The Gompertz–Makeham (GM) distribution has the flexibility to model real-world lifetime data with increasing, decreasing, or constant hazard rates, making it exceptionally valuable for applications in survival analysis, actuarial science, demography, and reliability engineering. This study proposes and rigorously analyzes a novel discrete formulation of the classical GM distribution, tailored to address real-world applications where event times are inherently discrete. Utilizing the survival function discretization technique, the authors derive the discrete GM (DGM) model and establish its foundational probability mass function, hazard rate function, and cumulative distribution function. A comprehensive suite of statistical properties—including quantiles, moments, skewness, kurtosis, and order statistics—is developed and examined numerically. Recognizing the challenges of parameter estimation under Type–Ⅱ data censoring, the paper implements both maximum likelihood estimation and Bayesian inference, with the latter incorporating gamma priors and executed via a Metropolis–Hastings Markov chain Monte Carlo algorithm. The paper further evaluates the estimator's performance through extensive simulations. The findings consistently demonstrate the superiority of Bayesian methods, particularly with high posterior density intervals. From three life sciences, several empirical case studies underscore the practical utility of the DGM model, showcasing improved goodness-of-fit relative to existing discrete models, for example, the discrete Nadarajah–Haghighi, discrete modified Weibull, discrete Weibull, and discrete gamma models, among others. Finally, this work fills a notable gap in the literature by extending the GM framework to discrete domains with full inferential machinery.
Citation: Ahmed Elshahhat, Hoda Rezk, Refah Alotaibi. The discrete Gompertz–Makeham distribution for multidisciplinary data analysis[J]. AIMS Mathematics, 2025, 10(7): 17117-17178. doi: 10.3934/math.2025768
The Gompertz–Makeham (GM) distribution has the flexibility to model real-world lifetime data with increasing, decreasing, or constant hazard rates, making it exceptionally valuable for applications in survival analysis, actuarial science, demography, and reliability engineering. This study proposes and rigorously analyzes a novel discrete formulation of the classical GM distribution, tailored to address real-world applications where event times are inherently discrete. Utilizing the survival function discretization technique, the authors derive the discrete GM (DGM) model and establish its foundational probability mass function, hazard rate function, and cumulative distribution function. A comprehensive suite of statistical properties—including quantiles, moments, skewness, kurtosis, and order statistics—is developed and examined numerically. Recognizing the challenges of parameter estimation under Type–Ⅱ data censoring, the paper implements both maximum likelihood estimation and Bayesian inference, with the latter incorporating gamma priors and executed via a Metropolis–Hastings Markov chain Monte Carlo algorithm. The paper further evaluates the estimator's performance through extensive simulations. The findings consistently demonstrate the superiority of Bayesian methods, particularly with high posterior density intervals. From three life sciences, several empirical case studies underscore the practical utility of the DGM model, showcasing improved goodness-of-fit relative to existing discrete models, for example, the discrete Nadarajah–Haghighi, discrete modified Weibull, discrete Weibull, and discrete gamma models, among others. Finally, this work fills a notable gap in the literature by extending the GM framework to discrete domains with full inferential machinery.
| [1] | B. Gompertz, On the nature of the function expressive of the law of human mortality and on a new mode of determining the value of life contingencies, Philos. Trans. R. Soc. Lond., 115 (1825), 513–585. |
| [2] | W. M. Makeham, On the law of mortality and the construction of annuity tables, Assurance Magazine J. Inst. Actuar., 8 (1860), 301–310. |
| [3] | A. W. Marshall, I. Olkin, Gompertz and Gompertz–Makeham distributions, In: Life distributions: structure of nonparametric, semiparametric, and parametric families, 2007,363–398. https://doi.org/10.1007/978-0-387-68477-2_10 |
| [4] |
G. A. Shilovsky, Calculating aging: analysis of survival curves in the norm and pathology, fluctuations in mortality dynamics, characteristics of lifespan distribution, and indicators of lifespan variation, Biochemistry (Moscow), 89 (2024), 371–376. https://doi.org/10.1134/S0006297924020159 doi: 10.1134/S0006297924020159
|
| [5] |
F. Castellares, S. Patrício, A. J. Lemonte, On the Gompertz–Makeham law: a useful mortality model to deal with human mortality, Braz. J. Probab. Stat., 36 (2022), 613–639. https://doi.org/10.1214/22-BJPS545 doi: 10.1214/22-BJPS545
|
| [6] | F. C. D. Souza, Closed-form expressions to Gompertz–Makeham life expectancies: a historical note, Rev. Bras. Estud. Popul., 39 (2022), e0220. |
| [7] |
T. I. Missov, A. Lenart, Gompertz–Makeham life expectancies: expressions and applications, Theor. Popul. Biol., 90 (2013), 29–35. https://doi.org/10.1016/j.tpb.2013.09.013 doi: 10.1016/j.tpb.2013.09.013
|
| [8] | M. Bajjouk, M. E. Rana, C. R. Ramachandiran, S. Chelliah, Software testing for reliability and quality improvement, J. Appl. Technol. Innovation, 5 (2021), 40–46. |
| [9] |
H. Huang, M. A. Milevsky, T. S. Salisbury, Optimal retirement consumption with a stochastic force of mortality, Insur. Math. Econ., 51 (2012), 282–291. https://doi.org/10.1016/j.insmatheco.2012.03.013 doi: 10.1016/j.insmatheco.2012.03.013
|
| [10] |
D. L. Keefer, S. E. Bodily, Three-point approximations for continuous random variables, Manage. Sci., 29 (1983), 595–609. https://doi.org/10.1287/mnsc.29.5.595 doi: 10.1287/mnsc.29.5.595
|
| [11] |
C. D. Lai, Issues concerning constructions of discrete lifetime models, Qual. Technol. Quant. Manage., 10 (2013), 251–262. https://doi.org/10.1080/16843703.2013.11673320 doi: 10.1080/16843703.2013.11673320
|
| [12] |
S. Chakraborty, Generating discrete analogues of continuous probability distributions: a survey of methods and constructions, J. Stat. Distrib. Appl., 2 (2015), 6. https://doi.org/10.1186/s40488-015-0028-6 doi: 10.1186/s40488-015-0028-6
|
| [13] | R. K. Hammond, J. E. Bickel, Discretization methods for continuous probability distributions, Wiley Encycl. Oper. Res. Manage. Sci., 2011, 1–13. https://doi.org/10.1002/9780470400531.eorms1103 |
| [14] |
D. Roy, The discrete normal distribution, Commun. Stat. Theory Methods, 32 (2003), 1871–1883. https://doi.org/10.1081/STA-120023256 doi: 10.1081/STA-120023256
|
| [15] |
D. Roy, Discrete Rayleigh distribution, IEEE Trans. Reliab., 53 (2004), 255–260. https://doi.org/10.1109/TR.2004.829161 doi: 10.1109/TR.2004.829161
|
| [16] |
M. Bebbington, C. D. Lai, M. Wellington, R. Zitikis, The discrete additive Weibull distribution: a bathtub-shaped hazard for discontinuous failure data, Reliab. Eng. Syst. Safe., 106 (2012), 37–44. https://doi.org/10.1016/j.ress.2012.06.009 doi: 10.1016/j.ress.2012.06.009
|
| [17] |
J. E. Cohen, C. Bohk-Ewald, R. Rau, Gompertz, Makeham, and Siler models explain Taylor's law in human mortality data, Demogr. Res., 38 (2018), 773–842. https://doi.org/10.4054/DemRes.2018.38.29 doi: 10.4054/DemRes.2018.38.29
|
| [18] |
A. Henningsen, O. Toomet, maxLik: a package for maximum likelihood estimation in R, Comput. Stat., 26 (2011), 443–458. https://doi.org/10.1007/s00180-010-0217-1 doi: 10.1007/s00180-010-0217-1
|
| [19] |
B. Pradhan, D. Kundu, Bayes estimation and prediction of the two-parameter gamma distribution, J. Stat. Comput. Simul., 81 (2011), 1187–1198. https://doi.org/10.1080/00949651003796335 doi: 10.1080/00949651003796335
|
| [20] |
S. Dey, A. Elshahhat, M. Nassar, Analysis of progressive Type-Ⅱ censored gamma distribution, Comput. Stat., 38 (2023), 481–508. https://doi.org/10.1007/s00180-022-01239-y doi: 10.1007/s00180-022-01239-y
|
| [21] | M. Plummer, N. Best, K. Cowles, K. Vines, CODA: convergence diagnosis and output analysis for MCMC, R News, 6 (2006), 7–11. |
| [22] |
H. S. Bakouch, M. A. Jazi, S. Nadarajah, A new discrete distribution, Statistics, 48 (2014), 200–240. https://doi.org/10.1080/02331888.2012.716677 doi: 10.1080/02331888.2012.716677
|
| [23] |
F. K. Wang, A new model with bathtub-shaped failure rate using an additive Burr XII distribution, Reliab. Eng. Syst. Safe., 70 (2000), 305–312. https://doi.org/10.1016/S0951-8320(00)00066-1 doi: 10.1016/S0951-8320(00)00066-1
|
| [24] |
A. Elshahhat, W. S. Abu El Azm, Statistical reliability analysis of electronic devices using generalized progressively hybrid censoring plan, Qual. Reliab. Eng. Int., 38 (2022), 1112–1130. https://doi.org/10.1002/qre.3058 doi: 10.1002/qre.3058
|
| [25] |
H. S. Mohammed, M. Nassar, A. Elshahhat, A new Xgamma–Weibull model using type-Ⅱ adaptive progressive hybrid censoring and its applications in engineering and medicine, Symmetry, 15 (2023), 1428. https://doi.org/10.3390/sym15071428 doi: 10.3390/sym15071428
|
| [26] | P. Jodra, M. D. Jimenez-Gamero, M. V. Alba-Fernandez, On the Muth distribution, Math. Model. Anal., 20 (2015), 291–310. https://doi.org/10.3846/13926292.2015.1048540 |
| [27] |
R. Alotaibi, M. Nassar, A. Elshahhat, Rainfall data modeling using improved adaptive Type-Ⅱ progressively censored Weibull-exponential samples, Sci. Rep., 14 (2024), 1–30. https://doi.org/10.1038/s41598-024-80529-5 doi: 10.1038/s41598-024-80529-5
|
| [28] | M. Aboraya, H. M. Yousof, G. G. Hamedani, M. Ibrahim, A new family of discrete distributions with mathematical properties, characterizations, Bayesian and non-Bayesian estimation methods, Mathematics, 8 (2020), 1648. https://doi.org/10.3390/math8101648 |
| [29] | A. A. El-Helbawy, M. A. Hegazy, G. R. Al-Dayian, R. E. Abd EL-Kader, A discrete analog of the inverted Kumaraswamy distribution: properties and estimation with application to COVID-19 data, Pak. J. Stat. Oper. Res., 18 (2022), 297–328. |
| [30] |
H. Haj Ahmad, A. Elshahhat, A new Hjorth distribution in its discrete version, Mathematics, 13 (2025), 875. https://doi.org/10.3390/math13050875 doi: 10.3390/math13050875
|
| [31] |
R. Alotaibi, H. Rezk, C. Park, A. Elshahhat, The discrete exponentiated-Chen model and its applications, Symmetry, 15 (2023), 1278. https://doi.org/10.3390/sym15061278 doi: 10.3390/sym15061278
|
| [32] | H. Bidram, V. Nekoukhou, The exponentiated discrete Weibull distribution, Stats. Oper. Res. Trans., 2015, 1696–2281. |
| [33] |
S. J. Almalki, S. Nadarajah, A new discrete modified Weibull distribution, IEEE Trans. Reliab., 63 (2014), 68–80. https://doi.org/10.1109/TR.2014.2299691 doi: 10.1109/TR.2014.2299691
|
| [34] |
M. Shafqat, S. Ali, I. Shah, S. Dey, Univariate discrete Nadarajah and Haghighi distribution: properties and different methods of estimation, Statistica, 80 (2020), 301–330. https://doi.org/10.6092/issn.1973-2201/9532 doi: 10.6092/issn.1973-2201/9532
|
| [35] |
H. Krishna, P. S. Pundir, Discrete Burr and discrete Pareto distributions, Stat. Methodol., 6 (2009), 177–188. https://doi.org/10.1016/j.stamet.2008.07.001 doi: 10.1016/j.stamet.2008.07.001
|
| [36] | A. Tyagi, N. Choudhary, B. Singh, A new discrete distribution: theory and applications to discrete failure lifetime and count data, J. Appl. Probab. Statist., 15 (2020), 117–143. |
| [37] |
T. Nakagawa, S. Osaki, The discrete Weibull distribution, IEEE Trans. Reliab., R-24 (1975), 300–301. https://doi.org/10.1109/TR.1975.5214915 doi: 10.1109/TR.1975.5214915
|
| [38] |
S. Chakraborty, D. Chakravarty, Discrete gamma distributions: properties and parameter estimations, Commun. Stat. Theory Methods, 41 (2012), 3301–3324. https://doi.org/10.1080/03610926.2011.563014 doi: 10.1080/03610926.2011.563014
|
| [39] |
M. El-Morshedy, M. S. Eliwa, E. Altun, Discrete Burr-Hatke distribution with properties, estimation methods and regression model, IEEE Access, 8 (2020), 74359–74370. https://doi.org/10.1109/ACCESS.2020.2988431 doi: 10.1109/ACCESS.2020.2988431
|
| [40] |
M. Bagnoli, T. Bergstrom, Log-concave probability and its applications, Econ. Theory, 26 (2005), 445–469. https://doi.org/10.1007/s00199-004-0514-4 doi: 10.1007/s00199-004-0514-4
|