This study investigates Timoshenko systems with a single boundary condition involving fractional dissipation. Utilizing semigroup theory, we establish the existence and uniqueness of solutions. Our findings indicate that although the system demonstrates strong stability, it does not attain uniform stability. As a result, we derive the optimal polynomial decay rate of the system.
Citation: Reem Alrebdi, Ahmed Bchatnia, Saleh Fahad Aljurbua. Optimal polynomial stability of the Timoshenko system with single fractional boundary dissipation[J]. AIMS Mathematics, 2025, 10(6): 14515-14538. doi: 10.3934/math.2025654
This study investigates Timoshenko systems with a single boundary condition involving fractional dissipation. Utilizing semigroup theory, we establish the existence and uniqueness of solutions. Our findings indicate that although the system demonstrates strong stability, it does not attain uniform stability. As a result, we derive the optimal polynomial decay rate of the system.
| [1] |
M. Akil, A. Wehbe, Stabilization of multidimensional wave equation with locally boundary fractional dissipation law under geometric conditions, Math. Control Related Fields, 9 (2019), 97–116. https://doi.org/10.3934/mcrf.2019005 doi: 10.3934/mcrf.2019005
|
| [2] |
M. Akil, Y. Chitour, M. Ghader, A. Wehbe, Stability and exact controllability of a Timoshenko system with only one fractional damping on the boundary, Asymptotic Anal., 119 (2019), 221–280. https://doi.org/10.3233/ASY-191574 doi: 10.3233/ASY-191574
|
| [3] |
W. Arendt, C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc., 306 (1988), 837–852. https://doi.org/10.1090/S0002-9947-1988-0933321-3 doi: 10.1090/S0002-9947-1988-0933321-3
|
| [4] |
C. J. K. Batty, R. Chill, Y. Tomilov, Fine scales of decay of operator semigroups, J. Eur. Math. Soc., 18 (2016), 853–929. https://doi.org/10.4171/JEMS/605 doi: 10.4171/JEMS/605
|
| [5] |
A. Bchatnia, A. Beniani, B. Boukari, F. Mtiri, Theoretical and numerical stability of the Bresse system: exploring fractional damping through traditional and neural network approaches, J. Appl. Anal. Comput., 15 (2025), 2663–2694. https://doi.org/10.11948/20240410 doi: 10.11948/20240410
|
| [6] |
A. Benaissa, S. Benazzouz, Well-posedness and asymptotic behavior of Timoshenko beam system with dynamic boundary dissipative feedback of fractional derivative type, Z. Angew. Math. Phys., 68 (2017), 94. https://doi.org/10.1007/s00033-017-0836-2 doi: 10.1007/s00033-017-0836-2
|
| [7] |
A. Borichev, Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Math. Ann., 347 (2010), 455–478. https://doi.org/10.1007/s00208-009-0439-0 doi: 10.1007/s00208-009-0439-0
|
| [8] |
J. U. Kim, Y. Renardy, Boundary control of the Timoshenko beam, SIAM J. Control Optim., 25 (1987), 1417–1429. https://doi.org/10.1137/0325078 doi: 10.1137/0325078
|
| [9] | G. Lumer, R. S. Phillips, Dissipative operators in a Banach space, Pacific J. Math., 11 (1961), 679–698. |
| [10] |
B. Mbodje, Wave energy decay under fractional derivative controls, SIAM J. Control Optim., 23 (2006), 237–257. https://doi.org/10.1093/imamci/dni056 doi: 10.1093/imamci/dni056
|
| [11] |
B. Mbodje, G. Montseny, Boundary fractional derivative control of the wave equation, IEEE Trans. Automat. Contr., 40 (1995), 368–382. https://doi.org/10.1109/9.341815 doi: 10.1109/9.341815
|
| [12] | I. Podlubny, Fractional differential equations, In: Mathematics in science and engineering, Vol. 198, London: Academic Press, 1999. |
| [13] |
S. Alfalqi, H. Khiar, A. Bchatnia, A. Beniani, Polynomial decay of the energy of solutions of the Timoshenko system with two boundary fractional dissipation, Fractal Fract., 8 (2024), 507. https://doi.org/10.3390/fractalfract8090507 doi: 10.3390/fractalfract8090507
|
| [14] | Q. X. Yan, Boundary stabilization of Timoshenko beam, J. Syst. Sci. Complex., 13 (2000), 376–384. |