Research article Special Issues

On a Diophantine equation with four prime variables

  • Published: 24 June 2025
  • MSC : 11L03, 11J25, 11P32

  • Let $ [\alpha] $ denote the integral part of the real number $ \alpha $, and let $ N $ be a sufficiently large integer. In this paper, we proved that for $ 1 < c < \frac{38}{29} $, almost all $ n\in(N, 2N] $ can be represented as $ [p_1^c]+[p_2^c]+[p_3^c]+[p_4^c] = n $, where $ p_1, p_2, p_3, p_4 $ are prime numbers.

    Citation: Jing Huang, Wenguang Zhai, Deyu Zhang. On a Diophantine equation with four prime variables[J]. AIMS Mathematics, 2025, 10(6): 14488-14501. doi: 10.3934/math.2025652

    Related Papers:

  • Let $ [\alpha] $ denote the integral part of the real number $ \alpha $, and let $ N $ be a sufficiently large integer. In this paper, we proved that for $ 1 < c < \frac{38}{29} $, almost all $ n\in(N, 2N] $ can be represented as $ [p_1^c]+[p_2^c]+[p_3^c]+[p_4^c] = n $, where $ p_1, p_2, p_3, p_4 $ are prime numbers.



    加载中


    [1] B. I. Segal, The Waring theorem with fractional and irrational degrees, Trudy Mat. Inst. Stekov, 5 (1933), 63–73. (in Russian)
    [2] B. I. Segal, On a theorem similar to the Waring theorem, Dokl. Akad. Nauk SSSR, 1 (1933), 47–49. (in Russian)
    [3] J. M. Deshouillers, Problème de waring avec exposants non entiers, Bull. Soc. Math. France, 101 (1973), 285–295.
    [4] G. I. Arkhipov, A. N. Zhatkov, On the Waring problem with non-integer degree, Izv. Akad. Nauk SSSR, 48 (1984), 1138–1150. (in Russian)
    [5] M. Laporta, On a binary problem with prime numbers, Mat. Balkanica, 13 (1999), 119–123.
    [6] L. Zhu, An additive equation involving fractional powers, Acta Math. Hung., 159 (2019), 174–186. https://doi.org/10.1007/s10474-019-00979-6 doi: 10.1007/s10474-019-00979-6
    [7] M. Laporta, D. I. Tolev, On an equation with prime numbers, Mat. Zametki, 57 (1995), 926–929.
    [8] A. Kumchev, T. Nedeva, On an equation with prime numbers, Acta Arith., 83 (1998), 117–126. https://doi.org/10.4064/aa-83-2-117-126 doi: 10.4064/aa-83-2-117-126
    [9] W. G. Zhai, X. D. Cao, A Diophantine equation with prime numbers, Acta Math. Sin., 45 (2002), 443–454. (in Chinese)
    [10] Y. C. Cai, On a Diophantine equation involving primes, Ramanujan J., 50 (2019), 151–162. https://doi.org/10.1007/s11139-018-0027-6 doi: 10.1007/s11139-018-0027-6
    [11] J. J. Li, M. Zhang, On a Diophantine equation with three prime variables, Integers, 19 (2019).
    [12] R. Baker, Some Diophantine equations and inequalities with primes, Funct. Approx. Comment. Math., 64 (2021), 203–250.
    [13] D. R. Heath-Brown, The Pjateckiĭ-Šapiro prime number theorem, J. Number Theory, 16 (1983), 242–266. https://doi.org/10.1016/0022-314X(83)90044-6 doi: 10.1016/0022-314X(83)90044-6
    [14] S. W. Graham, G. A. Kolesnik, Van der Corput's method of exponential sums, Lecture Note Series 126. Cambridge University Press, London, 1991.
    [15] K. Buriev, Additive problems with prime numbers, Moscow University, Thesis, 1989. (in Russian)
    [16] O. Robert, P. Sargos, Three-dimensional exponential sums with monomials, J. Reine Angew. Math., 591 (2006), 1–20. https://doi.org/10.1515/CRELLE.2006.012 doi: 10.1515/CRELLE.2006.012
    [17] R. C. Vaughan, The hardy-Littlewood method, 2Eds., Cambrige University Press, Cambridge, 1997.
    [18] A. Ivić, The Riemann Zeta-Function: Theory and applications, Reprint of the 1985 original.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(863) PDF downloads(73) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog