Research article Special Issues

A bounded Lindley exponential model with applications to industrial engineering and epidemiological data

  • Published: 18 July 2025
  • MSC : 60E05, 60E99, 62E15

  • The log-Lindley exponential (LLE), a bounded variant of the Lindley exponential distribution, is introduced using the inverse exponential transformation method. The LLE demonstrates significant flexibility, generating novel and well-known distributions with various parameters and providing support, including log-Lindley, Lindley, and two-parameter Lindley distributions, and exhibiting diverse density shapes, including right-skewed, approximately symmetric, left-skewed, decreasing, U-shaped, and increasing, while the hazard rate can be increasing, J-shaped, and bathtub-shaped. We explore several important statistical properties of the LLE model, including moments, entropy, quantile function, actuarial measures, mean residual life function, and stochastic orderings, which enhance its applicability in practical settings. Our study presents nine distinct frequentist strategies for estimating the model's parameters. In addition, the performance of the proposed estimation method is studied and evaluated through extensive numerical simulations. Finally, applications to real-world datasets from industrial engineering and epidemiology reveal the LLE model's practical utility and superiority, with it outperforming other existing models in terms of goodness-of-fit and flexibility.

    Citation: Ahmed M. T. Abd El-Bar, Ahmed R. El-Saeed, Ahmed M. Gemeay. A bounded Lindley exponential model with applications to industrial engineering and epidemiological data[J]. AIMS Mathematics, 2025, 10(7): 16233-16263. doi: 10.3934/math.2025726

    Related Papers:

  • The log-Lindley exponential (LLE), a bounded variant of the Lindley exponential distribution, is introduced using the inverse exponential transformation method. The LLE demonstrates significant flexibility, generating novel and well-known distributions with various parameters and providing support, including log-Lindley, Lindley, and two-parameter Lindley distributions, and exhibiting diverse density shapes, including right-skewed, approximately symmetric, left-skewed, decreasing, U-shaped, and increasing, while the hazard rate can be increasing, J-shaped, and bathtub-shaped. We explore several important statistical properties of the LLE model, including moments, entropy, quantile function, actuarial measures, mean residual life function, and stochastic orderings, which enhance its applicability in practical settings. Our study presents nine distinct frequentist strategies for estimating the model's parameters. In addition, the performance of the proposed estimation method is studied and evaluated through extensive numerical simulations. Finally, applications to real-world datasets from industrial engineering and epidemiology reveal the LLE model's practical utility and superiority, with it outperforming other existing models in terms of goodness-of-fit and flexibility.



    加载中


    [1] E. Gómez-Déniz, M. A. Sordo, E. Calderín-Ojeda, The log–Lindley distribution as an alternative to the beta regression model with applications in insurance, Insur.: Math. Econo., 54 (2014), 49–57. https://doi.org/10.1016/j.insmatheco.2013.10.017 doi: 10.1016/j.insmatheco.2013.10.017
    [2] J. Mazucheli, A. F. B. Menezes, S. Chakraborty, On the one parameter unit-Lindley distribution and its associated regression model for proportion data, J. Appl. Stat., 46 (2019), 700–714. https://doi.org/10.1080/02664763.2018.1511774 doi: 10.1080/02664763.2018.1511774
    [3] A. M. T. Abd El-Bar, H. S. Bakouch, S. Chowdhury, A new trigonometric distribution with bounded support and an application, Rev. Unión Mat. Argent., 62 (2021), 459–473. https://doi.org/10.33044/revuma.1872 doi: 10.33044/revuma.1872
    [4] A. M. T. Abd El-Bar, M. D. C. S. Lima, M. Ahsanullah, Some inferences based on a mixture of power function and continuous logarithmic distribution, J. Taibah Univ. Sci., 14 (2020), 1116–1126. https://doi.org/10.1080/16583655.2020.1804140 doi: 10.1080/16583655.2020.1804140
    [5] M. Ç. Korkmaz, E. Altun, C. Chesneau, H. M. Yousof, On the unit-Chen distribution with associated quantile regression and applications, Math. Slovaca, 72 (2022), 765–786. https://doi.org/10.1515/ms-2022-0052 doi: 10.1515/ms-2022-0052
    [6] M. Ç. Korkmaz, E. Altun, M. Alizadeh, M. El-Morshedy, The log exponential-power distribution: properties, estimations and quantile regression model, Mathematics, 9 (2021), 2634. https://doi.org/10.3390/math9212634 doi: 10.3390/math9212634
    [7] M. Ç. Korkmaz, Z. S. Korkmaz, The unit log–log distribution: a new unit distribution with alternative quantile regression modeling and educational measurements applications, J. Appl. Stat., 50 (2023), 889–908. https://doi.org/10.1080/02664763.2021.2001442 doi: 10.1080/02664763.2021.2001442
    [8] M. Ç. Korkmaz, C. Chesneau, Z. S. Korkmaz, The unit folded normal distribution: a new unit probability distribution with the estimation procedures, quantile regression modeling and educational attainment applications, J. Reliab. Stat. Stud., 15 (2022), 261–298. https://doi.org/10.13052/jrss0974-8024.15111 doi: 10.13052/jrss0974-8024.15111
    [9] F. A. Bhatti, A. Ali, G. Hamedani, M. Ç. Korkmaz, M. Ahmad, The unit generalized log Burr XII distribution: properties and application, AIMS Math., 6 (2021), 10222–10252. https://doi.org/10.3934/math.2021592 doi: 10.3934/math.2021592
    [10] L. P. Sapkota, N. Bam, V. Kumar, New bounded unit Weibull model: applications with quantile regression, PLoS One, 20 (2025), e0323888. https://doi.org/10.1371/journal.pone.0323888 doi: 10.1371/journal.pone.0323888
    [11] R. Nouadri, N. Seddik-Ameur, Modified statistics for fitting a new bounded distribution with applications, Utilitas Math., 122 (2025), 906–931.
    [12] J. Mazucheli, M. Ç. Korkmaz, A. F. B. Menezes, V. Leiva, The unit generalized half-normal quantile regression model: formulation, estimation, diagnostics, and numerical applications, Soft Comput., 27 (2023), 279–295. https://doi.org/10.1007/s00500-022-07278-3 doi: 10.1007/s00500-022-07278-3
    [13] C. Chesneau, Introducing a new unit gamma distribution: properties and applications, Eur. J. Stat., 5 (2025), 1–25. https://doi.org/10.28924/ada/stat.5.6 doi: 10.28924/ada/stat.5.6
    [14] Y. Y. Abdelall, G. Ismail, H. Nagy, A new bounded distribution: Covid-19 application, Egypt. Stat. J., 69 (2025), 1–29.
    [15] M. R. Irshad, S. Aswathy, R. Maya, A. I. Al-Omari, G. Alomani, A flexible model for bounded data with bathtub shaped hazard rate function and applications, AIMS Math., 9 (2024), 24810–24831. https://doi.org/10.3934/math.20241208 doi: 10.3934/math.20241208
    [16] J. Mazucheli, A. F. Menezes, S. Dey, Unit-Gompertz distribution with applications, Statistica, 79 (2019), 25–43. https://doi.org/10.6092/issn.1973-2201/8497 doi: 10.6092/issn.1973-2201/8497
    [17] J. Mazucheli, A. F. B. Menezes, S. Dey, The unit-Birnbaum-Saunders distribution with applications, Chil. J. Stat., 9 (2018), 47–57.
    [18] M. E. Ghitany, J. Mazucheli, A. F. B. Menezes, F. Alqallaf, The unit-inverse Gaussian distribution: a new alternative to two-parameter distributions on the unit interval, Commun. Stat. Theory Methods, 48 (2019), 3423–3438. https://doi.org/10.1080/03610926.2018.1476717 doi: 10.1080/03610926.2018.1476717
    [19] F. A. Althubyani, A. M. T. Abd El-Bar, M. A. Fawzy, A. M. Gemeay, A new 3-parameter bounded beta distribution: properties, estimation, and applications, Axioms, 11 (2022), 504. https://doi.org/10.3390/axioms11100504 doi: 10.3390/axioms11100504
    [20] D. Bhati, M. A. Malik, H. J. Vaman, Lindley–exponential distribution: properties and applications, Metron, 73 (2015), 335–357. https://doi.org/10.1007/s40300-015-0060-9 doi: 10.1007/s40300-015-0060-9
    [21] D. V. Lindley, Fiducial distributions and Bayes' theorem, J. R. Stat. Soc. Ser. B, 20 (1958), 102–107.
    [22] C. E. Shannon, Prediction and entropy of printed English, Bell Syst. Tech. Journal, 30 (1951), 50–64. https://doi.org/10.1002/j.1538-7305.1951.tb01366.x doi: 10.1002/j.1538-7305.1951.tb01366.x
    [23] A. Rényi, On measures of entropy and information, Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, 1961,547–561.
    [24] R. A. Fisher, On the mathematical foundations of theoretical statistics, Philos. Trans. R. Soc. London A, 222 (1922), 309–368. https://doi.org/10.1098/rsta.1922.0009 doi: 10.1098/rsta.1922.0009
    [25] J. J. Swain, S. Venkatraman, J. R. Wilson, Least-squares estimation of distribution functions in Johnson's translation system, J. Stat. Comput. Simul., 29 (1988), 271–297. https://doi.org/10.1080/00949658808811068 doi: 10.1080/00949658808811068
    [26] T. W. Anderson, D. A. Darling, Asymptotic theory of certain "goodness of fit" criteria based on stochastic processes, Ann. Math. Stat., 23 (1952), 193–212.
    [27] K. Choi, W. G. Bulgren, An estimation procedure for mixtures of distributions, J. R. Stat. Soc. Ser. B, 30 (1968), 444–460. https://doi.org/10.1111/j.2517-6161.1968.tb00743.x doi: 10.1111/j.2517-6161.1968.tb00743.x
    [28] M. M. Salah, M. El-Morshedy, M. S. Eliwa, H. M. Yousof, Expanded Fréchet model: mathematical properties, copula, different estimation methods, applications and validation testing, Mathematics, 8 (2020), 1949. https://doi.org/10.3390/math8111949 doi: 10.3390/math8111949
    [29] J. H. K. Kao, Computer methods for estimating Weibull parameters in reliability studies, IRE Trans. Reliab. Qual. Control, 1958, 15–22. https://doi.org/10.1109/IRE-PGRQC.1958.5007164
    [30] J. H. K. Kao, A graphical estimation of mixed Weibull parameters in life-testing of electron tubes, Technometrics, 1 (1959), 389–407. https://doi.org/10.1080/00401706.1959.10489870 doi: 10.1080/00401706.1959.10489870
    [31] R. Dasgupta, On the distribution of Burr with applications, Sankhya B, 73 (2011), 1–19. https://doi.org/10.1007/s13571-011-0015-y doi: 10.1007/s13571-011-0015-y
    [32] A. S. Hassan, E. M. Almetwally, G. M. Ibrahim, Kumaraswamy inverted Topp–Leone distribution with applications to COVID-19 data, Comput., Mater. Con., 68 (2021), 337–358. https://doi.org/10.32604/cmc.2021.013971 doi: 10.32604/cmc.2021.013971
    [33] A. M. T. Abd El-Bar, W. B. F. da Silva, A. D. C. Nascimento, An extended log-Lindley-G family: properties and experiments in repairable data, Mathematics, 9 (2021), 1–15. https://doi.org/10.3390/math9233108 doi: 10.3390/math9233108
    [34] C. S. Kumar, S. H. S. Dharmaja, On reduced Kies distribution, Collection of Recent Statistical Methods and Applications, 2013,111–123.
    [35] A. Grassia, On a family of distributions with argument between 0 and 1 obtained by transformation of the gamma and derived compound distributions, Aust. J. Stat., 19 (1977), 108–114. https://doi.org/10.1111/j.1467-842X.1977.tb01277.x doi: 10.1111/j.1467-842X.1977.tb01277.x
    [36] M. Amini, S. M. T. K. MirMostafaee, J. Ahmadi, Log-gamma-generated families of distributions, Statistics, 48 (2014), 913–932. https://doi.org/10.1080/02331888.2012.748775 doi: 10.1080/02331888.2012.748775
    [37] C. Chesneau, On a logarithmic weighted power distribution: theory, modelling and applications, J. Math. Sci.: Adv. Appl., 67 (2021), 1–59.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(626) PDF downloads(28) Cited by(0)

Article outline

Figures and Tables

Figures(13)  /  Tables(12)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog