Research article Special Issues

Optimal control and dynamics of human-to-human Lassa fever with early tracing of contacts and proper burial

  • Published: 16 June 2025
  • MSC : 26A33, 34A08, 34A34, 65L20, 92D30

  • Lassa fever is a zoonotic viral disease that is contagious. In this research, a nonlinear deterministic mathematical model of human-to-human transmission of Lassa fever is formulated, which concentrates on the impact of early tracing of contacts and proper burial. The goal of this research was to assess the impact of tracing contacts and the proper burial of deceased individuals. We performed the test of the existence of equilibrium on the model. We computed control and basic reproduction numbers, $ \mathcal{R}_c $ and $ \mathcal{R}_0 $, using the next-generation matrix approach, and we were able to prove the global stability of the disease-free equilibrium using the comparison method. We ascertained that the equilibrium is globally asymptotically stable if $ \mathcal{R}_c < 1 $. We also show the existence of an endemic equilibrium point, where a unique endemic equilibrium has been found. Regarding the global stability of the endemic equilibrium point, we are able to prove the stability of the endemic equilibrium point globally using the Goh-Volterra type of Lyapunov function, which shows that the endemic equilibrium point is globally asymptotically stable if $ \mathcal{R}_c > 1 $, with the condition that if the disease-induced death rates, the hospitalization rate of quarantined and untraced individuals, and the reversion rate of quarantined and traced individuals are all equals to zero. Numerical simulation suggests that, if the traced contact rate can be made high, it can help in controlling Lassa fever disease in society, which will also lead to a decline in infectious individuals in society. If the proper burial rate can be made almost perfect, it can help in controlling Lassa fever disease in society, which will lead to a decline in the number of infectious individuals in society. The optimal control plot shows that the campaign to increase personal hygiene and public knowledge of the actions that increase the risk of sickness is more effective in controlling Lassa fever.

    Citation: Mohammed M Al-Shomrani, Abdullahi Yusuf. Optimal control and dynamics of human-to-human Lassa fever with early tracing of contacts and proper burial[J]. AIMS Mathematics, 2025, 10(6): 13755-13794. doi: 10.3934/math.2025620

    Related Papers:

  • Lassa fever is a zoonotic viral disease that is contagious. In this research, a nonlinear deterministic mathematical model of human-to-human transmission of Lassa fever is formulated, which concentrates on the impact of early tracing of contacts and proper burial. The goal of this research was to assess the impact of tracing contacts and the proper burial of deceased individuals. We performed the test of the existence of equilibrium on the model. We computed control and basic reproduction numbers, $ \mathcal{R}_c $ and $ \mathcal{R}_0 $, using the next-generation matrix approach, and we were able to prove the global stability of the disease-free equilibrium using the comparison method. We ascertained that the equilibrium is globally asymptotically stable if $ \mathcal{R}_c < 1 $. We also show the existence of an endemic equilibrium point, where a unique endemic equilibrium has been found. Regarding the global stability of the endemic equilibrium point, we are able to prove the stability of the endemic equilibrium point globally using the Goh-Volterra type of Lyapunov function, which shows that the endemic equilibrium point is globally asymptotically stable if $ \mathcal{R}_c > 1 $, with the condition that if the disease-induced death rates, the hospitalization rate of quarantined and untraced individuals, and the reversion rate of quarantined and traced individuals are all equals to zero. Numerical simulation suggests that, if the traced contact rate can be made high, it can help in controlling Lassa fever disease in society, which will also lead to a decline in infectious individuals in society. If the proper burial rate can be made almost perfect, it can help in controlling Lassa fever disease in society, which will lead to a decline in the number of infectious individuals in society. The optimal control plot shows that the campaign to increase personal hygiene and public knowledge of the actions that increase the risk of sickness is more effective in controlling Lassa fever.



    加载中


    [1] M. M. Ojo, E. F. D. Goufo, Modeling, analyzing and simulating the dynamics of Lassa fever in Nigeria, J. Egypt. Math. Soc., 30 (2022), 1. https://doi.org/10.1186/s42787-022-00138-x doi: 10.1186/s42787-022-00138-x
    [2] I. S. Onah, O. C. Collins, P. G. U. Madueme, G. C. E. Mbah, Dynamical system analysis and optimal control measures of Lassa fever disease model, Int. J. Math. Math. Sci., 2020 (2020), 7923125. https://doi.org/10.1155/2020/7923125 doi: 10.1155/2020/7923125
    [3] P. N. Okolo, I. V. Nwabufo, O. Abu, Mathematical model for the transmission dynamics of Lassa fever with control, Sci. World J., 15 (2020), 62–68.
    [4] M. A. Ibrahim, A. Dénes, A mathematical model for Lassa fever transmission dynamics in a seasonal environment with a view to the 2017–20 epidemic in Nigeria, Nonlinear Anal. Real, 60 (2021), 103310. https://doi.org/10.1016/j.nonrwa.2021.103310 doi: 10.1016/j.nonrwa.2021.103310
    [5] M. M. Ojo, B. Gbadamosi, T. O. Benson, O. Adebimpe, A. L. Georgina, Modeling the dynamics of Lassa fever in Nigeria, J. Egypt. Math. Soc., 29 (2021), 16. https://doi.org/10.1186/s42787-021-00124-9 doi: 10.1186/s42787-021-00124-9
    [6] R. Wood, U. Bangura, J. Mariën, M. Douno, E. Fichet-Calvet, Detection of Lassa virus in wild rodent feces: Implications for Lassa fever burden within households in the endemic region of Faranah, Guinea, One Health, 13 (2021), 100317. https://doi.org/10.1016/j.onehlt.2021.100317 doi: 10.1016/j.onehlt.2021.100317
    [7] O. C. Collins, K. J. Duffy, Using data of a Lassa fever epidemic in Nigeria: A mathematical model is shown to capture the dynamics and point to possible control methods, Mathematics, 11 (2023), 1181. https://doi.org/10.3390/math11051181 doi: 10.3390/math11051181
    [8] World Health Organization, Lassa fever, 2024. Available from: https://www.who.int/news-room/fact-sheets/detail/lassa-fever#: ~: text = Although.
    [9] A. C. Loyinmi, T. K. Akinfe, A. A. Ojo, Qualitative analysis and dynamical behavior of a Lassa haemorrhagic fever model with exposed rodents and saturated incidence rate, Sci. African, 14 (2021), e01028. https://doi.org/10.21203/rs.3.rs-33293/v1 doi: 10.21203/rs.3.rs-33293/v1
    [10] J. Purushotham, T. Lambe, S. C. Gilbert, Vaccine platforms for the prevention of Lassa fever, Immunol. Lett., 215 (2019), 1–11. https://doi.org/10.1016/j.imlet.2019.03.008 doi: 10.1016/j.imlet.2019.03.008
    [11] E. M. Kennedy, S. D. Dowall, F. J. Salguero, P. Yeates, M. Aram, R. Hewson, A vaccine based on recombinant modified Vaccinia Ankara containing the nucleoprotein from Lassa virus protects against disease progression in a guinea pig model, Vaccine, 37 (2019), 5404–5413. https://doi.org/10.1016/j.vaccine.2019.07.023 doi: 10.1016/j.vaccine.2019.07.023
    [12] K. A. Eberhardt, J. Mischlinger, S. Jordan, M. Groger, S. Günther, M. Ramharter, Ribavirin for the treatment of Lassa fever: A systematic review and meta-analysis, Int. J. Infect. Dis., 87 (2019), 15–20. https://doi.org/10.1016/j.ijid.2019.07.015 doi: 10.1016/j.ijid.2019.07.015
    [13] C. L. Ochu, L. Ntoimo, I. Onoh, F. Okonofua, M. Meremikwu, S. Mba, et al., Predictors of Lassa fever diagnosis in suspected cases reporting to health facilities in Nigeria, Sci. Rep., 13 (2023), 6545. https://doi.org/10.1038/s41598-023-33187-y doi: 10.1038/s41598-023-33187-y
    [14] S. Malik, J. Bora, A. Dhasmana, S. Kishore, S. Nag, S. Preetam, et al., An update on current understanding of the epidemiology and management of the re-emerging endemic Lassa fever outbreaks, Int. J. Surg., 109 (2023), 584–586. https://doi.org/10.1097/JS9.0000000000000178 doi: 10.1097/JS9.0000000000000178
    [15] J. Ripoll, J. Font, A discrete model for the evolution of infection prior to symptom onset, Mathematics, 11 (2023), 1092. https://doi.org/ 10.3390/math11051092 doi: 10.3390/math11051092
    [16] N. B. Tahmo, F. S. Wirsiy, D. M. Brett-Major, Modeling the Lassa fever outbreak synchronously occurring with cholera and COVID-19 outbreaks in Nigeria 2021: A threat to global health security, PLOS Global Public Health, 3 (2023), e0001814. https://doi.org/10.1371/journal.pgph.0001814 doi: 10.1371/journal.pgph.0001814
    [17] E. A. Bakare, E. B. Are, O. E. Abolarin, S. A. Osanyinlusi, B. Ngwu, O. N. Ubaka, Mathematical modelling and analysis of transmission dynamics of Lassa fever, J. Appl. Math., 2020 (2020), 1–18. https://doi.org/10.1155/2020/6131708 doi: 10.1155/2020/6131708
    [18] O. J. Peter, A. I. Abioye, F. A. Oguntolu, T. A. Owolabi, M. O. Ajisope, A. G. Zakari, et al., Modelling and optimal control analysis of Lassa fever disease, Inform. Med. Unlocked, 20 (2020), 100419. https://doi.org/10.1016/j.imu.2020.100419 doi: 10.1016/j.imu.2020.100419
    [19] A. 0. Favour, O. A. Anya, Mathematical model for Lassa fever transmission and control, Math. Comput. Sci., 5 (2020), 110–118. https://doi.org/10.11648/j.mcs.20200506.13 doi: 10.11648/j.mcs.20200506.13
    [20] D. S. Grant, H. Khan, J. Schieffelin, D. G. Bausch, Lassa fever, In: Emerging Infectious Diseases, Academic Press, 2014, 37–59.
    [21] L. Merson, J. Bourner, S. Jalloh, A. Erber, A. P. Salam, A. Flahault, et al., Clinical characterization of Lassa fever: A systematic review of clinical reports and research to inform clinical trial design, PLOS Neglect. Trop. D., 15 (2021), e0009788. https://doi.org/10.1371/journal.pntd.0009788 doi: 10.1371/journal.pntd.0009788
    [22] M. Shoaib, R. Tabassum, M. A. Z. Raja, K. S. Nisar, M. S. Alqahtani, M. Abbas, A design of predictive computational network for transmission model of Lassa fever in Nigeria, Results Phys., 39 (2022), 105713. https://doi.org/10.1016/j.rinp.2022.105713 doi: 10.1016/j.rinp.2022.105713
    [23] A. Abdulhamid, N. Hussaini, S. S. Musa, D. He, Mathematical analysis of Lassa fever epidemic with effects of environmental transmission, Results Phys., 35 (2022), 105335. https://doi.org/10.1016/j.rinp.2022.105335 doi: 10.1016/j.rinp.2022.105335
    [24] O. I. Idisi, T. T. Yusuf, A mathematical model for Lassa fever transmission dynamics with impacts of control measures: analysis and simulation, Eur. J. Math. Stat., 2 (2021), 19–28. https://doi.org/10.24018/ejmath.2021.2.2.17 doi: 10.24018/ejmath.2021.2.2.17
    [25] P. G. U. Madueme, F. Chirove, Understanding the transmission pathways of Lassa fever: A mathematical modeling approach, Infect. Dis. Model., 8 (2023), 27–57. https://doi.org/10.1016/j.idm.2022.11.010 doi: 10.1016/j.idm.2022.11.010
    [26] A. Ayoade, N. Nyerere, M. Ibrahim, An epidemic model for control and possible elimination of Lassa fever, Tamkang J. Mathe., 55 (2024). https://doi.org/10.5556/j.tkjm.55.2024.5031
    [27] H. Thieme, Mathematics in population biology, Princeton University Press, 2003.
    [28] O. Diekmann, J. A. Heesterbeek, J. A. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365–382. https://doi.org/10.1007/BF00178324 doi: 10.1007/BF00178324
    [29] P. Van De Driessche, J. Watmough, Reproduction number and sub threshold endemic equilibrium for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
    [30] J. Andrawus, A. Yusuf, U. T. Mustapha, A. S. Alshom-rani, D Baleanu, Unravelling the dynamics of Ebola virus with contact tracing as control strategy, Fractals, 31 (2023), 2340159. https://doi.org/10.1142/S0218348X2340159X doi: 10.1142/S0218348X2340159X
    [31] Y. Guo, T. Li, Fractional-order modeling and optimal control of a new online game addiction model based on real data, Commun. Nonlinear Sci., 121 (2023), 107221. https://doi.org/10.1016/j.cnsns.2023.107221 doi: 10.1016/j.cnsns.2023.107221
    [32] Y. Guo, T. Li, Modeling the competitive transmission of the Omicron strain and Delta strain of COVID-19, J. Math. Anal. Appl., 526 (2023), 127283. https://doi.org/10.1016/j.jmaa.2023.127283 doi: 10.1016/j.jmaa.2023.127283
    [33] J. Andrawus, A. Iliyasu Muhammad, B. A. Denue, H. Abdul, A. Yusuf, S. Salahshour, Unraveling the importance of early awareness strategy on the dynamics of drug addiction using mathematical modeling approach, Chaos, 34 (2024), 083112. https://doi.org/10.1063/5.0203892 doi: 10.1063/5.0203892
    [34] U. T. Mustapha, A. I. Muhammad, A. Yusuf, N. Althobaiti, A. I. Aliyu, J. Andrawus, Mathematical dynamics of meningococcal meningitis: Examining carrier diagnosis and prophylaxis treatment, Int. J. Appl. Comput. Math., 11 (2025), 77. https://doi.org/10.1007/s40819-025-01890-1 doi: 10.1007/s40819-025-01890-1
    [35] J. Andrawus, F. Y. Eguda, I. G. Usman, S. I. Maiwa, I. M. Dibal, T. G. Urum, et al., A Mathematical model of a transmission dynamics incorporating first and second line treatment, J. Appl. Sci. Environ. Manage., 24 (2020), 917–922. https://doi.org/10.4314/jasem.v24i5.29 doi: 10.4314/jasem.v24i5.29
    [36] J. Andrawus, S. Abdulrahman, R. V. K. Singh, S. S. Manga, Sensitivity analysis of mathematical modeling of Ebola virus population dynamics in the presence of vaccine, Dut. J. Pure Appl. Sci., 8 (2022), 40–46.
    [37] H. Seno, A primer on population dynamics modeling: Basic ideas for mathematical formulation, Singapore: Springer, 2022. https://doi.org/10.1007/978-981-19-6016-1
    [38] N. F. Britton, Essential mathematical biology, Springer, 2003.
    [39] J. Andrawus, F. Y. Eguda, Mathematical analysis of a model for syphilis endemicity, Int. J. Sci. Eng. Appl. Sci., 3 (2017), 48–72.
    [40] H. G. Ahmad, F. Y. Eguda, B. M. Lawan, J. Andrawus, B. I. Babura, Basic reproduction number and sensitivity analysis of Legionnaires' disease model, Gadau J. Pure Allied Sci., 2 (2023), 1. https://doi.org/10.54117/gjpas.v2i1.60 doi: 10.54117/gjpas.v2i1.60
    [41] J. Andrawus, S. Abdulrahman, R. V. K. Singh, S. S. Manga, Optimal control of mathematical modelling for Ebola virus population dynamics in the presence of vaccination, Dut. J. Pure Appl. Sci., 8 (2022), 126–137.
    [42] K. Joshua, K. Asamoah, F. Nyabadza, B. Seidu, M. Chand, H. Dutta, Mathematical modelling of bacterial meningitis transmission dynamics with control measures, Comput. Math. Method. M., 2018 (2018), 2657461. https://doi.org/10.1155/2018/2657461 doi: 10.1155/2018/2657461
    [43] T. Li, G. Youming, Modeling and optimal control of mutated COVID-19 (Delta strain) with imperfect vaccination, Chaos Soliton. Fract., 156 (2022), 111825. https://doi.org/10.1016/j.chaos.2022.111825 doi: 10.1016/j.chaos.2022.111825
    [44] Y. U. Ahmad, J. Andrawus, A. Ado, Y. A. Maigoro, A. Yusuf, S. Althobaiti, et al., Mathematical modeling and analysis of human-to-human monkeypox virus transmission with post-exposure vaccination, Model. Earth Syst. Environ., 10 (2024), 2711–2731. https://doi.org/10.1007/s40808-023-01920-1 doi: 10.1007/s40808-023-01920-1
    [45] Z. S. Kifle, O. L. Lemecha, Optimal control analysis of a COVID-19 model, Appl. Math. Sci. Eng., 31 (2023), 2173188. http://doi.org/10.1080/27690911.2023.2173188 doi: 10.1080/27690911.2023.2173188
    [46] Nigeria Center for Disease Control and Prevention, An update of Monkeypox outbreak in Nigeria, 2023. Available from: https://ncdc.gov.ng/diseases/sitreps/?cat = 8 & name = An%20Update%20of%20Monkeypox%20Outbreak%20in%20Nigeria
    [47] O. C. Collins, K. J. Duffy, Using data of a Lassa fever epidemic in Nigeria: a mathematical model is shown to capture the dynamics and point to possible control methods, Mathematics, 11 (2023), 1181. https://doi.org/10.3390/math11051181 doi: 10.3390/math11051181
    [48] M. A. Ibrahim, A. Denes, A mathematical model for Lassa fever transmission dynamics in a seasonal environment with a view to the 2017–20 epidemic in Nigeria, Nonlinear Anal. Real, 60 (2021), 103310. https://doi.org/10.1016/j.nonrwa.2021.103310 doi: 10.1016/j.nonrwa.2021.103310
    [49] S. S. Musa, S. Zhao, D. Gao, Q. Lin, G. Chowell, D. He, Mechanistic modelling of the large-scale Lassa fever epidemics in Nigeria from 2016 to 2019, J. Theor. Biol., 493 (2020), 110209. https://doi.org/10.1016/j.jtbi.2020.110209 doi: 10.1016/j.jtbi.2020.110209
    [50] C. Castillo-Charvez, B. Song, Dynamical model of tuberculosis and their applications, Math. Biosci., 1 (2004), 361–404. https://doi.org/10.3934/mbe.2004.1.361 doi: 10.3934/mbe.2004.1.361
    [51] J. Andrawus, S. Abdulrahman, R. V. K. Singh, S. S. Manga, Mathematical analysis of Ebola virus population dynamics, Int. J. Math. Anal. Model., 5 (2022), 4.
    [52] K. G. Ibrahim, J. Andrawus, A. Abubakar, A. Yusuf, S. I. Maiwa, K. Bitrus, et al., Mathematical analysis of chickenpox population dynamics unveiling the impact of booster in enhancing recovery of infected individuals, Model. Earth Syst. Environ., 11 (2025), 46. https://doi.org/10.1007/s40808-024-02219-5 doi: 10.1007/s40808-024-02219-5
    [53] A. I. Muhammad, A. Denes, A mathematical model for Lassa fever transmission dynamics in a seasonal environment with a view to the 2017–20 epidemic in Nigeria, Nonlinear Anal. Real, 60 (2021), 103310. https://doi.org/10.1016/j.nonrwa.2021.103310 doi: 10.1016/j.nonrwa.2021.103310
    [54] F. O. Akinpelu, R. Akinwande, Mathematical model for lassa fever and sensitivity analysis, J. Sci. Eng. Res., 5 (2018), 6.
    [55] J. P. Lasalle, The stability of dynamical systems, Regional conference series in applied mathematics, SIAM, 1976.
    [56] M. Iannelli, A. Pugliese, An introduction to mathematical population dynamics: Along the trail of Volterra and Lotka, New York: Springer, 2014. https://doi.org/10.1007/978-3-319-03026-5
    [57] F. Brauer, C. Castillo-Chávez, Mathematical models in population biology and epidemiology, New York: Springer-Verlag, 2012. https://doi.org/10.1007/978-1-4614-1686-9
    [58] Y. Wang, C. Jinde, A note on global stability of the virose equilibrium for network-based computer viruses epidemics, Appl. Math. Comput., 244 (2014), 726–740. https://doi.org/10.1016/j.amc.2014.07.051 doi: 10.1016/j.amc.2014.07.051
    [59] R. Pastor-Satorras, C. Castellano, P. V. Mieghem, A. Vespignani, Epidemic processes in complex networks, Rev. Mod. Phys., 87 (2015), 925–979. https://doi.org/10.1103/RevModPhys.87.925 doi: 10.1103/RevModPhys.87.925
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(603) PDF downloads(22) Cited by(0)

Article outline

Figures and Tables

Figures(22)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog