicating the potential for disease persistence. Numerical simulations were conducted using the Multi-Step Generalized Differential Transform Method and the Adams-Bashforth-Moulton scheme, confirming the model's biological relevance. Our results indicated that sterilization reduced infected baboons by up to 40%, while food access restrictions lowered human infections by approximately 25%. By leveraging fractional calculus and advanced numerical methods, this study provides a robust framework for modeling zoonotic diseases and offers actionable insights for public health and wildlife management.
Citation: Muflih Alhazmi, Safa M. Mirgani, Abdullah Alahmari, Sayed Saber. Hybrid multi-step fractional numerical schemes for human-wildlife zoonotic disease dynamics[J]. AIMS Mathematics, 2025, 10(9): 21126-21158. doi: 10.3934/math.2025944
In this study, the transmission dynamics of zoonotic diseases between baboons and humans were explored by examining increased interactions between humans and wild animals. We established the model's well-posedness through proofs of existence, uniqueness, non-negativity, and boundedness of solutions. Stability and sensitivity analyses identified key parameters affecting disease dynamics, particularly the baboon-to-human transmission rate $ (\beta_h) $, the human recovery rate $ (\gamma_h) $, and the human-side contact control parameter $ (H_i) $. The basic reproduction number $ (R_0) $ governed disease outcomes: If $ R_0 < 1 $, the disease died out and the infection-free equilibrium was globally asymptotically stable; if $ R_0 > 1 $, a unique endemic equilibrium emerged and was locally asymptotically stable, indicating the potential for disease persistence. Numerical simulations were conducted using the Multi-Step Generalized Differential Transform Method and the Adams-Bashforth-Moulton scheme, confirming the model's biological relevance. Our results indicated that sterilization reduced infected baboons by up to 40%, while food access restrictions lowered human infections by approximately 25%. By leveraging fractional calculus and advanced numerical methods, this study provides a robust framework for modeling zoonotic diseases and offers actionable insights for public health and wildlife management.
| [1] |
K. E. Jones, N. G. Patel, M. A. Levy, A. Storeygard, D. Balk, J. L. Gittleman, et al., Global trends in emerging infectious diseases, Nature, 451 (2008), 990–993. https://doi.org/10.1038/nature06536 doi: 10.1038/nature06536
|
| [2] |
M. E. J. Woolhouse, S. Gowtage-Sequeria, Host range and emerging and reemerging pathogens, Emerg. Infect. Dis., 11 (2005), 1842–1847. https://doi.org/10.3201/eid1112.050997 doi: 10.3201/eid1112.050997
|
| [3] |
A. Al-Aklabi, A. W. Al-Khulaidi, A. Hussain, N. Al-Sagheer, Main vegetation types and plant species diversity along an altitudinal gradient of Al Baha region, Saudi Arabia, Saudi J. Biol. Sci., 23 (2016), 687–697. https://doi.org/10.1016/j.sjbs.2016.02.007 doi: 10.1016/j.sjbs.2016.02.007
|
| [4] |
P. Daszak, A. A. Cunningham, A. D. Hyatt, Emerging infectious diseases of wildlife-Threats to biodiversity and human health, Science, 287 (2000), 443–449. https://doi.org/10.1126/science.287.5452.443 doi: 10.1126/science.287.5452.443
|
| [5] |
N. D. Wolfe, C. P. Dunavan, J. Diamond, Origins of major human infectious diseases, Nature, 447 (2007), 279–283. https://doi.org/10.1038/nature05775 doi: 10.1038/nature05775
|
| [6] |
M. Kazimírová, B. Mangová, M. Chvostáč, Y. M. Didyk, P. de Alba, A. Mira, et al., The role of wildlife in the epidemiology of tick-borne diseases in Slovakia, Current Res. Parasitol. V., 6 (2024), 100195. https://doi.org/10.1016/j.crpvbd.2024.100195 doi: 10.1016/j.crpvbd.2024.100195
|
| [7] |
K. Mapagha-Boundoukou, M. H. Mohamed-Djawad, N. M. Longo-Pendy, P. Makouloutou-Nzassi, F. Bangueboussa, M. B. Said, et al., Gastrointestinal parasitic infections in non-human primates at Gabon's primatology center: Implications for zoonotic diseases, J. Zool. Bot. Gard., 5 (2024), 733–744. https://doi.org/10.3390/jzbg5040048 doi: 10.3390/jzbg5040048
|
| [8] |
B. Tulu, A. Zewede, M. Belay, M. Zeleke, M. Girma, M. Tegegn, et al., Epidemiology of bovine tuberculosis and its zoonotic implication in Addis Ababa milkshed, central Ethiopia, Front Vet Sci., 17 (2021), 595511. https://doi.org/10.3389/fvets.2021.595511 doi: 10.3389/fvets.2021.595511
|
| [9] |
A. A. Al-Huqail, Z. Islam, Ecological stress assessment on vegetation in the Al-Baha highlands, Saudi Arabia (1991-2023), Sustainability, 17 (2025), 2854. https://doi.org/10.3390/su17072854 doi: 10.3390/su17072854
|
| [10] |
P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
|
| [11] |
M. Marsudi, T. Trisilowati, R. R. Musafir, Bifurcation and optimal control analysis of an HIV/AIDS model with saturated incidence rate, Mathematics, 13 (2025), 2149. https://doi.org/10.3390/math13132149 doi: 10.3390/math13132149
|
| [12] | I. Podlubny, Fractional differential equations, Academic Press, 1998. |
| [13] | C. A. Monje, Y. Q. Chen, B. M. Vinagre, D. Xue, V. Feliu, Fractional-order systems and controls: Fundamentals and applications, London: Springer, 2010. https://doi.org/10.1007/978-1-84996-335-0 |
| [14] |
L. J. S. Allen, V. L. Brown, C. B. Jonsson, S. L. Klein, S. M. Laverty, K. Magwedere, et al., Mathematical modeling of viral zoonoses in wildlife, Nat. Resour. Model., 25 (2012), 5–51. https://doi.org/10.1111/j.1939-7445.2011.00104.x doi: 10.1111/j.1939-7445.2011.00104.x
|
| [15] |
E. Babaie, A. A. Alesheikh, M. Tabasi, Spatial modeling of zoonotic cutaneous leishmaniasis with regard to potential environmental factors using ANFIS and PCA-ANFIS methods, Acta Trop., 228 (2022), 106296. https://doi.org/10.1016/j.actatropica.2021.106296 doi: 10.1016/j.actatropica.2021.106296
|
| [16] |
R. L. Bagley, R. A. Calico, Fractional order state equations for the control of viscoelastically damped structures, J. Guid. Control Dynam., 14 (1991), 304–311. https://doi.org/10.2514/3.20641 doi: 10.2514/3.20641
|
| [17] |
D. Kusnezov, A. Bulgac, G. D. Dang, Quantum Lévy processes and fractional kinetics, Phys. Rev. Lett., 82 (1999), 1136. https://doi.org/10.1103/PhysRevLett.82.1136 doi: 10.1103/PhysRevLett.82.1136
|
| [18] |
H. A. Hammad, M. Qasymeh, M. Abdel-Aty, Existence and stability results for a Langevin system with Caputo-Hadamard fractional operators, Int. J. Geom. Methods M., 21 (2024), 2450218. https://doi.org/10.1142/S0219887824502189 doi: 10.1142/S0219887824502189
|
| [19] |
S. Saber, Control of chaos in the Burke-Shaw system of fractal-fractional order in the sense of Caputo-Fabrizio, J. Appl. Math. Comput. Mech., 23 (2024), 83–96. https://doi.org/10.17512/jamcm.2024.1.07 doi: 10.17512/jamcm.2024.1.07
|
| [20] |
M. Alhazmi, S. Saber, Glucose-insulin regulatory system: Chaos control and stability analysis via Atangana-Baleanu fractal-fractional derivatives, Alex. Eng. J., 122 (2025), 77–90. https://doi.org/10.1016/j.aej.2025.02.066 doi: 10.1016/j.aej.2025.02.066
|
| [21] |
S. Saber, E. Solouma, R. A. Alharb, A. Alalyani, Chaos in fractional-order glucose-insulin models with variable derivatives: Insights from the Laplace-Adomian decomposition method and generalized Euler techniques, Fractal Fract., 9 (2025), 149. https://doi.org/10.3390/fractalfract9030149 doi: 10.3390/fractalfract9030149
|
| [22] |
S. Saber, S. M. Mirgani, Numerical analysis and stability of a system (2) using the Laplace residual power series method incorporating the Atangana-Baleanu derivative, Int. J. Model. Simul. Sc., 16 (2025), 2550030. https://doi.org/10.1142/S1793962325500308 doi: 10.1142/S1793962325500308
|
| [23] |
S. Saber, S. M. Mirgani, Numerical solutions, stability, and chaos control of Atangana-Baleanu variable-order derivatives in glucose-insulin dynamics, J. Appl. Math. Comput. Mech., 24 (2025), 44–55. https://doi.org/10.17512/jamcm.2025.1.04 doi: 10.17512/jamcm.2025.1.04
|
| [24] |
S. Saber, S. Mirgani, Analyzing fractional glucose-insulin dynamics using Laplace residual power series methods via the Caputo operator: Stability and chaotic behavior, Beni-Suef Univ. J. Basic Appl. Sci., 14 (2025), 28. https://doi.org/10.1186/s43088-025-00608-y doi: 10.1186/s43088-025-00608-y
|
| [25] |
M. Alhazmi, A. F. Aljohani, N. E. Taha, S. Abdel-Khalek, M. Bayram, S. Saber, Application of a fractal fractional operator to nonlinear glucose-insulin systems: Adomian decomposition solutions, Comput. Biol. Med., 196 (2025), 110453. https://doi.org/10.1016/j.compbiomed.2025.110453 doi: 10.1016/j.compbiomed.2025.110453
|
| [26] | M. Alhazmi, S. Saber, Application of a fractal fractional derivative with a power-law kernel to the glucose-insulin interaction system based on Newton's interpolation polynomials, Fractals, 2025. https://doi.org/10.1142/S0218348X25402017 |
| [27] |
S. Saber, B. Dridi, A. Alahmari, M. Messaoudi, Application of Jumarie-Stancu collocation series method and multi-step generalized differential transform method to fractional glucose-insulin, Int. J. Optimiz. Contro., 25 (2025), 464–482. https://doi.org/10.36922/IJOCTA025120054 doi: 10.36922/IJOCTA025120054
|
| [28] |
S. Saber, B. Dridi, A. Alahmari, M. Messaoudi, Hyers-Ulam stability and control of fractional glucose-insulin systems, Eur. J. Pure Appl. Math., 18 (2025), 6152. https://doi.org/10.29020/nybg.ejpam.v18i2.6152 doi: 10.29020/nybg.ejpam.v18i2.6152
|
| [29] |
S. Saber, A. Alahmari, Impact of fractal-fractional dynamics on pneumonia transmission modeling, Eur. J. Pure Appl. Math., 18 (2025), 5901. https://doi.org/10.29020/nybg.ejpam.v18i2.5901 doi: 10.29020/nybg.ejpam.v18i2.5901
|
| [30] |
M. Althubyani, S. Saber, Hyers-Ulam stability of fractal-fractional computer virus models with the Atangana-Baleanu operator, Fractal Fract., 9 (2025), 158. https://doi.org/10.3390/fractalfract9030158 doi: 10.3390/fractalfract9030158
|
| [31] |
M. Althubyani, H. D. S. Adam, A. Alalyani, N. E. Taha, K. O. Taha, R. A. Alharbi, et al., Understanding zoonotic disease spread with a fractional order epidemic model, Sci. Rep., 15 (2025), 13921. https://doi.org/10.1038/s41598-025-95943-6 doi: 10.1038/s41598-025-95943-6
|
| [32] |
H. D. S. Adam, M. Althubyani, S. M. Mirgani, S. Saber, An application of Newton's interpolation polynomials to the zoonotic disease transmission between humans and baboons system based on a time-fractal fractional derivative with a power-law kernel, AIP Adv., 15 (2025), 045217. https://doi.org/10.1063/5.0253869 doi: 10.1063/5.0253869
|
| [33] |
S. Saber, E. Solouma, The generalized Euler method for analyzing zoonotic disease dynamics in baboon-human populations, Symmetry, 17 (2025), 541. https://doi.org/10.3390/sym17040541 doi: 10.3390/sym17040541
|
| [34] |
S. Saber, E. Solouma, M. Althubyani, M. Messaoudi, Statistical insights into zoonotic disease dynamics: Simulation and control strategy evaluation, Symmetry, 17 (2025), 733. https://doi.org/10.3390/sym17050733 doi: 10.3390/sym17050733
|
| [35] |
S. Saber, A. Alahmari, Mathematical insights into zoonotic disease spread: Application of the Milstein method, Eur. J. Pure Appl. Math., 18 (2025), 58–81. https://doi.org/10.29020/nybg.ejpam.v18i2.5881 doi: 10.29020/nybg.ejpam.v18i2.5881
|
| [36] |
H. Khan, J. Alzabut, A. Shah, S. Etemad, S. Rezapour, C. Park, A study on the fractal-fractional tobacco smoking model, AIMS Math., 7 (2022), 13887–13909. https://doi.org/10.3934/math.2022767 doi: 10.3934/math.2022767
|
| [37] |
S. Saber, A. M. Alghamdi, G. A. Ahmed, K. M. Alshehri, Mathematical modelling and optimal control of pneumonia disease in sheep and goats in Al-Baha region with cost-effective strategies, AIMS Math., 7 (2022), 12011–12049. https://doi.org/10.3934/math.2022669 doi: 10.3934/math.2022669
|
| [38] |
M. Althubyani, N. E. Taha, K. O. Taha, R. A. Alharb, S. Saber, Epidemiological modeling of pneumococcal pneumonia: Insights from ABC fractal-fractional derivatives, CMES-Comp. Model. Eng., 143 (2025), 3491–3521. https://doi.org/10.32604/cmes.2025.061640 doi: 10.32604/cmes.2025.061640
|
| [39] |
F. Evirgen, E. Uçar, S. Uçar, N. Özdemir, Modelling influenza a disease dynamics under Caputo-Fabrizio fractional derivative with distinct contact rates, Math. Model. Numer. Simul. Appl., 3 (2023), 58–73. https://doi.org/10.53391/mmnsa.1274004 doi: 10.53391/mmnsa.1274004
|
| [40] |
N. Özdemir, E. Uçar, D. Avcı, Dynamic analysis of a fractional SVIR system modeling an infectious disease, Facta Univ. Ser. Math., 37 (2022), 605–619. https://doi.org/10.22190/FUMI211020042O doi: 10.22190/FUMI211020042O
|
| [41] |
X. P. Li, S. Ullah, H. Zahir, A. Alshehri, M. B. Riaz, B. A. Alwan, Modeling the dynamics of coronavirus with super-spreader class: A fractal-fractional approach, Results Phys., 34 (2022), 105179. https://doi.org/10.1016/j.rinp.2022.105179 doi: 10.1016/j.rinp.2022.105179
|
| [42] |
A. M. Alzubaidi, H. A. Othman, S. Ullah, N. Ahmad, M. M. Alam, Analysis of Monkeypox viral infection with human to animal transmission via a fractional and fractal-fractional operators with power law kernel, Math. Biosci. Eng., 20 (2023), 6666–6690. https://doi.org/10.3934/mbe.2023287 doi: 10.3934/mbe.2023287
|
| [43] |
A. Atangana, S. I. Araz, Mathematical model of COVID-19 spread in Turkey and South Africa: Theory, methods, and applications, Adv. Differ. Equ., 2020 (2020), 659. https://doi.org/10.1186/s13662-020-03095-w doi: 10.1186/s13662-020-03095-w
|
| [44] |
M. Farman, C. Alfiniyah, A. Shehzad, Modelling and analysis of tuberculosis (TB) model with hybrid fractional operator, Alex. Eng. J., 72 (2023), 463–478. https://doi.org/10.1016/j.aej.2023.04.017 doi: 10.1016/j.aej.2023.04.017
|
| [45] |
Z. M. Odibat, C. Bertelle, M. A. Aziz-Alaoui, G. H. E. Duchamp, A multi-step differential transform method and application to non-chaotic or chaotic systems, Comput. Math. Appl., 59 (2010), 1462–1472. https://doi.org/10.1016/j.camwa.2009.11.005 doi: 10.1016/j.camwa.2009.11.005
|
| [46] |
H. A. Alkresheh, A. I. Ismail, Multi-step fractional differential transform method for the solution of fractional order stiff systems, Ain Shams Eng. J., 12 (2021), 4223–4231. https://doi.org/10.1016/j.asej.2017.03.017 doi: 10.1016/j.asej.2017.03.017
|
| [47] |
K. Diethelm, N. J. Ford, A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn., 29 (2002), 3–22. https://doi.org/10.1023/A:1016592219341 doi: 10.1023/A:1016592219341
|
| [48] |
L. Sadek, D. Baleanu, M. S. Abdo, W. Shatanawi, Introducing novel $\Theta$-fractional operators: Advances in fractional calculus, J. King Saud Univ. Sci., 36 (2024), 103352. https://doi.org/10.1016/j.jksus.2024.103352 doi: 10.1016/j.jksus.2024.103352
|
| [49] |
L. Sadek, A cotangent fractional derivative with the application, Fractal Fract., 7 (2023), 444. https://doi.org/10.3390/fractalfract7060444 doi: 10.3390/fractalfract7060444
|
| [50] |
L. Sadek, T. A. Lazǎr, On Hilfer cotangent fractional derivative and a particular class of fractional problems, AIMS Math., 8 (2023), 28334–28352. https://doi.org/10.3934/math.20231450 doi: 10.3934/math.20231450
|
| [51] |
L. Sadek, O. Sadek, H. T. Alaoui, M. S. Abdo, K. Shah, T. Abdeljawad, Fractional order modeling of predicting COVID-19 with isolation and vaccination strategies in Morocco, CMES-Comp. Model. Eng., 136 (2023), 1931–1950. https://doi.org/10.32604/cmes.2023.025033 doi: 10.32604/cmes.2023.025033
|
| [52] |
O. Sadek, L. Sadek, S. Touhtouh, A. Hajjaji, The mathematical fractional modeling of TiO2 nanopowder synthesis by sol-gel method at low temperature, Math. Model. Comput., 9 (2022), 616–626. https://doi.org/10.23939/mmc2022.03.616 doi: 10.23939/mmc2022.03.616
|
| [53] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
| [54] |
Z. Odibat, S. Momani, V. S. Erturk, Generalized differential transform method: Application to differential equations of fractional order, Appl. Math. Comput., 197 (2008), 467–477. https://doi.org/10.1016/j.amc.2007.07.068 doi: 10.1016/j.amc.2007.07.068
|
| [55] |
V. S. Ertürk, Z. M. Odibat, S. Momani, The multi-step differential transform method and its application to determine the solutions of non-linear oscillators, Adv. Appl. Math. Mech., 4 (2012), 422–438. https://doi.org/10.1017/S2070073300001727 doi: 10.1017/S2070073300001727
|
| [56] |
V. S. Erturk, S. Momani, Z. Odibat, Application of generalized differential transform method to multi-order fractional differential equations, Commun. Nonlinear Sci., 13 (2008), 1642–1654. https://doi.org/10.1016/j.cnsns.2007.02.006 doi: 10.1016/j.cnsns.2007.02.006
|
| [57] |
Z. Odibat, V. S. Erturk, P. Kumar, A. B. Makhlouf, V. Govindaraj, An implementation of the generalized differential transform scheme for simulating impulsive fractional differential equations, Math. Probl. Eng., 2022 (2022), 8280203. https://doi.org/10.1155/2022/8280203 doi: 10.1155/2022/8280203
|