

https://www.aimspress.com/journal/Math

AIMS Mathematics, 10(6): 14488-14501.

DOI: 10.3934/math.2025652 Received: 20 February 2025 Accepted: 19 June 2025 Published: 24 June 2025

Research article

On a Diophantine equation with four prime variables

Jing Huang¹, Wenguang Zhai² and Deyu Zhang^{1,*}

- School of Mathematics and Statistics, Shandong Normal University, Jinan 250014, Shandong, China
- ² Department of Mathematics, China University of Mining and Technology, Beijing 100083, China
- * Correspondence: Email: zdy_78@hotmail.com; Tel: +13869149297.

Abstract: Let $[\alpha]$ denote the integral part of the real number α , and let N be a sufficiently large integer. In this paper, we proved that for $1 < c < \frac{38}{29}$, almost all $n \in (N, 2N]$ can be represented as $[p_1^c] + [p_2^c] + [p_3^c] + [p_4^c] = n$, where p_1, p_2, p_3, p_4 are prime numbers.

Keywords: Diophantine equation; prime; exponential sum **Mathematics Subject Classification:** 11L03, 11J25, 11P32

1. Introduction

The Diophantine equation is a classical problem in number theory. Let $[\alpha]$ denote the integral part of the real number α , and let N be a sufficiently large integer. In 1933, Segal [1,2] firstly studied additive problems with non-integer degrees and proved that for c > 1 being not an integer, there exists k(c) > 0 such that the Diophantine equation

$$[x_1^c] + [x_2^c] + \dots + [x_k^c] = N \tag{1.1}$$

is solvable for k > k(c). Later, Deshouillers [3] and Arkhilov and Zhitkov [4] improved the Segal's bound for k(c). Laporta [5] demonstrated in 1999 that the equation

$$[p_1^c] + [p_2^c] = n (1.2)$$

is solvable in primes p_1 , p_2 provided that $1 < c < \frac{17}{16}$ and N is sufficiently large. Recently, the range of c in (1.2) was enlarged to $1 < c < \frac{14}{11}$ by Zhu [6].

In 1995, Laporta and Tolev [7] considered the equation

$$[p_1^c] + [p_2^c] + [p_3^c] = n (1.3)$$

with prime variables p_1, p_2, p_3 . Denote the weighted number of solutions of the Eq (1.3) by

$$\mathcal{R}(n) = \sum_{[p_1^c] + [p_2^c] + [p_3^c] = n} (\log p_1)(\log p_2)(\log p_3), \tag{1.4}$$

where $N/2 < n \le N$ and N is a sufficiently large integer. They established the following asymptotic formula

$$\mathcal{R}(n) = \frac{\Gamma^3 \left(1 + \frac{1}{c}\right)}{\Gamma\left(\frac{3}{c}\right)} n^{\frac{3}{c} - 1} + O\left(N^{\frac{3}{c} - 1} \exp\left(-\log^{\frac{1}{3} - \delta} N\right)\right)$$

for any $0 < \delta < \frac{1}{3}$ and $1 < c < \frac{17}{16}$. Afterwards, the range of c was enlarged to $1 < c < \frac{12}{11}$ by Kumchev and Nedeva [8], to $1 < c < \frac{258}{235}$ by Zhai and Cao [9], to $1 < c < \frac{137}{119}$ by Cai [10], to $1 < c < \frac{3113}{2703}$ by Li and Zhang [11], and to $1 < c < \frac{3581}{3106}$ by Baker [12].

In this paper, we shall investigate the solvability of the following Diophantine equation

$$n = [p_1^c] + [p_2^c] + [p_3^c] + [p_4^c]$$
(1.5)

in prime variables p_1, p_2, p_3, p_4 . Denote the weighted number of solutions of the above equation by

$$R(n) = \sum_{[p_1^c] + [p_2^c] + [p_3^c] + [p_4^c] = n} (\log p_1)(\log p_2)(\log p_3)(\log p_4)$$
(1.6)

and establish the following theorem.

Theorem 1. Let N be a sufficiently large integer. Then for $1 < c < \frac{38}{29}$ and $n \in (\frac{N}{2}, N]$ but

$$O(N\exp(-\log^{\frac{1}{5}}N))$$

exceptions, we have

$$R(n) = \frac{\Gamma^4 \left(1 + \frac{1}{c} \right)}{\Gamma \left(\frac{4}{c} \right)} n^{\frac{4}{c} - 1} + O\left(N^{\frac{4}{c} - 1} \exp\left(-\log^{\frac{1}{4}} N \right) \right), \tag{1.7}$$

where the implied constant in the O-term depends only on c.

Notation. Throughout the paper, we assume that $1 < c < \frac{38}{29}$. The symbol N always denotes a sufficiently large integer. Let $\varepsilon \in (0, 10^{-10}(\frac{38}{29} - c))$. Let p, with or without subscripts, be reserved for a prime number. We denote the fractional part of x by $\{x\}$ and the distance from x to the nearest integer by $\|x\|$. Let

$$P = N^{\frac{1}{c}}, \quad \tau = P^{1-c-\varepsilon}, \quad e(x) = e^{2\pi i x}, \quad S(\alpha) = \sum_{p \le P} (\log p) e(\alpha[p^c]),$$

$$S(\alpha, X) = \sum_{X$$

2. Auxiliary lemmas

To prove Theorem 1, we need the following lemmas.

Lemma 2.1. [13, Lemma 5] Suppose that z_n is a sequence of complex numbers, then we have

$$\left| \sum_{N \le n \le 2N} z_n \right|^2 \le \left(1 + \frac{N}{Q} \right) \sum_{q=0}^{Q} \left(1 - \frac{q}{Q} \right) \operatorname{Re} \left(\sum_{N \le n \le 2N - q} \overline{z_n} z_{n+q} \right),$$

where Re(t) and \bar{t} denote the real part and the conjugate of the complex number t, respectively.

Lemma 2.2. [14, (3.3.4)] Suppose that |x| > 0 and c > 1. Then for any exponent pair (κ, λ) , $M \le a < b \le 2M$, we have

$$\sum_{a \le n \le b} e(xn^c) \ll (|x|M^c)^{\kappa} M^{\lambda - \kappa} + \frac{M^{1 - c}}{|x|}.$$

Lemma 2.3. [15, Lemma 12] Suppose that t is not an integer and $H \ge 3$. Then for any $\alpha \in (0, 1)$, we have

$$e(-\alpha\{t\}) = \sum_{|h| < H} c_h(\alpha)e(ht) + O\left(\min\left(1, \frac{1}{H||t||}\right)\right),$$

where

$$c_h(\alpha) = \frac{1 - e(-\alpha)}{2\pi i (h + \alpha)}.$$

Lemma 2.4. [13, Lemma 3] Suppose that 3 < U < V < Z < X, and $\{Z\} = \frac{1}{2}$, $X \ge 64Z^2U$, $Z \ge 4U^2$, $V^3 \ge 32X$. We further assume that F(n) is a complex valued function such that $|F(n)| \le 1$. Then the sum

$$\sum_{X \le n \le 2X} \Lambda(n) F(n)$$

may be decomposed into $O(\log^{10} X)$ sums, each of which either of type I:

$$\sum_{M \le m \le 2M} a(m) \sum_{N \le n \le 2N} F(mn)$$

with N > Z, where $a(m) \ll m^{\varepsilon}$ and $X \ll MN \ll X$, or of type II:

$$\sum_{M \le m \le 2M} a(m) \sum_{N \le n \le 2N} b(n) F(mn)$$

with $U \ll M \ll V$, where $a(m) \ll m^{\varepsilon}$, $b(n) \ll n^{\varepsilon}$ and $X \ll MN \ll X$.

Lemma 2.5. Let $P^{\frac{8}{11}} \ll X \ll P$, $H = X^{\frac{1}{58}}$ and $c_h(\alpha)$ denote complex numbers such that $c_h(\alpha) \ll (1+|h|)^{-1}$. Then uniformly with respect to $\alpha \in (\tau, 1-\tau)$, we have

$$S_I = \sum_{|h| \sim H} c_h(\alpha) \sum_{M \le m \le 2M} a(m) \sum_{N \le n \le 2N} e\left((h + \alpha)(mn)^c\right) \ll X^{\frac{57}{58} + 2\varepsilon}$$

$$(2.1)$$

for any $a(m) \ll m^{\varepsilon}$, where $X \ll MN \ll X$ and $M \ll X^{\frac{183}{290}}$.

Proof. We have

$$S_I \ll X^{\varepsilon} \max_{|\lambda| \in (\tau, H+1)} \sum_{M \le m \le 2M} \left| \sum_{N \le n \le 2N} e(\lambda(mn)^c) \right|.$$
 (2.2)

For the inner sum over n in (2.2), we have

$$S_{I} \ll X^{\varepsilon} \max_{|\lambda| \in (\tau, H+1)} \sum_{M \le m \le 2M} \left((|\lambda| X^{c})^{\frac{1}{30}} N^{\frac{25}{30}} + \frac{N}{|\lambda| X^{c}} \right)$$

$$\ll X^{\frac{57}{38} + 2\varepsilon},$$

where Lemma 2.2 with the exponential pair $(\kappa, \lambda) = (\frac{1}{30}, \frac{26}{30})$ is used.

Lemma 2.6. Let $P^{\frac{8}{11}} \ll X \ll P$, $H = X^{\frac{1}{58}}$, and let $c_h(\alpha)$ denote complex numbers such that $c_h(\alpha) \ll (1 + |h|)^{-1}$. Then uniformly with respect to $\alpha \in (\tau, 1 - \tau)$, we have

$$S_{II} = \sum_{|h| \sim H} c_h(\alpha) \sum_{M \le m \le 2M} a(m) \sum_{N \le n \le 2N} b(n)e\left((h + \alpha)(mn)^c\right) \ll X^{\frac{57}{58} + 2\varepsilon}$$
(2.3)

for any $a(m) \ll m^{\varepsilon}$, $b(n) \ll n^{\varepsilon}$, $X \ll MN \ll X$ and $X^{\frac{1}{29}} \ll M \ll X^{\frac{83}{116}}$.

Proof. Taking $Q = X^{\frac{1}{29}}$, then Q = o(N). According to Cauchy's inequality and Lemma 2.1, we get

$$|S_{II}| \ll X^{2\varepsilon} \sum_{|h| \le H} |c_h(\alpha)| \left(\frac{X^2}{Q} + \frac{X}{Q} \sum_{q \le Q} \sum_{M \le m \le 2M} \left| \sum_{N \le n \le 2N} e(f_h(m, n, q)) \right| \right)^{\frac{1}{2}}, \tag{2.4}$$

where $f_h(m, n, q) = (h + \alpha)n^c((m + q)^c - m^c)$. Thus, it is sufficient to estimate the sum

$$S':=\sum_{N\leq n\leq 2N}e(f_h(m,n,q)).$$

By Lemma 2.2 with the exponential pair $(\kappa, \lambda) = (\frac{1}{6}, \frac{2}{3})$, we have

$$S' \ll \left((qHX^cM^{-1})^{\frac{1}{6}}N^{\frac{1}{2}} + \frac{X}{q\tau X^c} \right).$$

Putting the above estimate into (2.4), we can obtain

$$\begin{split} |S_{II}| & \ll & X^{2\varepsilon} \sum_{|h| \leq H} |c_h(\alpha)| \left(\frac{X^2}{Q} + \frac{X}{Q} \sum_{q \leq Q} \sum_{M \leq m \leq 2M} \left((qHX^c M^{-1})^{\frac{1}{6}} N^{\frac{1}{2}} + \frac{X}{q\tau X^c} \right) \right)^{\frac{1}{2}} \\ & \ll & X^{\frac{57}{58} + 2\varepsilon}. \end{split}$$

Thus we complete the proof of Lemma 2.6.

Lemma 2.7. [16, Theorem 2] Suppose $K > 1, \gamma > 0, c > 1, c \notin \mathbb{Z}$. Let $\mathfrak{A}(K; c, \gamma)$ denote the number of solutions of the inequality

$$|n_1^c + n_2^c - n_3^c - n_4^c| < \gamma, K < n_1, n_2, n_3, n_4 \le 2K,$$

then we have

$$\mathfrak{A}(K; c, \gamma) \ll (\gamma K^{4-c} + K^2) K^{\varepsilon}.$$

Lemma 2.8. For 1 < c < 3 ($c \ne 2$), we have

$$\int_0^1 |S(\alpha)|^4 d\alpha \ll (P^{4-c} + P^2)P^{\varepsilon}.$$

Proof. By a splitting argument, it is sufficient to show that

$$\int_0^1 \left| S\left(\alpha, \frac{P}{2}\right) \right|^4 d\alpha \ll (P^{4-c} + P^2) P^{\varepsilon}.$$

We have

$$\int_{0}^{1} \left| S\left(\alpha, \frac{P}{2}\right) \right|^{4} d\alpha$$

$$= \sum_{\substack{\frac{P}{2} < p_{1}, p_{2}, p_{3}, p_{4} \le P \\ |p_{1}^{c}| + |p_{2}^{c}| = |p_{3}^{c}| + |p_{4}^{c}|}} (\log p_{1}) \cdots (\log p_{4}) \int_{0}^{1} e\left(([p_{1}^{c}] + [p_{2}^{c}] - [p_{3}^{c}] - [p_{4}^{c}])\alpha\right) d\alpha$$

$$= \sum_{\substack{\frac{P}{2} < p_{1}, p_{2}, p_{3}, p_{4} \le P \\ |p_{1}^{c}| + |p_{2}^{c}| = |p_{3}^{c}| + |p_{4}^{c}|}} (\log p_{1}) \cdots (\log p_{4}) \ll (\log P)^{4} \sum_{\substack{\frac{P}{2} < n_{1}, n_{2}, n_{3}, n_{4} \le P \\ |p_{1}^{c}| + |p_{2}^{c}| = |p_{3}^{c}| + |p_{4}^{c}|}} 1.$$

If $[n_1^c] + [n_2^c] = [n_3^c] + [n_4^c]$, we can obtain

$$|n_1^c + n_2^c - n_3^c - n_4^c| = |\{n_1^c\} + \{n_2^c\} - \{n_3^c\} - \{n_4^c\}| \le 2.$$

From Lemma 2.7, we have

$$\int_0^1 |S(\alpha)|^4 d\alpha \ll (\log P)^4 \cdot \mathfrak{A}\left(\frac{P}{2}; c, 2\right) \ll (P^{4-c} + P^2)P^{\varepsilon},$$

which completes the proof of Lemma 2.8.

3. The estimation of $S(\alpha)$

Lemma 3.1. For $\tau \le \alpha \le 1 - \tau$, we have

$$S(\alpha) \ll P^{\frac{57}{58}+2\varepsilon}.$$

Proof. Throughout the proof of this lemma, we write $H = X^{\frac{1}{58}}$ for convenience. We need only to show that the estimation

$$\sum_{X < n \le 2X} \Lambda(n) e(\alpha[n^c]) \ll X^{\frac{57}{58} + 2\varepsilon}$$
(3.1)

holds for $P^{\frac{8}{11}} \le X \le P$ and $\tau \le \alpha \le 1 - \tau$. By Lemma 2.3, we can obtain

$$\sum_{X < n \le 2X} \Lambda(n) e(\alpha[n^c]) = \sum_{|h| \le H} c_h(\alpha) \sum_{X < n \le 2X} \Lambda(n) e((h+\alpha)n^c) + O\left((\log X) \sum_{X < n \le 2X} \min\left(1, \frac{1}{H||n^c||}\right)\right).$$
(3.2)

By the expansion

$$\min\left(1, \frac{1}{H||n^c||}\right) = \sum_{h=-\infty}^{\infty} a_h e(hn^c)$$
(3.3)

with

$$|a_h| \le \min\left(\frac{\log 2H}{H}, \frac{1}{|h|}, \frac{H}{h^2}\right),\tag{3.4}$$

we get

$$\sum_{X < n \le 2X} \min \left(1, \frac{1}{H || n^{c} ||} \right) \le \sum_{h = -\infty}^{\infty} a_{h} \left| \sum_{X < n \le 2X} e(hn^{c}) \right| \\
\ll \frac{X \log 2H}{H} + \sum_{1 \le h \le H} \frac{1}{h} \left((hX^{c})^{\frac{1}{2}} + \frac{X}{hX^{c}} \right) \\
+ \sum_{h > H} \frac{H}{h^{2}} \left((hX^{c})^{\frac{1}{2}} + \frac{X}{hX^{c}} \right) \\
\ll X^{\frac{57}{58}} \log X, \tag{3.5}$$

where we estimate the sum over n by Lemma 2.2 with the exponent pair $(\kappa, \lambda) = \left(\frac{1}{2}, \frac{1}{2}\right)$. Taking $U = X^{\frac{1}{29}}$, $V = X^{\frac{1}{3}}$, $Z = [X^{\frac{14}{29}}] + \frac{1}{2}$. By Lemma 2.4 with $F(n) = e((h + \alpha)n^c)$, we get that the sum

$$\sum_{|h| < H} c_h(\alpha) \sum_{X < n \le 2X} \Lambda(n) e((h + \alpha)n^c)$$

can be represented as $O(\log^{10} X)$ sums, either of type I

$$S'_{I} = \sum_{|h| \le H} c_{h}(\alpha) \sum_{M \le m \le 2M} a(m) \sum_{N \le n \le 2N} e((h + \alpha)(mn)^{c}), \ N > Z,$$

or type II

$$S_{II}' = \sum_{|h| \le H} c_h(\alpha) \sum_{M < m \le 2M} a(m) \sum_{N < n \le 2N} b(n) e((h+\alpha)(mn)^c), \ U < M < V.$$

By Lemma 2.5, we get

$$S_I' \ll X^{\frac{57}{58} + 2\varepsilon}. \tag{3.6}$$

By Lemma 2.6, we get

$$S'_{II} \ll X^{\frac{57}{58} + 2\varepsilon}.$$
 (3.7)

From (3.6) and (3.7), we can obtain

$$\sum_{|h| \le H} c_h(\alpha) \sum_{X < n \le 2X} \Lambda(n) e((h + \alpha)n^c) \ll X^{\frac{57}{58} + 2\varepsilon}. \tag{3.8}$$

From (3.2), (3.5), and (3.8), we complete the proof of Lemma 3.1.

Lemma 3.2. For $\alpha \in (0, 1)$, we have

$$T(\alpha, X) \ll X^{\frac{4+c}{7}} \log X + \frac{1}{\alpha X^{c-1}}.$$

Proof. Let $H' = X^{\frac{3-c}{7}}$. By Lemma 2.3, we obtain

$$T(\alpha, X) = \sum_{|h| \le H'} c_h(\alpha) \sum_{X < n \le 2X} e((h + \alpha)n^c) + O\left((\log X) \sum_{X < n \le 2X} \min\left(1, \frac{1}{H' \parallel n^c \parallel}\right)\right).$$

From (3.3) and (3.4), we have

$$\sum_{X < n \le 2X} \min \left(1, \frac{1}{H' \parallel n^c \parallel} \right) \le \sum_{h = -\infty}^{\infty} |a_h| \left| \sum_{X < n \le 2X} e(hn^c) \right| \\
\ll \frac{X \log 2H'}{H'} + \sum_{1 \le h \le H'} \frac{1}{h} \left((hX^c)^{\frac{1}{6}} X^{\frac{1}{2}} + \frac{X}{hX^c} \right) \\
+ \sum_{h \ge H'} \frac{H'}{h^2} \left((hX^c)^{\frac{1}{6}} X^{\frac{1}{2}} + \frac{X}{hX^c} \right) \\
\ll X^{\frac{c+4}{7}} \log X, \tag{3.9}$$

where we used Lemma 2.2 with the exponent pair $(\kappa, \lambda) = (\frac{1}{6}, \frac{2}{3})$. Similarly, we have

$$\sum_{|h| \le H} c_h(\alpha) \sum_{X < n \le 2X} e((h + \alpha)n^c)$$

$$= c_0(\alpha) \sum_{X < n \le 2X} e(\alpha n^c) + \sum_{1 \le |h| \le H'} c_h(\alpha) \sum_{X < n \le 2X} e((h + \alpha)n^c)$$

$$\ll X^{\frac{c+4}{7}} \log X + \frac{X}{\alpha X^c}.$$
(3.10)

From (3.9) and (3.10), we complete the proof of Lemma 3.2.

Lemma 3.3. Let $P^{\frac{8}{11}} \ll X \ll P$, we have

$$\int_{\tau}^{1-\tau} |S(\alpha)|^4 d\alpha \ll P^{\frac{431-87c}{116}+\varepsilon} + P^{\frac{2734-377c}{812}+\varepsilon} + P^{\frac{36+2c}{14}+\varepsilon}. \tag{3.11}$$

Proof. Let $\Theta = (\tau, 1 - \tau)$ and $K_l(\alpha) = \overline{S(\alpha)} |S(\alpha)|^l$ (l = 1 or 2). Then we have

$$\left| \int_{\Theta} S(\alpha) K_l(\alpha) d\alpha \right|$$

$$\ll (\log N) \max_{P^{\frac{8}{11}} < X < P} \left| \int_{\Theta} S(\alpha, X) K_l(\alpha) d\alpha \right| + P^{\frac{8}{11}} (\log P) \int_{\Theta} |K_l(\alpha)| d\alpha. \tag{3.12}$$

In addition, we get

$$\left| \int_{\Theta} S(\alpha, X) K_{l}(\alpha) d\alpha \right| = \left| \sum_{X \leq p \leq 2X} \log p \int_{\Theta} e\left(\alpha \left[p^{c}\right]\right) K_{l}(\alpha) d\alpha \right|$$

$$\leq \sum_{X \leq p \leq 2X} \log p \left| \int_{\Theta} e\left(\alpha \left[p^{c}\right]\right) K_{l}(\alpha) d\alpha \right|$$

$$\leq \left(\log X\right) \sum_{X \leq p \leq 2X} \left| \int_{\Theta} e\left(\alpha \left[n^{c}\right]\right) K_{l}(\alpha) d\alpha \right|. \tag{3.13}$$

By (3.13) and Cauchy's inequality, we have

$$\left| \int_{\Theta} S(\alpha, X) K_{l}(\alpha) d\alpha \right|^{2} \leq X \left(\log^{2} X \right) \sum_{X \leq n \leq 2X} \left| \int_{\Theta} e\left(\alpha \left[n^{c} \right] \right) K_{l}(\alpha) d\alpha \right|^{2}$$

$$\leq X \left(\log^{2} X \right) \int_{\Theta} \overline{K_{l}(\beta)} d\beta \int_{\Theta} K_{l}(\alpha) T(\alpha - \beta, X) d\alpha$$

$$\leq X \left(\log^{2} X \right) \int_{\Theta} |K_{l}(\beta)| d\beta \int_{\Theta} |K_{l}(\alpha)| |T(\alpha - \beta, X)| d\alpha. \tag{3.14}$$

Then,

$$\int_{\Theta} |K_{l}(\alpha)T(\alpha - \beta, X)| d\alpha$$

$$\ll \int_{\frac{\Theta}{|\alpha - \beta| \leq X^{-c}}} |K_{l}(\alpha)T(\alpha - \beta, X)| d\alpha + \int_{\frac{\Theta}{|\alpha - \beta| > X^{-c}}} |K_{l}(\alpha)T(\alpha - \beta, X)| d\alpha.$$
(3.15)

For the first integral in (3.15), we use the trivial bound $T(\alpha, X) \leq X$ and get

$$\int_{\substack{\Theta \\ |\alpha-\beta| \le X^{-c}}} |K_l(\alpha)T(\alpha-\beta,X)| d\alpha$$

$$\ll X \max_{\alpha \in \Theta} |K_l(\alpha)| \int_{|\alpha-\beta| < X^{-c}} 1 d\alpha \ll X^{1-c} \max_{\alpha \in \Theta} |K_l(\alpha)|.$$
(3.16)

For the second integral in (3.15), we use Lemma 3.2 and get

$$\int_{|\alpha-\beta|>X^{-c}} |K_{l}(\alpha)| |T(\alpha-\beta,X)| d\alpha$$

$$\ll \int_{|\alpha-\beta|>X^{-c}} |K_{l}(\alpha)| \left(X^{\frac{4+c}{7}} \log X + \frac{X^{1-c}}{|\alpha-\beta|}\right) d\alpha$$

$$\ll X^{\frac{4+c}{7}} \log X \int_{\Theta} |K_{l}(\alpha)| d\alpha + X^{1-c} \max_{\alpha \in \Theta} |K_{l}(\alpha)| \int_{X-c<|\alpha-\beta| \le 2} \frac{1}{|\alpha-\beta|} d\alpha$$

$$\ll X^{\frac{4+c}{7}} (\log X) \int_{\Theta} |K_{l}(\alpha)| d\alpha + X^{1-c} \max_{\alpha \in \Theta} |K_{l}(\alpha)| \log X. \tag{3.17}$$

From (3.12) and (3.14)–(3.17), we obtain

$$\left| \int_{\Theta} S(\alpha) K_{l}(\alpha) d\alpha \right|^{2} \ll X^{\frac{11+c}{7}+\varepsilon} \left(\int_{\Theta} |K_{l}(\alpha)| \, d\alpha \right)^{2} + P^{\frac{16}{11}+\varepsilon} \left(\int_{\Theta} |K_{l}(\alpha)| \, d\alpha \right)^{2} + X^{2-c+\varepsilon} \max_{\alpha \in \Theta} |K_{l}(\alpha)| \int_{\Theta} |K_{l}(\alpha)| \, d\alpha.$$
(3.18)

By applying Lemma 3.1 and the bound

$$\int_{\tau}^{1-\tau} |S^2(\alpha)| d\alpha \ll \int_{0}^{1} |S^2(\alpha)| d\alpha \ll P \log^2 P,$$

we can deduce from (3.18) with l = 1 that

$$\int_{\Theta} |S(\alpha)|^{3} d\alpha = \int_{\Theta} S(\alpha) K_{1}(\alpha) d\alpha$$

$$\ll X^{1-\frac{c}{2}+\varepsilon} \max_{\alpha \in \Theta} |S(\alpha)| \left(\int_{0}^{1} |S(\alpha)|^{2} d\alpha \right)^{\frac{1}{2}}$$

$$+ \left(X^{\frac{11+c}{14}+\varepsilon} + P^{\frac{8}{11}+\varepsilon} \right) \left(\int_{0}^{1} |S(\alpha)|^{2} d\alpha \right)$$

$$\ll X^{1-\frac{c}{2}} P^{\frac{57}{58}+\frac{1}{2}+\varepsilon} + X^{\frac{11+c}{14}} P^{1+\varepsilon} + P^{\frac{19}{11}+\varepsilon}$$

$$\ll P^{\frac{144-29c}{58}+\varepsilon} + P^{\frac{25+c}{14}+\varepsilon}. \tag{3.19}$$

Then it follows from (3.18) with r = 2 and (3.19) that

$$\int_{\Theta} |S(\alpha)|^{4} d\alpha = \int_{\Theta} S(\alpha) K_{2}(\alpha) d\alpha$$

$$\ll X^{1-\frac{c}{2}+\varepsilon} \max_{\alpha \in \Theta} |S(\alpha)|^{\frac{3}{2}} \left(\int_{\Theta} |S(\alpha)|^{3} d\alpha \right)^{\frac{1}{2}} + \left(X^{\frac{11+c}{14}+\varepsilon} + P^{\frac{8}{11}+\varepsilon} \right) \left(\int_{\Theta} |S(\alpha)|^{3} d\alpha \right)^{\frac{1}{2}}$$

$$\ll P^{\frac{287}{116} - \frac{c}{2} + \varepsilon} \left(P^{\frac{144-29c}{58}} + P^{\frac{25+c}{14}} \right)^{\frac{1}{2}} + P^{\frac{11+c}{14} + \varepsilon} \left(P^{\frac{144-29c}{58}} + P^{\frac{25+c}{14}} \right)$$

$$\ll P^{\frac{431-87c}{116} + \varepsilon} + P^{\frac{1327-174c}{406} + \varepsilon} + P^{\frac{36+2c}{14} + \varepsilon}.$$

which completes the proof of Lemma 3.3.

4. Proof of the theorem

By the definition of R(n), we have

$$R(n) = \int_{-\tau}^{1-\tau} S^{4}(\alpha)e(-\alpha n)d\alpha$$

$$= \int_{-\tau}^{\tau} S^{4}(\alpha)e(-\alpha n)d\alpha + \int_{\tau}^{1-\tau} S^{4}(\alpha)e(-\alpha n)d\alpha$$

$$= R_{1}(N) + R_{2}(N). \tag{4.1}$$

4.1. Evaluation of $R_1(N)$

In this subsection, we shall prove the following equation

$$R_1(n) = \frac{\Gamma^4(1 + \frac{1}{c})}{\Gamma(\frac{4}{c})} n^{\frac{4}{c} - 1} + O\left(N^{\frac{4}{c} - 1} \exp(-(\log n)^{\frac{1}{4}})\right). \tag{4.2}$$

Define

$$G(\alpha) = \sum_{m \le N} \frac{1}{c} m^{\frac{1}{c} - 1} e(m\alpha),$$

$$B_1(n) = \int_{-\tau}^{\tau} G^4(\alpha) e(-n\alpha) d\alpha,$$

$$B(n) = \int_{-\frac{1}{2}}^{\frac{1}{2}} G^4(\alpha) e(-n\alpha) d\alpha.$$

Then

$$R_1(n) = (R_1(n) - B_1(n)) + (B_1(n) - B(n)) + B(n). \tag{4.3}$$

As is shown in Theorem 2.3 of Vaughan [17], we can obtain

$$B(n) = \frac{\Gamma^4 (1 + \frac{1}{c})}{\Gamma(\frac{4}{c})} P^{4-c} + O(P^{3-c}). \tag{4.4}$$

From Lemma 2.8 of Vaughan [17], for v > 0, we have

$$B_1(n) - B(n) \ll \int_{\tau}^{\frac{1}{2}} |G(\alpha)|^4 d\alpha \ll \int_{\tau}^{\frac{1}{2}} \alpha^{-\frac{4}{c}} d\alpha \ll \tau^{1-\frac{4}{c}} \ll P^{4-c-\nu}. \tag{4.5}$$

Next we estimate $|R_1(n) - B_1(n)|$. Let $W_1(N)$ denote the set of integers n in the interval $(\frac{N}{2}, N]$ such that

$$|R_1(n) - B_1(n)| = \left| \int_{-\tau}^{\tau} (S^4(\alpha) - G^4(\alpha)) e(-n\alpha) d\alpha \right| \ge \frac{n^{\frac{4}{c} - 1}}{\log n}. \tag{4.6}$$

We take $W_1 = |W_1(N)|$, and choose the complex number $\varphi_1(n)$ satisfying $|\varphi_1(n)| = 1$ and

$$\varphi_1(n) \int_{-\tau}^{\tau} (S^4(\alpha) - G^4(\alpha))e(-n\alpha)d\alpha = \left| \int_{-\tau}^{\tau} (S^4(\alpha) - G^4(\alpha))e(-n\alpha)d\alpha \right|. \tag{4.7}$$

Thus, for $n \in W_1(N)$, by (4.6) and (4.7), we can obtain

$$\frac{N^{\frac{4}{c}-1}W_1}{\log N} \ll \int_{-\tau}^{\tau} (S^4(\alpha) - G^4(\alpha))L(\alpha)d\alpha, \tag{4.8}$$

where $L(\alpha) = \sum_{n \in W_1(N)} \varphi_1(n) e(-\alpha n)$. By Lemma 2.8 of Vaughan [17], we have

$$G(\alpha) \ll \min(N^{\frac{1}{c}}, |\alpha|^{-\frac{1}{c}}).$$

Thus,

$$\int_{-\frac{1}{2}}^{\frac{1}{2}} |G(\alpha)|^4 d\alpha \ll \int_0^{\frac{1}{2}} \min(N^{\frac{1}{c}}, |\alpha|^{-\frac{1}{c}})^4 d\alpha
\ll \int_0^{\frac{1}{N}} N^{\frac{4}{c}} d\alpha + \int_{\frac{1}{N}}^{\frac{1}{2}} \alpha^{-\frac{4}{c}} d\alpha
\ll N^{\frac{4}{c}-1} \ll P^{4-c}.$$
(4.9)

For $|\alpha| \le \tau$, we have

$$S(\alpha) = \sum_{p \le P} (\log p) e(p^c \alpha) + O(\tau P) = S^*(\alpha) + O(\tau P). \tag{4.10}$$

Now we consider the upper bound of $|S(\alpha) - G(\alpha)|$ under the condition $|\alpha| \le \tau$. By (4.10), we have

$$S(\alpha) = \sum_{n \le P} \Lambda(n)e(n^{c}\alpha) + O(P^{\frac{1}{2}}) + O(\tau P)$$
$$= \sum_{n \le P} \Lambda(n)e(n^{c}\alpha) + O(P^{1-\varepsilon}). \tag{4.11}$$

For $|\alpha| \le \tau$ and $u \ge 2$, by Lemma 1.2 of Ivić [18], we have

$$\sum_{1 \text{ const}} e(m\alpha) = \int_{1}^{u} e(t\alpha)dt + O(1).$$

According to partial summation and the above identity, we can obtain

$$\sum_{n \leq P} \Lambda(n) e(n^{c} \alpha) = \int_{1}^{P} e(t^{c} \alpha) dt + O(P \exp(-(\log P)^{\frac{1}{3}}))$$

$$= \int_{1}^{N} \frac{1}{c} u^{\frac{1}{c} - 1} e(u\alpha) du + O(P \exp(-(\log P)^{\frac{1}{3}}))$$

$$= \sum_{m \leq N} \frac{1}{c} m^{\frac{1}{c} - 1} e(m\alpha) + O(P \exp(-(\log P)^{\frac{1}{3}}))$$

$$= G(\alpha) + O(P \exp(-(\log P)^{\frac{1}{3}})). \tag{4.12}$$

By (4.11) and (4.12), we have

$$\sup_{|\alpha| \le \tau} |S(\alpha) - G(\alpha)| \ll P \exp(-(\log P)^{\frac{1}{3}}). \tag{4.13}$$

We use Hölder's inequality, Lemma 2.8, (4.9), (4.13), and the obvious bound $\int_0^1 |L(\alpha)|^4 d\alpha \ll W_1^3$ and get

$$\int_{-\tau}^{\tau} (S^4(\alpha) - G^4(\alpha)) L(\alpha) d\alpha$$

$$\ll \int_{-\tau}^{\tau} |S(\alpha) - G(\alpha)|(|S(\alpha)|^{3} + |G(\alpha)|^{3})|L(\alpha)|d\alpha$$

$$\ll \sup_{|\alpha| \le \tau} |S(\alpha) - G(\alpha)| \left(\int_{-\tau}^{\tau} |S(\alpha)|^{4} + |G(\alpha)|^{4} d\alpha \right)^{\frac{3}{4}} \left(\int_{-\tau}^{1-\tau} |L(\alpha)|^{4} d\alpha \right)^{\frac{1}{4}}$$

$$\ll N^{\frac{4}{c} - \frac{3}{4}} \exp(-\log^{\frac{1}{4}} N) W_{1}^{\frac{3}{4}}.$$
(4.14)

From (4.8) and (4.14), we obtain

$$\frac{N^{\frac{4}{c}-1}W_1}{\log N} \ll N^{\frac{4}{c}-\frac{3}{4}} \exp(-\log^{\frac{1}{4}}N)W_1^{\frac{3}{4}},$$

which yields that

$$W_1 \ll N \exp(-\log^{\frac{1}{5}} N).$$
 (4.15)

4.2. Evaluation of $R_2(N)$

In this subsection, let $W_2(N)$ denote the set of integers n in the interval $(\frac{N}{2}, N]$ such that

$$|R_2(n)| = \left| \int_{\tau}^{1-\tau} S^4(\alpha) e(-n\alpha) d\alpha \right| \gg \frac{n^{\frac{4}{c}-1}}{\log n}. \tag{4.16}$$

By Bessel's inequality and taking $W_2 = |W_2(N)|$, we have

$$W_2 \left(\frac{N^{\frac{4}{c}-1}}{\log N} \right)^2 \ll \sum_{n \in W_2(N)} \left| \int_{\tau}^{1-\tau} S^4(\alpha) e(-n\alpha) d\alpha \right|^2 \ll \int_{\tau}^{1-\tau} |S^8(\alpha)| d\alpha. \tag{4.17}$$

Since $1 < c < \frac{38}{29}$ and $\varepsilon \in (0, 10^{-10}(\frac{38}{29} - c))$, we can deduce from (4.17) and Lemma 3.3 that

$$W_{2} \ll N^{2-\frac{8}{c}+\varepsilon} P^{\frac{57}{58}\times 4+\varepsilon} \left(P^{\frac{431-87c}{116}+\varepsilon} + P^{\frac{1327-174c}{406}+\varepsilon} + P^{\frac{36+2c}{14}+\varepsilon} \right)$$

$$\ll P^{c-\varepsilon} \ll N^{1-\varepsilon}. \tag{4.18}$$

Let W(N) denote the number of integers n in the interval $(\frac{N}{2}, N]$ such that

$$\left| R(n) - \frac{\Gamma^3 \left(1 + \frac{1}{c} \right)}{\Gamma \left(\frac{4}{c} \right)} n^{\frac{4}{c} - 1} \right| \ge \frac{n^{\frac{4}{c} - 1}}{\log n}. \tag{4.19}$$

Then, by (4.1)–(4.4), (4.15), and (4.18), we have

$$\left| R(n) - \frac{\Gamma^3 \left(1 + \frac{1}{c} \right)}{\Gamma \left(\frac{3}{c} \right)} n^{\frac{4}{c} - 1} \right| \le |R_1(n) - B_1(n)| + |R_2(n)| + O\left(n^{\frac{4}{c} - 1 - \varepsilon} \right).$$

From the above formula and (4.19), we can get

$$\mathcal{W}(N) \le W_1 + W_2 \ll N \exp(-\log^{\frac{1}{5}} N).$$

Thus we complete the proof of Theorem 1.

5. Conclusions

In this paper, we proved that almost all $n \in (N, 2N]$ can be represented as $n = [p_1^c] + [p_2^c] + [p_3^c] + [p_4^c]$, where p_1, p_2, p_3, p_4 are prime numbers and [x] denotes the integer part of x. Our method also yields an asymptotic formula for the number of representations of these n.

Author contributions

J. Huang: Conceptualization, formal analysis, investigation, resources, writing—original draft, writing—review and editing; W. G. Zhai: Conceptualization, investigation, writing—original draft, writing—review and editing; D. Y. Zhang: Data curation, funding acquisition, methodology, project administration, supervision, validation, visualization, writing—review and editing. All authors have read and agreed to the published version of the manuscript.

Use of Generative-AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This work is supported by National Natural Science Foundation of China (Grant Nos. 12171286, 12471009) and Beijing Natural Science Foundation (Grant No. 1242003).

Conflict of interest

The authors declare there is no conflict of interest.

References

- 1. B. I. Segal, The Waring theorem with fractional and irrational degrees, *Trudy Mat. Inst. Stekov*, **5** (1933), 63–73. (in Russian)
- 2. B. I. Segal, On a theorem similar to the Waring theorem, *Dokl. Akad. Nauk SSSR*, **1** (1933), 47–49. (in Russian)
- 3. J. M. Deshouillers, Problème de waring avec exposants non entiers, *Bull. Soc. Math. France*, **101** (1973), 285–295.
- 4. G. I. Arkhipov, A. N. Zhatkov, On the Waring problem with non-integer degree, *Izv. Akad. Nauk SSSR*, **48** (1984), 1138–1150. (in Russian)
- 5. M. Laporta, On a binary problem with prime numbers, *Mat. Balkanica*, **13** (1999), 119–123.
- 6. L. Zhu, An additive equation involving fractional powers, *Acta Math. Hung.*, **159** (2019), 174–186. https://doi.org/10.1007/s10474-019-00979-6
- 7. M. Laporta, D. I. Toley, On an equation with prime numbers, *Mat. Zametki*, **57** (1995), 926–929.

- 8. A. Kumchev, T. Nedeva, On an equation with prime numbers, *Acta Arith.*, **83** (1998), 117–126. https://doi.org/10.4064/aa-83-2-117-126
- 9. W. G. Zhai, X. D. Cao, A Diophantine equation with prime numbers, *Acta Math. Sin.*, **45** (2002), 443–454. (in Chinese)
- 10. Y. C. Cai, On a Diophantine equation involving primes, *Ramanujan J.*, **50** (2019), 151–162. https://doi.org/10.1007/s11139-018-0027-6
- 11. J. J. Li, M. Zhang, On a Diophantine equation with three prime variables, *Integers*, **19** (2019).
- 12. R. Baker, Some Diophantine equations and inequalities with primes, *Funct. Approx. Comment. Math.*, **64** (2021), 203–250.
- 13. D. R. Heath-Brown, The Pjateckiĭ-Šapiro prime number theorem, *J. Number Theory*, **16** (1983), 242–266. https://doi.org/10.1016/0022-314X(83)90044-6
- 14. S. W. Graham, G. A. Kolesnik, *Van der Corput's method of exponential sums*, Lecture Note Series 126. Cambridge University Press, London, 1991.
- 15. K. Buriev, Additive problems with prime numbers, Moscow University, Thesis, 1989. (in Russian)
- 16. O. Robert, P. Sargos, Three-dimensional exponential sums with monomials, *J. Reine Angew. Math.*, **591** (2006), 1–20. https://doi.org/10.1515/CRELLE.2006.012
- 17. R. C. Vaughan, *The hardy-Littlewood method*, 2Eds., Cambridge University Press, Cambridge, 1997.
- 18. A. Ivić, The Riemann Zeta-Function: Theory and applications, Reprint of the 1985 original.

© 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0)