Research article Special Issues

A study of Caputo fractional differential equations of variable order via Darbo's fixed point theorem and Kuratowski measure of noncompactness

  • Published: 03 July 2025
  • MSC : 26A33, 34K37

  • This paper investigated the existence and stability of solutions for boundary value problems involving Caputo fractional differential equations of variable order. Unlike constant-order models, variable-order equations allow the fractional order to change over time, enabling more flexible and accurate modeling of complex systems with evolving dynamics and memory. Using Darbo's fixed point theorem and the Kuratowski measure of noncompactness, we established new existence results for solutions within a Banach space of continuous functions. Our approach treated the variable order as piecewise constant, transforming the problem into a sequence of more manageable constant-order subproblems. Furthermore, we demonstrated Ulam-Hyers stability of the solutions, ensuring that small perturbations in the system did not lead to significant deviations in the results. To validate the theoretical findings, we provided a detailed example supported by numerical simulations. These results offered a solid foundation for future applications in science and engineering where system dynamics evolve over time.

    Citation: Mohammed Said Souid, Souhila Sabit, Zoubida Bouazza, Kanokwan Sitthithakerngkiet. A study of Caputo fractional differential equations of variable order via Darbo's fixed point theorem and Kuratowski measure of noncompactness[J]. AIMS Mathematics, 2025, 10(7): 15410-15432. doi: 10.3934/math.2025691

    Related Papers:

  • This paper investigated the existence and stability of solutions for boundary value problems involving Caputo fractional differential equations of variable order. Unlike constant-order models, variable-order equations allow the fractional order to change over time, enabling more flexible and accurate modeling of complex systems with evolving dynamics and memory. Using Darbo's fixed point theorem and the Kuratowski measure of noncompactness, we established new existence results for solutions within a Banach space of continuous functions. Our approach treated the variable order as piecewise constant, transforming the problem into a sequence of more manageable constant-order subproblems. Furthermore, we demonstrated Ulam-Hyers stability of the solutions, ensuring that small perturbations in the system did not lead to significant deviations in the results. To validate the theoretical findings, we provided a detailed example supported by numerical simulations. These results offered a solid foundation for future applications in science and engineering where system dynamics evolve over time.



    加载中


    [1] J. F. G. Aguilar, Analytical and numerical solutions of nonlinear alcoholism model via variable-order fractional differential equations, Physica A, 494 (2018), 52–57. https://doi.org/10.1016/j.physa.2017.12.007 doi: 10.1016/j.physa.2017.12.007
    [2] M. M. Alsuyuti, E. H. Doha, B. I. Bayoumi, S. S. E. Eldien, Robust spectral treatment for time-fractional delay partial differential equations, Comput. Appl. Math., 42, (2023), 159. https://doi.org/10.1007/s40314-023-02287-w
    [3] J. Bana$ \grave{\rm s}$, K. Goebel, Measures of noncompactness in Banach spaces, New York: Marcel Dekker, 1980.
    [4] J. Bana$ \grave{\rm s}$, L. Olszowy, Measures of noncompactness related to monotonicity, Comment. Math. (Prace Mat.), 41 (2001), 13–23.
    [5] H. Benali, M. S. Souid, H. Günerhan, U. F. Gamiz, Estimates related to Caputo derivatives using generalized modified convex functions, AIMS Math., 9 (2024), 28813–28827. https://doi.org/10.3934/math.20241398 doi: 10.3934/math.20241398
    [6] A. Benkerrouche, S. Etemad, M. S. Souid, S. Rezapour, H. Ahmad, T. Botmart, Fractional variable order differential equations with impulses: A study on the stability and existence properties, AIMS Math., 8 (2023), 775–791. https://doi.org/10.3934/math.2023038 doi: 10.3934/math.2023038
    [7] A. Benkerrouche, M. S. Souid, A. Karapinar, A. Hakem, On the boundary value problems of Hadamard fractional differential equations of variable order, Math. Method. Appl. Sci., 2022, 1–17. https://doi.org/10.1002/mma.8306
    [8] A. Benkerrouche, M. S. Souid, G. Stamov, I. Stamova, Multiterm impulsive Caputo-Hadamard type differential equations of fractional variable order, Axioms, 11 (2022), 1–14. https://doi.org/10.3390/axioms11110634 doi: 10.3390/axioms11110634
    [9] Z. Bouazza, M. S. Souid, H. Günerhan, A. Shokri, Problem involving the Riemann-Liouville derivative and implicit variable-order nonlinear fractional differential equations, Complexity, 2024 (2024), 1–14. https://doi.org/10.1155/2024/5595720 doi: 10.1155/2024/5595720
    [10] Z. Bouazza, S. Souhila, S. Etemad, M. S. Souid, A. Akgül, S. Rezapour, et al., On the Caputo-Hadamard fractional IVP with variable order using the upper-lower solutions technique, AIMS Math., 8 (2023), 5484–5501. https://doi.org/10.3934/math.2023276 doi: 10.3934/math.2023276
    [11] S. S. E. Eldien, On solving fractional logistic population models with applications, Comput. Appl. Math., 37 (2018), 6392–6409. https://doi.org/10.1007/s40314-018-0693-4 doi: 10.1007/s40314-018-0693-4
    [12] S. S. E. Eldien, E. H. Doha, A. H. Bhrawy, A. A. E. Kalaawy, J. T. Machado, A new operational approach for solving fractional variational problems depending on indefinite integrals, Commun. Nonlinear Sci., 57 (2018), 246–263. https://doi.org/10.1016/j.cnsns.2017.08.026 doi: 10.1016/j.cnsns.2017.08.026
    [13] D. J. Guo, V. Lakshmikantham, X. Liu, Nonlinear integral equations in abstract spaces, Dordrecht: Kluwer Academic Publishers, 1996.
    [14] A. Jiahui, C. Pengyu, Uniqueness of solutions to initial value problem of fractional differential equations of variable-order, Dynam. Syst. Appl., 28 (2019), 607–623.
    [15] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Amsterdam: Elsevier Science B.V., 2006.
    [16] T. Liu, H. Zhang, X. Yang, The ADI compact difference scheme for three-dimensional integro-partial differential equation with three weakly singular kernels, J. Appl. Math. Comput., 71 (2025), 3861–3889. https://doi.org/10.1007/s12190-025-02386-3 doi: 10.1007/s12190-025-02386-3
    [17] M. Manigandan, K. Manikandan, H. A. Hammad, M. D. L. Sen, Applying fixed point techniques to solve fractional differential inclusions under new, AIMS Math., 9 (2024), 15505–15542. https://doi.org/10.3934/math.2024750 doi: 10.3934/math.2024750
    [18] A. Morsy, C. Anusha, K. S. Nisar, C. Ravichandran, Results on generalized neutral fractional impulsive dynamic equation over time scales using nonlocal initial condition, AIMS Math., 9 (2024), 8292–8310. https://doi.org/10.3934/math.2024403 doi: 10.3934/math.2024403
    [19] H. Moussa, M. A. Saker, M. A. Zaky, M. Babatin, S. S. E. Eldien, Mapped Legendre-spectral method for high-dimensional multi-term time-fractional diffusion-wave equation with non-smooth solution, Comput. Appl. Math., 44, (2025), 167. https://doi.org/10.1007/s40314-025-03123-z
    [20] A. Refice, M. S. Souid, I. Stamova, On the boundary value problems of Hadamard fractional differential equations of variable order via Kuratowski MNC technique, Mathematics, 9 (2021), 1134. https://doi.org/10.3390/math9101134 doi: 10.3390/math9101134
    [21] A. Salim, S. T. M. Thabet, I. Kedim, M. V. Cortez, On the nonlocal hybrid $(k, \varphi)$-Hilfer inverse problem with delay and anticipation, AIMS Math., 9 (2024), 22859–22882. https://doi.org/10.3934/math.20241112 doi: 10.3934/math.20241112
    [22] S. G. Samko, Fractional integration and differentiation of variable order, Anal. Math., 21 (1995), 213–236. https://doi.org/10.1007/BF01911126 doi: 10.1007/BF01911126
    [23] S. G. Samko, B. Boss, Integration and differentiation to a variable fractional order, Integr. Transf. Spec. F., 1 (1993), 277–300. https://doi.org/10.1080/10652469308819027 doi: 10.1080/10652469308819027
    [24] H. Sun, W. Chen, H. Wei, Y. Chen, A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems, Eur. Phys. J.-Spec. Top., 193 (2011), 185–192. https://doi.org/10.1140/epjst/e2011-01390-6 doi: 10.1140/epjst/e2011-01390-6
    [25] D. Tavares, R. Almeida, D. F. M. Torres, Caputo derivatives of fractional variable order: Numerical approximations, Commun. Nonlinear Sci., 35 (2016), 69–87. https://doi.org/10.1016/j.cnsns.2015.10.027 doi: 10.1016/j.cnsns.2015.10.027
    [26] B. Telli, M. S. Souid, J. Alzabut, H. Khan, Existence and uniqueness theorems for a variable-order fractional differential equation with delay, Axioms, 12 (2023), 339. https://doi.org/10.3390/axioms12040339 doi: 10.3390/axioms12040339
    [27] D. Valerio, J. S. Costa, Variable-order fractional derivatives and their numerical approximations, Signal Process, 91 (2011), 470–483. https://doi.org/10.1016/j.sigpro.2010.04.006 doi: 10.1016/j.sigpro.2010.04.006
    [28] J. V. D. C. Sousa, E. C. D. Oliveira, Two new fractional derivatives of variable order with non-singular kernel and fractional differential equation, Comput. Appl. Math., 37 (2018), 5375–5394. https://doi.org/10.1007/s40314-018-0639-x doi: 10.1007/s40314-018-0639-x
    [29] J. Yang, H. Yao, B. Wu, An efficient numerical method for variable order fractional functional differential equation, Appl. Math. Lett., 76 (2018), 221–226. https://doi.org/10.1016/j.aml.2017.08.020 doi: 10.1016/j.aml.2017.08.020
    [30] X. Yang, Z. Zhang, Analysis of a new NFV scheme preserving DMP for two-dimensional sub-diffusion equation on distorted meshes, J. Sci. Comput., 99 (2024), 80. https://doi.org/10.1007/s10915-024-02511-7 doi: 10.1007/s10915-024-02511-7
    [31] M. A. Zaky, A. A. kenany, S. E. Alhazmi, S. S. E. Eldien, Numerical treatment of tempered space-fractional Zeldovich-Frank-Kamenetskii equation, Rom. Rep. Phys., 2025.
    [32] S. Zhang, L. Hu, Unique existence result of approximate solution to initial value problem for fractional differential equation of variable order involving the derivative arguments on the half-axis, Mathematics, 7 (2019), 1–23. https://doi.org/10.3390/math7030286 doi: 10.3390/math7030286
    [33] S. Zhang, L. Hu, The existence of solutions and generalized Lyapunov-type inequalities to boundary value problems of differential equations of variable order, AIMS Math., 5 (2020), 2923–2943. https://doi.org/10.3934/math.2020189 doi: 10.3934/math.2020189
    [34] S. Zhang, L. Hu, The existeness and uniqueness result of solutions to initial value problems of nonlinear di usion equations involving with the conformable variable, Azerbaijan J. Math., 9 (2019), 22–45.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(910) PDF downloads(75) Cited by(1)

Article outline

Figures and Tables

Figures(3)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog