Research article Special Issues

Transient thermoelastic responses in spherical elastic porous media using a fractional two-phase-lag model with space-time nonlocality

  • Published: 29 May 2025
  • MSC : 70J35, 35B44, 65M60, 74F10

  • This study investigated the impact of the fractional Caputo-tempered two-phase-lag (FCT-TPL) heat conduction model on thermoelastic vibrations within a medium containing spherical cavities and voids. In the proposed model, the nonlocality of time and space is integrated to unify classical and generalized thermoelastic theories, enabling a thorough investigation of size-dependent phenomena and the scattering characteristics of thermo-mechanical waves. Also, by integrating fractional calculus with tempered derivatives, the proposed model adeptly captures the complex interaction between localized thermal effects and nonlocal mechanical responses, particularly in materials with pronounced microstructural features. The fractional order and tempering parameter are shown to play a crucial role in controlling thermal relaxation times and the amplitude of thermoelastic vibrations. The findings reveal that the integration of the fractional Caputo-tempered derivative, along with temporal and spatial nonlocal effects, into the two-phase-lag model significantly improves the accuracy of predicting transient thermoelastic responses in materials with cavities and voids.

    Citation: Kareem Alanazi, Ahmed E. Abouelregal. Transient thermoelastic responses in spherical elastic porous media using a fractional two-phase-lag model with space-time nonlocality[J]. AIMS Mathematics, 2025, 10(5): 12661-12688. doi: 10.3934/math.2025571

    Related Papers:

  • This study investigated the impact of the fractional Caputo-tempered two-phase-lag (FCT-TPL) heat conduction model on thermoelastic vibrations within a medium containing spherical cavities and voids. In the proposed model, the nonlocality of time and space is integrated to unify classical and generalized thermoelastic theories, enabling a thorough investigation of size-dependent phenomena and the scattering characteristics of thermo-mechanical waves. Also, by integrating fractional calculus with tempered derivatives, the proposed model adeptly captures the complex interaction between localized thermal effects and nonlocal mechanical responses, particularly in materials with pronounced microstructural features. The fractional order and tempering parameter are shown to play a crucial role in controlling thermal relaxation times and the amplitude of thermoelastic vibrations. The findings reveal that the integration of the fractional Caputo-tempered derivative, along with temporal and spatial nonlocal effects, into the two-phase-lag model significantly improves the accuracy of predicting transient thermoelastic responses in materials with cavities and voids.



    加载中


    [1] W. Pabst, The linear theory of thermoelasticity from the viewpoint of rational thermomechanics, Cera.-Silikaty, 49 (2005), 242–251. Available from: https://www.ceramics-silikaty.cz/index.php?page=cs_detail_doi&id=611.
    [2] W. Nowacki, Dynamic problems of thermoelasticity, Springer Science & Business Media, 1975.
    [3] Q. Wang, S. Ge, D. Wu, H. Ma, J. Kang, M. Liu, et al., Evolution of microstructural characteristics during creep behavior of Inconel 718 alloy, Mater. Sci. Eng. A, 857 (2022), 143859. https://doi.org/10.1016/j.msea.2022.143859 doi: 10.1016/j.msea.2022.143859
    [4] D. Y. Tzou, A unified field approach for heat conduction from macro-to micro-scales, ASME J. Heat Transfer, 117 (1995), 8–16. https://doi.org/10.1115/1.2822329 doi: 10.1115/1.2822329
    [5] D. Y. Tzou, Macro-to microscale heat transfer: the lagging behavior, John Wiley & Sons, 2014.
    [6] D. Y. Tzou, The generalized lagging response in small-scale and high-rate heating, Int. J. Heat Mass Transfer, 38 (1995), 3231–3240. https://doi.org/10.1016/0017-9310(95)00052-B doi: 10.1016/0017-9310(95)00052-B
    [7] H. W. Lord, Y. Shulman, A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solids, 15 (1967), 299–309. https://doi.org/10.1016/0022-5096(67)90024-5 doi: 10.1016/0022-5096(67)90024-5
    [8] A. E. Green, K. Lindsay, Thermoelasticity, J. Elasticity, 2 (1972), 1–7. https://doi.org/10.1007/BF00045689 doi: 10.1007/BF00045689
    [9] M. Shariati, M. Shishesaz, H. Sahbafar, M. Pourabdy, M. Hosseini, A review on stress-driven nonlocal elasticity theory, J. Comput. Appl. Mech., 52 (2021), 535–552. https://doi.org/10.22059/jcamech.2021.331410.653 doi: 10.22059/jcamech.2021.331410.653
    [10] A. C. Eringen, J. L. Wegner, Nonlocal continuum field theories, Appl. Mech. Rev., 56 (2003), B20–B22. https://doi.org/10.1115/1.1553434 doi: 10.1115/1.1553434
    [11] C. Polizzotto, Stress gradient versus strain gradient constitutive models within elasticity, Int. J. Solids Struct., 51 (2014), 1809–1818. https://doi.org/10.1016/j.ijsolstr.2014.01.021 doi: 10.1016/j.ijsolstr.2014.01.021
    [12] E. C. Aifantis, Gradient deformation models at nano, micro, and macro scales, J. Mech. Behav. Mater., 121 (1999), 189–202. https://doi.org/10.1115/1.2812366 doi: 10.1115/1.2812366
    [13] F. A. C. M. Yang, A. C. M. Chong, D. C. C. Lam, P. Tong, Couple stress based strain gradient theory for elasticity, Int. J. Solids Struct., 39 (2002), 2731–2743. https://doi.org/10.1016/S0020-7683(02)00152-X doi: 10.1016/S0020-7683(02)00152-X
    [14] C. W. Lim, G. Zhang, J. Reddy, A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation, J. Mech. Phys. Solids, 78 (2015), 298–313. https://doi.org/10.1016/j.jmps.2015.02.001 doi: 10.1016/j.jmps.2015.02.001
    [15] S. Li, W. Zheng, L. Li, Spatiotemporally nonlocal homogenization method for viscoelastic porous metamaterial structures, Int. J. Mech. Sci., 282 (2024), 109572.
    [16] A. Overvig, S. A. Mann, A. Alù, Spatio-temporal coupled mode theory for nonlocal metasurfaces, Light: Sci. Appl., 13 (2024), 28. https://doi.org/10.1038/s41377-023-01350-9 doi: 10.1038/s41377-023-01350-9
    [17] Y. Zhang, D. Nie, X. Mao, L. I. Li, A thermodynamics-consistent spatiotemporally-nonlocal model for microstructure-dependent heat conduction, Appl. Math. Mech., 45 (2024), 1929–1948. https://doi.org/10.1007/s10483-024-3180-7 doi: 10.1007/s10483-024-3180-7
    [18] A. E. Abouelregal, M. Marin, A. Öchsner, A modified spatiotemporal nonlocal thermoelasticity theory with higher-order phase delays for a viscoelastic micropolar medium exposed to short-pulse laser excitation, Continuum Mech. Thermodyn., 37 (2025), 15. https://doi.org/10.1007/s00161-024-01342-z doi: 10.1007/s00161-024-01342-z
    [19] A. E. Abouelregal, M. Marin, Y. Alhassan, D. Atta, A novel space–time nonlocal thermo-viscoelastic model with two-phase lags for analyzing heat diffusion in a half-space subjected to a heat source, Iran. J. Sci. Technol. Trans. Mech. Eng., 49 (2025), 1315–1332. https://doi.org/10.1007/s40997-025-00835-9 doi: 10.1007/s40997-025-00835-9
    [20] M. Lazar, E. Agiasofitou, Nonlocal elasticity of Klein–Gordon type: Fundamentals and wave propagation, Wave Motion, 114 (2022), 103038. https://doi.org/10.1016/j.wavemoti.2022.103038 doi: 10.1016/j.wavemoti.2022.103038
    [21] E. Agiasofitou, M. Lazar, Nonlocal elasticity of Klein–Gordon type with internal length and time scales: Constitutive modelling and dispersion relations, PAMM, 23 (2023), e202300065. https://doi.org/10.1002/pamm.202300065 doi: 10.1002/pamm.202300065
    [22] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
    [23] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73–85. http://dx.doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
    [24] M. Caputo, M. Fabrizio, Applications of new time and spatial fractional derivatives with exponential kernels, Prog. Fract. Differ. Appl., 2 (2016), 1–11. http://dx.doi.org/10.18576/pfda/020101 doi: 10.18576/pfda/020101
    [25] A. Atangana, D. Baleanu, Caputo-Fabrizio derivative applied to groundwater flow within confined aquifer, J. Eng. Mech., 143 (2017), D4016005. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001091 doi: 10.1061/(ASCE)EM.1943-7889.0001091
    [26] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [27] S. Saifullah, A. Ali, A. Khan, K. Shah, T. Abdeljawad, A novel tempered fractional transform: Theory, properties and applications to differential equations, Fractals, 31 (2023), 2340045. https://doi.org/10.1142/S0218348X23400455 doi: 10.1142/S0218348X23400455
    [28] A. Liemert, A. Kienle, Fundamental solution of the tempered fractional diffusion equation, J. Math. Phys., 56 (2015), 113504. https://doi.org/10.1063/1.4935475 doi: 10.1063/1.4935475
    [29] M. Medve, M. Pospíšil, Generalized Laplace transform and tempered Ψ-Caputo fractional derivative, Math. Model. Anal., 28 (2023), 146–162. https://doi.org/10.3846/mma.2023.16370 doi: 10.3846/mma.2023.16370
    [30] J. Deng, L. Zhao, Y. Wu, Fast predictor-corrector approach for the tempered fractional differential equations, Numer. Algorithms, 74 (2017), 717–754. https://doi.org/10.1007/s11075-016-0169-9 doi: 10.1007/s11075-016-0169-9
    [31] A. Zavaliangos, L. Anand, Thermo-elasto-viscoplasticity of isotropic porous metals, J. Mech. Phys. Solids, 41 (1993), 1087–1118. https://doi.org/10.1016/0022-5096(93)90056-L doi: 10.1016/0022-5096(93)90056-L
    [32] M. I. Othman, A. Sur, Transient response in an elasto-thermo-diffusive medium in the context of memory-dependent heat transfer, Waves Rand. Compl. Media, 31 (2021), 2238–2261. https://doi.org/10.1080/17455030.2020.1737758 doi: 10.1080/17455030.2020.1737758
    [33] A. Hobiny, F. S. Alzahrani, I. Abbas, Three-phase lag model of thermo-elastic interaction in a 2D porous material due to pulse heat flux, Int. J. Numer. Methods Heat Fluid Flow, 30 (2020), 5191–5207. https://doi.org/10.1108/HFF-03-2020-0122 doi: 10.1108/HFF-03-2020-0122
    [34] P. Liu, T. He, Dynamic response of thermoelastic materials with voids subjected to ramp-type heating under three-phase-lag thermoelasticity, Mech. Adv. Mater. Struct., 29 (2022), 1386–1394. https://doi.org/10.1080/15376494.2020.1821137 doi: 10.1080/15376494.2020.1821137
    [35] V. Gupta, M. S. Barak, S. Das, Impact of memory-dependent heat transfer on Rayleigh waves propagation in nonlocal piezo-thermo-elastic medium with voids, Int. J. Numer. Methods Heat Fluid Flow, 34 (2024), 1902–1926. https://doi.org/10.1108/HFF-10-2023-0615 doi: 10.1108/HFF-10-2023-0615
    [36] S. Mondal, A. Sur, Thermo-hydro-mechanical interaction in a poroelastic half-space with nonlocal memory effects, Int. J. Appl. Comput. Math., 10 (2024), 68. https://doi.org/10.1007/s40819-024-01717-5 doi: 10.1007/s40819-024-01717-5
    [37] F. Ebrahimi, K. Khosravi, A. Dabbagh, A novel spatial–temporal nonlocal strain gradient theorem for wave dispersion characteristics of FGM nanoplates, Waves Rand. Com. Media, 34 (2024), 3490–3509. https://doi.org/10.1080/17455030.2021.1979272 doi: 10.1080/17455030.2021.1979272
    [38] M. Jia, S. Y. Lou, Integrable nonlinear Klein–Gordon systems with PT nonlocality and/or space–time exchange nonlocality, Appl. Math. Lett., 130 (2022), 108018. https://doi.org/10.1016/j.aml.2022.108018 doi: 10.1016/j.aml.2022.108018
    [39] B. Singh, Wave propagation in context of Moore–Gibson–Thompson thermoelasticity with Klein–Gordon nonlocality, Vietnam J. Mech., 46 (2024), 104–118. https://doi.org/10.15625/0866-7136/19728 doi: 10.15625/0866-7136/19728
    [40] F. Ebrahimi, K. Khosravi, A. Dabbagh, Wave dispersion in viscoelastic FG nanobeams via a novel spatial–temporal nonlocal strain gradient framework, Waves Rand. Com. Media, 34 (2024), 2962–2984. https://doi.org/10.1080/17455030.2021.1970282 doi: 10.1080/17455030.2021.1970282
    [41] M. E. Elzayady, A. E. Abouelregal, F. Alsharif, H. Althagafi, M. Alsubhi, Y. Alhassan, Two-stage heat-transfer modeling of cylinder-cavity porous magnetoelastic bodies, Mech. Time-Depend. Mater., 28 (2024), 2819–2840. https://doi.org/10.1007/s11043-024-09691-7 doi: 10.1007/s11043-024-09691-7
    [42] L. Anitha, R. M. Devi, R. Selvamani, F. Ebrahimi, Nonlocal couple stress vibration of pasted thermo elastic multilayered cylinder with hall current and multi dual phase lags, Mech. Solids, 59 (2024), 1659–1671. https://doi.org/10.1134/S0025654424603045 doi: 10.1134/S0025654424603045
    [43] H. Guo, Z. Xu, F. Shang, T. He, A new constitutive theory of nonlocal piezoelectric thermoelasticity based on nonlocal single-phase lag heat conduction and structural transient thermo-electromechanical response of piezoelectric nanorod, Mech. Adv. Mater. Struct., 31 (2024), 11737–11754. https://doi.org/10.1080/15376494.2024.2311240 doi: 10.1080/15376494.2024.2311240
    [44] M. Arai, K. Masui, One-dimensional thermo-elastic wave analysis for dynamic thermoelasticity coupled with dual-phase-lag heat conduction model, Mech. Eng. J., 11 (2024), 24-00255. https://doi.org/10.1299/mej.24-00255 doi: 10.1299/mej.24-00255
    [45] K. Zakaria, M. A. Sirwah, A. E. Abouelregal, A. F. Rashid, Photothermoelastic interactions in silicon microbeams resting on linear Pasternak foundation based on DPL model, Int. J. Appl. Mech., 13 (2021), 2150079. https://doi.org/10.1142/S1758825121500794 doi: 10.1142/S1758825121500794
    [46] E. C. D. Oliveira, J. A. Machado, A review of definitions for fractional derivatives and integral, Math. Probl. Eng., 2014 (2014), 1–7. https://doi.org/10.1155/2014/238459 doi: 10.1155/2014/238459
    [47] F. I. A. Amir, A. Moussaoui, R. Shafqat, M. H. El Omari, S. Melliani, The Hadamard ψ-Caputo tempered fractional derivative in various types of fuzzy fractional differential equations, Soft Comput., 28 (2024), 9253–9270. https://doi.org/10.1007/s00500-024-09821-w doi: 10.1007/s00500-024-09821-w
    [48] A. E. Abouelregal, Y. Alhassan, S. S. Alsaeed, M. Marin, M. E. Elzayady, MGT photothermal model incorporating a generalized Caputo fractional derivative with a tempering parameter: Application to an unbounded semiconductor medium, Contemp. Math., 5 (2024), 6556–6581. https://doi.org/10.37256/cm.5420245963 doi: 10.37256/cm.5420245963
    [49] A. E. Abouelregal, M. Marin, A. Foul, S. S. Askar, Thermomagnetic responses of a thermoelastic medium containing a spherical hole exposed to a timed laser pulse heat source, Case Stud. Therm. Eng., 56 (2024), 104288. https://doi.org/10.1016/j.csite.2024.104288 doi: 10.1016/j.csite.2024.104288
    [50] A. Kuznetsov, On the convergence of the Gaver–Stehfest algorithm, SIAM J. Numer. Anal., 51 (2013), 2984–2998. https://doi.org/10.1137/13091974X doi: 10.1137/13091974X
    [51] F. A. S. Martins, G. J. Weymar, I. da Cunha Furtado, F. Tumelero, R. da Silva Brum, R. S. de Quadros, et al., Analysis of EAHE through a coupled mathematical model solved by Laplace transform and Gaver-Stehfest algorithm, Cienc. Nat., 45 (2023), e74745. https://doi.org/10.5902/2179460X74745 doi: 10.5902/2179460X74745
    [52] S. Sheikh, L. Khalsa, G. Makkad, V. Varghese, Fractional dual-phase-lag hygrothermoelastic model for a sphere subjected to heat-moisture load, Arch. Appl. Mech., 94 (2024), 1379–1396. https://doi.org/10.1007/s00419-024-02583-9 doi: 10.1007/s00419-024-02583-9
    [53] Z. Xue, H. Zhang, J. Liu, M. Wen, Thermoelastic response of porous media considering spatial scale effects of heat transfer and deformation, J. Eng. Mech., 151 (2025), 05024002. https://doi.org/10.1061/JENMDT.EMENG-7730 doi: 10.1061/JENMDT.EMENG-7730
    [54] R. A. Fathy, E. E. Eraki, M. I. Othman, Effects of rotation and nonlocality on the thermoelastic behavior of micropolar materials in the 3PHL model, Iran. J. Sci. Technol. Trans. Mech. Eng., 49 (2025), 165–180. https://doi.org/10.1007/s40997-025-00834-w doi: 10.1007/s40997-025-00834-w
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(725) PDF downloads(27) Cited by(0)

Article outline

Figures and Tables

Figures(9)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog