Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Significant results in the pth moment for Hilfer fractional stochastic delay differential equations

  • Well-posedness is crucial in studying fractional stochastic differential equations, as it ensures that solutions are mathematically sound and applicable to practical situations. A well-formulated model satisfies the essential requirements for solutions, such as existence, uniqueness, and stability concerning various parameters. Using fixed-point theory, we prove that the solution to stochastic fractional delay differential equations with the Hilfer fractional operator exists, is unique, and continuously depends on the initial values and the fractional derivative. Additionally, we establish a smoothness theorem for the solution and demonstrate that the solution of the original system converges to the averaged system in the pth moment. Last, to support our theoretical findings, we provide examples and graphical illustrations. The primary tools used in our proofs include the Burkholder-Davis-Gundy inequality, Jensen's inequality, and Hölder's inequality.

    Citation: Wedad Albalawi, Muhammad Imran Liaqat, Fahim Ud Din, Kottakkaran Sooppy Nisar, Abdel-Haleem Abdel-Aty. Significant results in the pth moment for Hilfer fractional stochastic delay differential equations[J]. AIMS Mathematics, 2025, 10(4): 9852-9881. doi: 10.3934/math.2025451

    Related Papers:

    [1] Wedad Albalawi, Muhammad Imran Liaqat, Kottakkaran Sooppy Nisar, Abdel-Haleem Abdel-Aty . Qualitative study of Caputo Erdélyi-Kober stochastic fractional delay differential equations. AIMS Mathematics, 2025, 10(4): 8277-8305. doi: 10.3934/math.2025381
    [2] Wei Zhang, Jifeng Zhang, Jinbo Ni . New Lyapunov-type inequalities for fractional multi-point boundary value problems involving Hilfer-Katugampola fractional derivative. AIMS Mathematics, 2022, 7(1): 1074-1094. doi: 10.3934/math.2022064
    [3] Donny Passary, Sotiris K. Ntouyas, Jessada Tariboon . Hilfer fractional quantum system with Riemann-Liouville fractional derivatives and integrals in boundary conditions. AIMS Mathematics, 2024, 9(1): 218-239. doi: 10.3934/math.2024013
    [4] Karim Guida, Lahcen Ibnelazyz, Khalid Hilal, Said Melliani . Existence and uniqueness results for sequential $ \psi $-Hilfer fractional pantograph differential equations with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(8): 8239-8255. doi: 10.3934/math.2021477
    [5] Murugesan Manigandan, R. Meganathan, R. Sathiya Shanthi, Mohamed Rhaima . Existence and analysis of Hilfer-Hadamard fractional differential equations in RLC circuit models. AIMS Mathematics, 2024, 9(10): 28741-28764. doi: 10.3934/math.20241394
    [6] Sunisa Theswan, Sotiris K. Ntouyas, Jessada Tariboon . Coupled systems of $ \psi $-Hilfer generalized proportional fractional nonlocal mixed boundary value problems. AIMS Mathematics, 2023, 8(9): 22009-22036. doi: 10.3934/math.20231122
    [7] Ahmed Alsaedi, Bashir Ahmad, Afrah Assolami, Sotiris K. Ntouyas . On a nonlinear coupled system of differential equations involving Hilfer fractional derivative and Riemann-Liouville mixed operators with nonlocal integro-multi-point boundary conditions. AIMS Mathematics, 2022, 7(7): 12718-12741. doi: 10.3934/math.2022704
    [8] Weerawat Sudsutad, Chatthai Thaiprayoon, Sotiris K. Ntouyas . Existence and stability results for $ \psi $-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(4): 4119-4141. doi: 10.3934/math.2021244
    [9] Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Nantapat Jarasthitikulchai, Marisa Kaewsuwan . A generalized Gronwall inequality via $ \psi $-Hilfer proportional fractional operators and its applications to nonlocal Cauchy-type system. AIMS Mathematics, 2024, 9(9): 24443-24479. doi: 10.3934/math.20241191
    [10] Muhammad Imran Liaqat, Fahim Ud Din, Wedad Albalawi, Kottakkaran Sooppy Nisar, Abdel-Haleem Abdel-Aty . Analysis of stochastic delay differential equations in the framework of conformable fractional derivatives. AIMS Mathematics, 2024, 9(5): 11194-11211. doi: 10.3934/math.2024549
  • Well-posedness is crucial in studying fractional stochastic differential equations, as it ensures that solutions are mathematically sound and applicable to practical situations. A well-formulated model satisfies the essential requirements for solutions, such as existence, uniqueness, and stability concerning various parameters. Using fixed-point theory, we prove that the solution to stochastic fractional delay differential equations with the Hilfer fractional operator exists, is unique, and continuously depends on the initial values and the fractional derivative. Additionally, we establish a smoothness theorem for the solution and demonstrate that the solution of the original system converges to the averaged system in the pth moment. Last, to support our theoretical findings, we provide examples and graphical illustrations. The primary tools used in our proofs include the Burkholder-Davis-Gundy inequality, Jensen's inequality, and Hölder's inequality.



    Numerous fractional operators are discussed in the literature [1,2,3], with the Caputo and Riemann-Liouville derivatives being the most significant and widely used [4,5,6]. In 2000, Hilfer [7] generalized the Riemann-Liouville derivative, introducing what is now referred to as the Hilfer fractional derivative (HFrD).

    In literature, various authors used HFrD in their research work with fractional differential and integro-differential models; for example, Raghavan et al. [8] found solutions of the fractional differential equations (FrDEs) with HFrD applying the Laplace transform. Li et al. [9] developed results on the existence and uniqueness and also developed solutions for FrDEs by HFrD. Zhu et al. [10] extracted the solutions of fractional integro-differential models with HFrD. Bedi et al. [11] developed results of the existence and uniqueness of solutions for Hilfer FrDEs. Kasinathan et al. [12] developed results related to mild solutions for FrDEs. Lv and Yang [13] established results for the existence and uniqueness of mild solutions for stochastic models applying semigroup theory. Jin et al. [14] researched the existence and uniqueness of mild solutions to the diffusion model. Karthikeyan et al. [15] discussed results about the controllability of delayed FrDEs. Hegade and Bhalekar [16] developed results of stability for FrDEs. For more studies related to work with HFrD, see [17,18].

    In recent years, many scholars have actively worked on various topics related to different classes of fractional stochastic differential equations (FSDEs). In [19], Batiha et al. proposed an innovative approach for solving FSDEs. They obtained approximate solutions for these equations and compared the results with solutions obtained by other methods. Chen et al. [20] established the existence and uniqueness of solutions to FSDEs and presented results related to stability. The authors also found solutions using the Euler-Maruyama technique for FSDEs. Moualkia and Xu [21] undertook a theoretical analysis of variable-order FSDEs. They determined approximate solutions for these equations and assessed their accuracy by comparing them with solutions from alternative methods. In [22], Ali et al. investigated the coupled system of FSDEs regarding the existence and uniqueness of solutions and stability and found solutions. Li et al. carried out a stability investigation of a system of FSDEs in [23]. The research analyzes the interaction between fractional calculus, stochastic processes, and time delays to provide a better understanding of system stability. It sheds light on the effective solution of these equations via several numerical methods. Moreover, the paper examined various types of stability in FSDEs. Albalawi et al. [24] conducted existence and uniqueness of solution and stability analysis for FSDEs with conformable derivatives. In [25], Doan et al. established the convergence of the Euler-Maruyama approach for FSDEs, found solutions using this technique, and presented stability results. In [26], Umamaheswari et al. discussed the existence and uniqueness of solutions using the Picard scheme for FSDEs with Lévy noise. In [27], Li et al. studied Hilfer FSDEs with delay concerning the existence and uniqueness of solutions using the Picard method. Moreover, they investigated finite-time stability using various inequalities. For further information on FSDEs, refer to [28,29,30,31,32].

    Stochastic fractional delay differential equations (SFDDEs) are a mathematical model that includes fractional derivatives to take into account memory effects, delays in the display of time layer interactions, and stochastic processes for recording randomness or noise. These equations are particularly suitable for systems where past conditions, delay effects, and random variations have a significant impact on dynamics. SFDDEs find applications in various real-life scenarios, such as modeling biological systems with delayed feedback and environmental noise (e.g., population dynamics), engineering systems with memory and delays (e.g., control systems in robotics), finance (e.g., asset pricing with time-lagged market responses), and physics (e.g., viscoelastic materials with delayed stress-strain relationships). By integrating these complex factors, SFDDEs provide a robust framework for analyzing and predicting the behavior of time-dependent, uncertain systems.

    The average principle is a valuable way to analyze various systems. Focusing on averaged equations instead of the original complex time-dependent system provides an effective way to simplify the analysis and reduce complexity. The effectiveness of the average principle depends on the identification of conditions in which the system averaged in a particular context corresponds to the original system. Various authors have presented results on the average principle from different perspectives, such as Zou et al. [33], who established the average principle for FSDEs with impulses. Zou and Luo [34] established a novel result regarding the average principle for SFDDEs with the Caputo operator. The authors [35] established a result on the average principle with the Caputo derivative for neutral FSDEs. Mao et al. [36] established averaging principle results for stochastic delay differential equations with jumps. Xu et al. [37] also worked to prove an averaging principle theorem for FSDEs. Guo et al. [38] studied the averaging principle for stochastic differential equations under a general averaging condition, which is weaker than the traditional case. In [39,40], the authors proved the averaging principle for impulsive FSDEs. Ahmed and Zhu [41] presented results regarding the averaging principle for Hilfer FSDEs with Poisson jumps. Xu et al. [42] presented an averaging principle for Caputo FSDEs driven by Brownian motion in the mean square sense. Jing and Li [43] worked on the averaging principle for backward stochastic differential equations. Djaouti et al. [44] presented some generalizations of the averaging principle for neutral FSDEs. Mouy et al. [45] also proved the averaging principle for Caputo-Hadamard FSDEs with a pantograph term. Liu et al. [46] presented results for Caputo FSDEs with Brownian motion and Lévy noise [47]. Yang et al. [48] presented results for FSDEs with Poisson jumps regarding the averaging principle.

    Motivated by the above discussion, this paper presents significant findings on the existence and uniqueness of solutions, continuous dependence (Con-D), regularity, and average principle for Hilfer SFDDEs of the pth moment. The pth moment is a crucial tool for studying stochastic systems, helping assess the system's behavior and stability by providing a measure of its response over time. The pth moment can be applied to study the behavior of a stochastic system by analyzing its expected value. Moreover, the pth moment is an essential tool in probability analysis, offering a convenient framework for investigating and verifying the stability of stochastic systems.

    This research study uses the contraction mapping principle to determine the existence and uniqueness results of the Hilfer SFDDES solution. Next, we present the Con-D results by assuming that the coefficients correspond to the global Lipschitz condition. Additionally, various inequalities are used to describe regularity and determine average principle results. Finally, examples and graphic illustrations are included to support the results derived from this study.

    Remark 1.1. By proving the outcomes of the theoretical analysis regarding well-posedness, regularity, and average principle, we conclude that these results can be generalized to SFDDEs with the Hadamard fractional operator.

    Remark 1.2. Unlike traditional fractional models, SFDDEs with HFrD present a fundamental challenge due to the interaction of memory, randomness, and time delay effects. These complexities make it even more difficult to derive analytical or approximate solutions and ensure stability. Furthermore, the relationship between HFrD and probabilistic properties requires careful treatment of functional spaces, noise structures, and solution methods.

    Listed below are the main contributions of our study:

    (1) This research work establishes results on the well-posedness, regularity, and average principle for SFDDEs concerning HFrD.

    (2) Most of the findings related to existence, uniqueness, and average principle for FSDEs have been established in the mean-square sense; however, we obtained these results using the pth moment. Consequently, our study extended the results on well-posedness and average principle for SFDDEs to the case where p=2.

    (3) We provide several numerical examples along with their graphical representations to verify the accuracy and reliability of our theoretical findings.

    (4) We provide results for FSDEs with a delay term.

    In this research, we study the following SFDDEs driven by Brownian motions:

    {Dϑ,a0+ϖ(c)=f(c,ϖ(c),ϖ(cs))+g(c,ϖ(c),ϖ(cs))dw(c)dc,ϖ(c)=σ(c),sc0,I(1ϑ)(1a)0+ϖ(0)=σ, (1.1)

    where sR+ is the delay time, σ(c) is the history function for all c[s,0], and Dϑ,a0+ represents HFrD with orders 0ϑ1, 12<a<1. The f:[0,M]×Rm×RmRm and g:[0,M]×Rm×RmRm×b are the m-dimensional measurable functions. The stochastic process (wc)c[0,) follows a standard Brownian trajectory within the b-dimensional complete probability space (Ω,F,P). σ:[s,0]Rm is a continuous function. Assume that the norm of Rm is and Eσ(c)p<. The operator I(1ϑ)(1a)0+ is the Riemann-Liouville fractional integral operator.

    The structure of the paper is as follows: The next section, Preliminary, discusses definitions, a lemma, and some assumptions. Section 3 presents the main results regarding Hilfer SFDDEs. Section 4 provides results related to average principle. Then, we present examples to illustrate our established theoretical results in Section 5. Section 6 contains the conclusion, and we discuss future directions.

    First, we discuss the most important part of the paper, which serves as the foundation of our established results.

    Definition 2.1. [49] Considering a function ϖ(c), the fractional integral operator of order a can be expressed as

    Iaϖ(c)=1Γ(a)c0ϖ(φ)(cφ)1adφ,c>0.

    Definition 2.2 [50] The HFrD of order 0ϑ1 and 0<a<1 is given as follows:

    Dϑ,a0+ϖ(c)=Iϑ(1a)0+ddcI(1ϑ)(1a)0+ϖ(c),

    here, D=ddc.

    Lemma 2.1. [50] When a>12 and c>0, we have

    ηΓ(2a1)c0(cφ)2a2E2a1(ηφ2a1)dφE2a1(ηφ2a1).

    Definition 2.3. For p2 and c[0,), assume Apc=Lp(Ω,F,P) consists of all Fcth measurable with pth integrable ϖ=(ϖ1,ϖ2,,ϖm)T:ΩRm as

    ϖp=(mȷ=1E(|ϖȷ|p))1p.

    The ϖ(c):[0,M]Lp(Ω,F,P) is an Fadapted process when ϖ(c)Apc and c0. For σAp0, the ϖ(c) is a solution of Eq (1.1) if

    ϖ(c)=σc(ϑ1)(1a)Γ(ϑ(1a)+a)+1Γ(a)c0(cφ)a1f(φ,ϖ(φ),ϖ(φs))dφ+1Γ(a)c0(cφ)a1g(φ,ϖ(φ),ϖ(φs))dw(φ). (2.1)

    For f and g, assume the following:

    (H1) When 1,2,ζ1,ζ2Rm, there are U1 and U2 such as

    f(c,1,2)f(c,ζ1,ζ2)pU1(1ζ1p+2ζ2p).
    g(c,1,2)g(c,ζ1,ζ2)pU2(1ζ1p+2ζ2p).

    (H2) For f(c,0,0) and g(c,0,0), we have

    esssupc[0,M]f(c,0,0)p<ψ,esssupc[0,M]g(c,0,0)p<ψ.

    Now, assume the following:

    (H3) When 1,2,ζ1,ζ2,,ζRm, c[0,M], there is U3>0 such as

    f(c,1,2)f(c,ζ1,ζ2)g(c,1,2)g(c,ζ1,ζ2)U3(1ζ1+2ζ2).

    (H4) For f and g in system Eq (1.1), for ,ζRm, and c[0,M], we can find a constant U4>0 such that it satisfies the following:

    f(c,,ζ)g(c,,ζ)U4(1++ζ).

    (H5) There exist functions ˜f and ˜g, along with positive bounded functions 1(M1) and 2(M1) defined for M1[0,M], such that for all c[0,M], ,ζRm, and p2, the following holds:

    1M1M10f(c,,ζ)˜f(,ζ)pdc1(M1)(1+p+ζp),
    1M1M10g(c,,ζ)˜g(,ζ)pdc2(M1)(1+p+ζp),

    where limM11(M1)=0, limM12(M1)=0 and 1(M1), 2(M1) are positively bound functions.

    This section establishes the well-posedness and regularity of the solutions to SFDDEs.

    First, we present the important results regarding well-posedness for SFDDEs.

    We have σ:Hp(0,M)Hp(0,M) with σ(ϖ(0))=σ. Then,

    σ(ϖ(c))=σc(ϑ1)(1a)Γ(ϑ(1a)+a)+1Γ(a)c0(cφ)a1f(φ,ϖ(φ),ϖ(φs))dφ+1Γ(a)c0(cφ)a1g(φ,ϖ(φ),ϖ(φs))dw(φ). (3.1)

    The main tool for establishing the key results is as follows:

    ϖ1+ϖ2pp2p1(ϖ1pp+(ϖ2pp),ϖ1,ϖ2Rm. (3.2)

    Lemma 3.1. Assume that (H1) and (H2) hold; then σ is well-defined.

    Proof. For ϖ(c)Hp[0,M] and c[0,M], the following results are derived using Eqs (3.1) and (3.2):

    σ(ϖ(c))pp2p1σc(ϑ1)(1a)Γ(ϑ(1a)+a)pp+22p2Γp(a)c0(cφ)a1f(φ,ϖ(φ),ϖ(φs))dφpp+22p2Γp(a)c0(cφ)a1g(φ,ϖ(φ),ϖ(φs))dw(φ)pp. (3.3)

    By Hölder's inequality, we have

    c0(cφ)a1f(φ,ϖ(φ),ϖ(φs))dφppmȷ=1E(c0(cφ)a1|fı(φ,ϖ(φ),ϖ(φs))|dφ)pmȷ=1E((c0(cφ)(a1)p(p1)dφ)p1c0|fı(φ,ϖ(φ),ϖ(φs))|pdφ)Map1(p1ap1)p1c0f(φ,ϖ(φ),ϖ(φs))ppdφ. (3.4)

    From (H1), we obtain

    f(φ,ϖ(φ),ϖ(φs))pp2p1(f(φ,ϖ(φ),ϖ(φs))f(φ,0,0)pp+f(φ,0,0)pp)2p1(2p1Up1(ϖ(φ)pp+ϖ(φs)pp)+f(φ,0,0)pp). (3.5)

    Accordingly, we obtain

    c0f(φ,ϖ(φ),ϖ(φs))ppdφ2p1Up1((esssupφ[0,M]ϖ(φ)p)p+(esssupφ[0,M]ϖ(φs)p)p)c01dφ+2p1f(φ,0,0)ppc01dφ2p1MUp1(ϖ(φ)pHp+ϖ(φs)pHp)+2p1f(φ,0,0)ppc01dφ. (3.6)

    By Eqs (3.4) and (3.6), we get the following:

    c0(cφ)a1f(φ,ϖ(φ),ϖ(φs))dφppMap1(p1ap1)p12p1(Up1M(ϖ(φ)pHp+ϖ(φs)pHp)+c0f(φ,0,0)ppdφ). (3.7)

    By (H2), we obtain

    c0(cφ)a1f(φ,ϖ(φ),ϖ(φs))dφppMap1(p1ap1)p12p1(Up1M(ϖ(φ)pHp+ϖ(φs)pHp)+Mψp). (3.8)

    By Burkholder-Davis-Gundy inequality and Hölder's inequality, we obtain

    c0(cφ)a1g(φ,ϖ(φ),ϖ(φs))dw(φ)pp=mȷ=1E|c0(cφ)a1(gı(φ,ϖ(φ),ϖ(φs))dw(φ)|pmȷ=1CpE|c0(cφ)2a2|gı(φ,ϖ(φ),ϖ(φs))|2dφ|p2mȷ=1CpEc0(cφ)2a2|gı(φ,ϖ(φ),ϖ(φs))|pdφ(c0(cφ)2a2dφ)p22dφCp(M2a12a1)p22c0(cφ)2a2g(φ,ϖ(φ,ϖ(φs))ppdφ. (3.9)

    By utilizing (H1) and (H2), we obtain

    g(φ,ϖ(φ),ϖ(φs))pp2p1Up2(ϖ(φ)pp+ϖ(φs)pp)+2p1g(φ,0,0)pp2p1Up2(ϖ(φ)pp+ϖ(φs)pp)+2p1ψp. (3.10)

    So, we get

    c0(cφ)2a2g(φ,ϖ(φ),ϖ(φs))ppdφ2p1Up2c0(cφ)2a2((esssupφ[0,M]ϖ(φ)p)p+(esssupφ[0,M]ϖ(φs)p)p)dφ+2p1ψpc0(cφ)2a2dφ2p1M(2a1)2a1(Up2(ϖ(φ)pHp+ϖ(φs)pHp)+ψp). (3.11)

    So, from above, we have

    c0(cφ)2a2g(φ,ϖ(φ),ϖ(φs))ppdφ2p1M2a12a1(Up2(ϖ(φ)pHp+ϖ(φs)pHp)+ψp). (3.12)

    By using Eq (3.12) in Eq (3.9), we obtain

    c0(cφ)a1g(φ,ϖ(φ),ϖ(φs))dw(φ)ppCp(M2a12a1)p222p1M2a12a1(Up2(ϖ(φ)pHp+ϖ(φs)pHp)+ψp). (3.13)

    By putting Eqs (3.8) and (3.13) into Eq (3.3), we find that σ(ϖ(c))Hp<. So, the σ is well-defined.

    Now, we establish the result regarding existence and uniqueness.

    Theorem 3.1. If (H1) and (H2) are satisfied, then Eq (1.1) with ϖ(0)=σ has a unique solution.

    Proof. Taking η>0:

    η>2p1δΓ(2a1), (3.14)

    where

    δ=2p1Γp(a)(2p1Up1M(pa2a+1)(p1)p1(pa2a+1)p1+2p1(M(2a1)2a1)p22Up2Cp). (3.15)

    The weighted norm η is

    ϖ(c)η=esssupc[0,M](ϖ(c)ppE2a1(ηc2a1))1p,ϖ(c)Hp([0,M]). (3.16)

    For ϖ(c) and ˜ϖ(c), we obtain

    σ(ϖ(c))σ(˜ϖ(c))pp2p1Γp(a)c0(cφ)a1(f(φ,ϖ(φ),ϖ(φs))f(φ,˜ϖ(φ),˜ϖ(φs)))dφpp+2p1Γp(a)c0(cφ)a1(g(φ,ϖ(φ),ϖ(φs))g(φ,˜ϖ(φ),˜ϖ(φs)))dw(φ)pp. (3.17)

    Using the Hölder's inequality and (H1), we obtain

    c0(cφ)a1(f(φ,ϖ(φ),ϖ(φs))f(φ,˜ϖ(φ),˜ϖ(φs)))dφpp=mȷ=1E(c0(cφ)a1(fı(φ,ϖ(φ),ϖ(φs))fı(φ,˜ϖ(φ),˜ϖ(φs)))dφ)pmȷ=1E((c0(cφ)(a1)(p2)p1dφ)p1(c0(cφ)2a2|fı(φ,ϖ(φ),ϖ(φs))fı(φ,˜ϖ(φ),˜ϖ(φs))|pdφ))2p1Up1M(pa2a+1)(p1)p1(pa2a+1)p1c0(cφ)2a2(ϖ(φ)˜ϖ(φ))pp+ϖ(φs)˜ϖ(φs))pp)dφ. (3.18)

    Hence, we have

    c0(cφ)a1(f(φ,ϖ(φ),ϖ(φs))f(φ,˜ϖ(φ),˜ϖ(φs)))dφpp2p1Up1M(pa2a+1)(p1)p1(pa2a+1)p1c0(cφ)2a2(ϖ(φ)˜ϖ(φ))pp+ϖ(φs)˜ϖ(φs))pp)dφ. (3.19)

    However, using (H1) and the Burkholder-Davis-Gundy inequality, we have

    c0(cφ)a1(g(φ,ϖ(φ),ϖ(φs))g(φ,˜ϖ(φ),˜ϖ(φs)))dw(φ)pp=mȷ=1E|c0(cφ)a1(gı(φ,ϖ(φ),ϖ(φs))gı(φ,˜ϖ(φ),˜ϖ(φs)))dw(φ)|pmȷ=1CpE|c0(cφ)2a2|gı(φ,ϖ(φ),ϖ(φs))gı(φ,˜ϖ(φ),˜ϖ(φs))|2dφ|p2mȷ=1CpEc0(cφ)2a2|gı(φ,ϖ(φ),ϖ(φs))gı(φ,˜ϖ(φ),˜ϖ(φs))|pdφ(c0(cφ)2a2dφ)p222p1(M(2a1)2a1)p22Up2Cpc0(cφ)2a2(ϖ(φ)˜ϖ(φ)pp+ϖ(φs)˜ϖ(φs)pp)dφ. (3.20)

    So, from above

    c0(cφ)a1(g(φ,ϖ(φ),ϖ(φs))g(φ,˜ϖ(φ),˜ϖ(φs)))dw(φ)pp2p1(M(2a1)2a1)p22Up2Cpc0(cφ)2a2(ϖ(φ)˜ϖ(φ)pp+ϖ(φs)˜ϖ(φs)pp)dφ. (3.21)

    Thus, c[0,M], we have

    σ(ϖ(c))σ(˜ϖ(c))ppδc0(ϖ(φ)˜ϖ(φ)pp+ϖ(φs)˜ϖ(φs)pp)(cφ)2a2dφ. (3.22)

    So,

    σϖ(c)σ˜ϖ(c)ppE2a1(ηc2a1)1E2a1(ηc2a1)δc0(cφ)2a2(E2a1(ηc2a1)ϖ(φ)˜ϖ(φ)ppE2a1(ηc2a1)+E2a1(η(cs)2a1)ϖ(φs)˜ϖ(φs)ppE2a1(η(cs)2a1))dφ1E2a1(ηc2a1)δc0(cφ)2a2(E2a1(ηc2a1)esssupφ[0,M](ϖ(φ)˜ϖ(φ)ppE2a1(ηc2a1))+E2a1(η(cs)2a1)esssupφ[0,M](ϖ(φs)˜ϖ(φs)ppE2a1(η(cs)2a1)))dφϖ(φ)˜ϖ(φ)pηE2a1(ηc2a1)δc0(cφ)2a2(E2a1(ηc2a1)+E2a1(η(cs)2a1))dφ2ϖ(φ)˜ϖ(φ)pηE2a1(ηc2a1)δc0(cφ)2a2E2a1(ηc2a1)dφ. (3.23)

    Now, we use the following:

    1Γ(2a1)c0(cφ)2a2E2a1(ηc2a1)dφ1ηE2a1(ηc2a1).

    We obtain the required result from Eq (3.23).

    σ(ϖ(c))σ(˜ϖ(c))η(2δΓ(2a1)η)1pϖ(φ)˜ϖ(φ)η. (3.24)

    From Eq (3.14), we obtain 2δΓ(2a1)η<1.

    Theorem 3.2. If ξa(c,σ) is a solution that is Con-D on a, then

    lima˜aesssupc[0,M]ξa(c,σ)ξ˜a(c,σ)p=0. (3.25)

    Proof. Assume a, ˜a(12,1). Then,

    ξa(c,σ)ξ˜a(c,σ)=1Γ(a)c0(cφ)a1(f(φ,ξa(φ,σ),ξa(φs,σ))f(φ,ξ˜a(φ,σ),ξ˜a(φs,σ)))dφ+c0(1Γ(a)(cφ)a11Γ(˜a)(cφ)˜a1)f(φ,ξ˜a(φ,σ),ξ˜a(φs,σ))dφ+1Γ(a)c0(cφ)a1(g(φ,ξa(φ,σ),ξa(φs,σ))g(φ,ξ˜a(φ,σ),ξ˜a(φs,σ)))dw(φ)+c0(1Γ(a)(cφ)a11Γ(˜a)(cφ)˜a1)g(φ,ξ˜a(φ,σ),ξ˜a(φs,σ))dw(φ). (3.26)

    We extract the subsequent outcome from Eq (3.26) by employing Eq (3.2).

    ξa(c,σ)ξ˜a(c,σ)pp2pδc0(cφ)2a2ξa(c,σ)ξ˜a(c,σ)ppdφ+22p2c0(1Γ(a)(cφ)a11Γ(˜a)(cφ)˜a1)f(φ,ξ˜a(φ,σ),ξ˜a(φs,σ))dφpp+22p2c0(1Γ(a)(cφ)a11Γ(˜a)(cφ)˜a1)g(φ,ξ˜a(φ,σ),ξ˜a(φs,σ))dw(φ)pp. (3.27)

    Suppose the following:

    Φ(c,φ,a,˜a)=|1Γ(a)(cφ)a11Γ(˜a)(cφ)˜a1|. (3.28)

    By Hölder's inequality, (H1), (H2), and Eq (3.2), we have

    c0(1Γ(a)(cφ)a11Γ(˜a)(cφ)˜a1)f(φ,ξ˜a(φ,σ),ξ˜a(φs,σ))dφppmι=1E(c0Φ(c,φ,a,˜a)|fı(φ,ξ˜a(φ,σ),ξ˜a(φs,σ))|dφ)pmι=1E((c0(Φ(c,φ,a,˜a))pp1dφ)p1c0|fı(φ,ξ˜a(φ,σ),ξ˜a(φs,σ))|pdφ)(c0(Φ(c,φ,a,˜a))2dφ)p2(c01dφ)p22c0f(φ,ξ˜a(φ,σ),ξ˜a(φs,σ))ppdφ(c0(Φ(c,φ,a,˜a))2dφ)p2Mp22c02p1(Up1(ξ˜a(φ,σ)pp+ξ˜a(φs,σ)pp)+f(φ,0)pp)dφ(c0(Φ(c,φ,a,˜a))2dφ)p2Mp22p1(2p1Up1(esssupc[0,M]ξ˜a(φ,σ)pp+esssupc[0,M]ξ˜a(φs,σ)pp)+ψp). (3.29)

    Now, by Burkholder-Davis-Gundy inequality, Eq (3.28), (H1), and (H2), we obtain

    c0(1Γ(a)(cφ)a11Γ(˜a)(cφ)˜a1)g(φ,ξ˜a(φ,σ),ξ˜a(φs,σ))dw(φ)pp=mι=1E|c0Φ(c,φ,a,˜a)gı(φ,ξ˜a(φ,σ),ξ˜a(φs,σ))dw(φ)|pmι=1CpE|c0Φ2(c,φ,a,˜a)|gı(φ,ξ˜a(φ,σ),ξ˜a(φs,σ))|2dw(φ)|p2mι=1CpE[(c0Φ2(c,φ,a,˜a)|gı(φ,ξ˜a(φ,σ),ξ˜a(φs,σ))|pdφ)2p(c0Φ2(c,φ,a,˜a)dφ)p2p]p2=Cpc0Φ2(c,φ,a,˜a)g(φ,ξ˜a(φ,σ),ξ˜a(φs,σ))ppdφ(c0Φ2(c,φ,a,˜a)dφ)p22Cp(c0Φ2(c,φ,a,˜a)dφ)p22p1(2p1Up2(esssupc[0,M]ξ˜a(φ,σ)pp+esssupc[0,M]ξ˜a(φs,σ)pp)+ψp). (3.30)

    Thus, we obtain the following:

    ξa(c,σ)ξ˜a(c,σ)ppE2a1(ηc2a1)2pδc0(cφ)2a2ξa(φ,σ)ξ˜a(φ,σ)ppE2a1(ηc2a1)E2a1(ηc2a1)dφE2a1(ηc2a1)+23p3(2p1Up1(esssupc[0,M]ξ˜a(φ,σ)pp+esssupc[0,M]ξ˜a(φs,σ)pp)+ψp)(c0(Φ(c,φ,a,˜a))2dφ)p2Mp2+23p3(2p1Up2(esssupc[0,M]ξ˜a(φ,σ)pp+esssupc[0,M]ξ˜a(φs,σ)pp)+ψp)Cp(c0(Φ(c,φ,a,˜a))2dφ)p22pδΓ(2a1)ηξa(c,σ)ξ˜a(c,σ)pη+23p3(2p1Up1(esssupc[0,M]ξ˜a(φ,σ)pp+esssupc[0,M]ξ˜a(φs,σ)pp)+ψp)(c0(Φ(c,φ,a,˜a))2dφ)p2Mp2+23p3(2p1Up2(esssupc[0,M]ξ˜a(φ,σ)pp+esssupc[0,M]ξ˜a(φs,σ)pp)+ψp)Cp(c0(Φ(c,φ,a,˜a))2dφ)p2. (3.31)

    From the above, we have

    (12pδΓ(2a1)η)ξa(c,σ)ξ˜a(c,σ)pη23p3(2p1Up1(esssupc[0,M]ξ˜a(φ,σ)pp+esssupc[0,M]ξ˜a(φs,σ)pp)+ψp)(c0(Φ(c,φ,a,˜a))2dφ)p2Mp2+23p3(2p1Up2(esssupc[0,M]ξ˜a(φ,σ)pp+esssupc[0,M]ξ˜a(φs,σ)pp)+ψp)Cp(c0(Φ(c,φ,a,˜a))2dφ)p2. (3.32)

    Now, we prove the following:

    lim˜aasupc[0,M]c0(Φ(c,φ,a,˜a))2dφ=0.

    We possess the following:

    c0(Φ(c,φ,a,˜a))2dφ=c0(cφ)2a2Γ2(a)dφ+c0(cφ)2˜a2Γ2(˜a)dφ2c0(cφ)a+˜a2Γ(a)Γ(˜a)dφ=(M(2a1)(2a1))1Γ2(a)+(M(2˜a1)(2˜a1))1Γ2(˜a)2M(a+˜a1)(a+˜a1)Γ(a)Γ(˜a). (3.33)

    It thereby demonstrated the necessary outcome.

    Theorem 3.3. For σ,ΨAp0, we have

    ξa(c,σ)ξa(c,Ψ)pUσΨp,c[0,M]. (3.34)

    Proof. As we have

    ξa(c,σ)ξa(c,Ψ)=σc(ϑ1)(1a)Γ(ϑ(1a)+a)Ψc(ϑ1)(1a)Γ(ϑ(1a)+a)+1Γ(a)c0(cφ)a1(f(φ,ξa(φ,σ),ξa(φs,σ))f(φ,ξa(φ,Ψ),ξa(φs,Ψ)))dφ+1Γ(a)c0(cφ)a1(g(φ,ξa(φ,σ),ξa(φs,σ))g(φ,ξa(φ,Ψ),ξa(φs,Ψ)))dw(φ). (3.35)

    By applying Eq (3.2), we obtain

    ξa(c,σ)ξa(c,Ψ)pp2p1σc(ϑ1)(1a)Γ(ϑ(1a)+a)Ψc(ϑ1)(1a)Γ(ϑ(1a)+a)pp+22p2Γp(a)c0(cφ)a1(f(φ,ξa(φ,σ),ξa(φs,σ))f(φ,ξa(φ,Ψ),ξa(φs,Ψ)))dφpp+22p2Γp(a)c0(cφ)a1(g(φ,ξa(φ,σ),ξa(φs,σ)))g(φ,ξa(φ,σ),ξa(φs,σ)))dw(φ)pp. (3.36)

    By Hölder's inequality and (H1), we obtain

    c0(cφ)a1(f(φ,ξa(φ,σ),ξa(φs,σ))f(φ,ξa(φ,Ψ),ξa(φs,Ψ)))dφpp=mȷ=1E(c0(cφ)a1(fı(φ,ξa(φ,σ),ξa(φs,σ))fı(φ,ξa(φ,Ψ),ξa(φs,Ψ)))dφ)pmȷ=1E((c0(cφ)(a1)(p2)p1dφ)p1(c0(cφ)2a2|fı(φ,ξa(φ,σ),ξa(φs,σ))fı(φ,ξa(φ,Ψ),ξa(φs,Ψ))|dφ))2p1Up1M(pa2a+1)(p1)p1(pa2a+1)p1c0(cφ)2a2(ξa(φ,σ)ξa(φ,Ψ)pp+ξa(φs,σ)ξa(φs,Ψ)pp)dφ. (3.37)

    Hence, we have

    c0(cφ)a1(f(φ,ξa(φ,σ),ξa(φs,σ))f(φ,ξa(φ,Ψ),ξa(φs,Ψ)))dφpp2p1Up1M(pa2a+1)(p1)p1(pa2a+1)p1c0(cφ)2a2(ξa(φ,σ)ξa(φ,Ψ)pp+ξa(φs,σ)ξa(φs,Ψ)pp)dφ. (3.38)

    Now, utilizing (H1), Hölder's inequality, and Burkholder–Davis–Gundy inequality, we derive

    c0(cφ)a1(g(φ,ξa(φ,σ),ξa(φs,σ))g(φ,ξa(φ,Ψ),ξa(φs,Ψ)))dw(φ)pp=mȷ=1E|c0(cφ)a1(gı(φ,ξa(φ,σ),ξa(φs,σ))gı(φ,ξa(φ,Ψ),ξa(φs,Ψ)))dw(φ)|pmȷ=1CpE|c0(cφ)2a2|gı(φ,ξa(φ,σ),ξa(φs,σ))gı(φ,ξa(φ,Ψ),ξa(φs,Ψ))|2dφ|p2mȷ=1CpEc0(cφ)2a2|gı(φ,ξa(φ,σ),ξa(φs,σ))gı(φ,ξa(φ,Ψ),ξa(φs,Ψ))|pdφ(c0(cφ)2a2dφ)p222p1Up2Cp(ξa(φ,σ)ξa(φ,Ψ)pp+ξa(φs,σ)ξa(φs,Ψ)pp)dφ. (3.39)

    By substituting Eqs (3.37) and (3.39) into Eq (3.36), we obtain

    ξa(c,σ)ξa(c,Ψ)pp2p1σc(ϑ1)(1a)Γ(ϑ(1a)+a)Ψc(ϑ1)(1a)Γ(ϑ(1a)+a)pp+2pδc0(cφ)2a2(ξa(φ,σ)ξa(φ,Ψ)pp)dφ. (3.40)

    By referring to the Grönwall inequality, we conclude

    ξa(c,σ)ξa(c,Ψ)pp2p1exp(2pδc0(cφ)2a2dφ)σc(ϑ1)(1a)Γ(ϑ(1a)+a)Ψc(ϑ1)(1a)Γ(ϑ(1a)+a)pp.

    Thus, we obtain the following result:

    ξa(c,σ)ξa(c,Ψ)pp2p1E2a1(2pδΓ(2a1)c(2a1))σc(ϑ1)(1a)Γ(ϑ(1a)+a)Ψc(ϑ1)(1a)Γ(ϑ(1a)+a)pp.

    Hence, we

    limσΨξa(c,σ)ξa(c,Ψ)p=0.

    The proof is so done.

    The following result pertains to regularity.

    Theorem 3.4. If (H1) and (H2) are valid, then for S>0, we have

    ξa(σ,c)ξa(σ,ς)pS|cς|a12,c,ς[0,M]. (3.41)

    Proof. For c>ς, then from Eq (3.2):

    ξa(c,σ)ξa(ς,σ)pp1Γp(a)222pcς(cφ)a1f(φ,ξa(φ,σ),ξa(φs,σ))dφpp+1Γp(a)222pcς(cφ)a1g(φ,ξa(φ,σ),ξa(φs,σ))dw(φ)(φ)pp+1Γp(a)222pς0|(cφ)a1(ςφ)a1|f(φ,ξa(φ,σ),ξa(φs,σ))dφpp+1Γp(a)222pς0|(cφ)a1(ςφ)a1|g(φ,ξa(φ,σ),ξa(φs,σ))dw(φ)pp. (3.42)

    By Hölder's inequality and Burkholder-Davis-Gundy inequality, we obtain

    Γp(a)222pξa(c,σ)ξa(ς,σ)pp(p1)p1(pa1)p1(cς)1pf(φ,ξa(φ,σ),ξa(φs,σ))ppcς1dφ+Cp(g(φ,ξa(φ,σ),ξa(φs,σ))ppcς(cφ)2a2dφ)(cς(cφ)2a2dφ)p22+f(φ,ξa(φ,σ),ξa(φs,σ))ppM2p2ς01dφ(ς0|(cφ)a1(ςφ)a1|2dφ)p2+g(φ,ξa(φ,σ),ξa(φs,σ))ppCpς0((cφ)a1(ςφ)a1)2dφ×(ς0((cφ)a1(ςφ)a1)2dφ)p22.

    We have

    f(φ,ξa(φ,σ))pp2p1(2p1Up1(ξa(φ,σ)pp+ξa(φ,σs))pp)+f(φ,0)pp)2p1(2pUp1K1+ψp).

    And also

    g(φ,ξa(φ,σ))pp2p1(2p1Up2(ξa(φ,σ))pp+ξa(φs,σ))pp)+g(φ,0)pp)2p1(2pUp2K1+ψp).

    Furthermore,

    ς0((cφ)a1(ςφ)a1)2dφ(cς)(2a1)(2a1). (3.43)

    So,

    Γp(a)222pξa(c,σ)ξa(ς,σ)pp(2p2)p1(2a1)p1(cς)(2a1)p2(2pUp1K1+ψp)Mp2+1(2a1)p2(cς)(2a1)p2(2pUp2K1+ψp)2p1Cp+2p1(2a1)p1(cς)(2a1)p2(2pUp1K1+ψp)Mp2+1(2a1)p2(cς)(2a1)p2(2pUp2K1+ψp)2p1Cp.

    Hence,

    ξa(c,σ)ξa(ς,σ)pS(cς)a12,

    where

    Sp=22p2((2p2)p1(pa1)p1(2pUp1K1+ψp)Mp2+1(2a1)p2(2pUp2K1+ψp)2p1Cp)1Γp(a)+22p2(2p1(2a1)p1(2pUp1K1+Kp)Mp2+1(2a1)p2(2pUp2K1+ψp)2p1Cp)Γp(a).

    Thus, we obtain the following:

    limςcξa(c,σ)ξa(ς,σ)p=0.

    Now, we establish results concerning the average principle in the pth moment for SFDDEs within the framework of the HFrD.

    Lemma 4.1. For ˜g, when M1[0,M], we obtain

    ˜g(,ζ)pU6(1+p+ζp),

    where U6=(2p12(M1)+6p1Up4).

    Proof. By (H4),(H5), and Eq (3.2),

    ˜g(,ζ)p2p1g(c,,ζ)˜g(,ζ)p+2p1g(c,,ζ)p2p12(M1)(1+p+ζp)+2p1Up4(1++ζ)p(2p12(M1)+6p1Up4)(1+p+ζp).

    The following is a lemma regarding the time-scale property of the HFrD.

    Lemma 4.2. Suppose the time scale c=μγ, then

    Dϑ,a0+ϖ(μγ)=μaDϑ,a0+ϖ(c).

    Proof. The HFrD of order 0ϑ1 and 0<a<1 is defined as

    Dϑ,a0+ϖ(μγ)=1Γ(a)γ01(γφ)1ϑ(1a)ddφ1Γ(a)γ01(γφ)1(1ϑ)(1a)ϖ(μφ)dφdφ.

    Let μφ=A, and by the chain rule, ddφ=ddA.dAdφ=ddA.ddφ(μφ)=μddA. So, we have

    Dϑ,a0+ϖ(μγ)=1Γ(a)μγ01(γAμ)1ϑ(1a)μddA1Γ(a)μγ01(γAμ)(1ϑ)(1a)ϖ(A)dAμdAμ.

    From the above, we have

    Dϑ,a0+ϖ(μγ)=μa1Γ(a)μγ01(μγA)1ϑ(1a)ddA1Γ(a)μγ01(μγA)(1ϑ)(1a)ϖ(A)dAdA,

    likewise, we obtain

    Dϑ,a0+ϖ(μγ)=μa1Γ(a)c01(cA)1ϑ(1a)ddA1Γ(a)c01(cA)(1ϑ)(1a)ϖ(A)dAdA.

    So, we have the following result:

    Dϑ,a0+ϖ(μγ)=μaDϑ,a0+ϖ(c).

    Now, we establish an important result concerning average principle.

    {Dϑ,a0+ϖ(c)=f(cε,ϖ(c),ϖ(cs))+g(cε,ϖ(c),ϖ(cs))dw(c)dc,ϖ(0)=σ. (4.1)

    Suppose cε=ν. By Lemma 4.2 and from Eq (4.1):

    εaDϑ,a0+ϖ(εν)=f(ν,ϖ(εν),ϖ(ενεs))+g(ν,ϖ(εν),ϖ(ενεs))dw(εν)εdν.

    By considering dw(εν)=εdw(ν) and representing ϖ(εν)=ϖε(ν) and ϖ(ενεs)=ϖε(νs), we get

    Dϑ,a0+ϖε(ν)=εaf(ν,ϖε(ν),ϖε(νs))+εa12g(ν,ϖε(ν),ϖε(νs))dw(ν)dν.

    Despite the loss of generality, ν=c can be stated. The standard form of Eq (1.1) can be obtained by applying cεc.

    {Dϑ,a0+ϖε(c)=εaf(σ,ϖε(c),ϖε(cs))+εa12g(σ,ϖε(c),ϖε(cs))dw(c)dc,ϖε(0)=σ. (4.2)

    Thus, Eq (4.2) can be expressed integrally as

    ϖε(c)=σc(ϑ1)(1a)Γ(ϑ(1a)+a)+εa1Γ(a)c0(cφ)a1f(φ,ϖε(φ),ϖε(φs))dφ+εa121Γ(a)c0(cφ)a1g(φ,ϖε(φ),ϖε(φs))dw(φ), (4.3)

    for ε(0,ε0]. The average of Eq (3.35) is as

    ϖε(σ)=σc(ϑ1)(1a)Γ(ϑ(1a)+a)+εa1Γ(a)σ0(cφ)a1˜f(ϖε(φ),ϖε(φs))dφ+εa121Γ(a)c0(cφ)a1˜g(ϖε(φ),ϖε(τs))dw(φ), (4.4)

    where ˜f:Rm×RmRm,˜g:Rm×RmRϰ×b.

    Theorem 4.1. When >0 and ϱ>0, and ε1(0,ε0] with κ(0,app2), then

    E[supc[s,ϱεκ]ϖε(c)ϖε(c)p],ε(0,ε1]. (4.5)

    Proof. By Eqs (3.35) and (4.4), for c[0,u][0,M], we have

    ϖε(c)ϖε(c)=εa1Γ(a)c0(cφ)a1(f(φ,ϖε(φ),ϖε(φs))˜f(ϖε(φ),ϖε(φs)))dφ+εa121Γ(a)c0(cφ)a1(g(φ,ϖε(φ),ϖε(φs))˜g(ϖε(φ),ϖε(φs)))dw(φ). (4.6)

    Via Jensen's inequality, we have

    ϖε(c)ϖε(c)p2p1εa1Γ(a)c0(cφ)a1(f(φ,ϖε(φ),ϖε(φs))˜f(ϖε(φ),ϖε(φs)))dφp+2p1εa121Γ(a)c0(cφ)a1(g(φ,ϖε(φ),ϖε(φs))˜g(ϖε(φ),ϖε(φs)))dw(φ)p(1Γ(a))p2p1εpac0(cφ)a1(f(φ,ϖε(φ),ϖε(φs))˜f(ϖε(φ),ϖε(φs)))dφp+(1Γ(a))p2p1ε(a12)pc0(cφ)a1(g(φ,ϖε(φ),ϖε(φs))˜g(ϖε(φ),ϖε(φs)))dw(φ)p. (4.7)

    Utilizing Eq (4.7) in Eq (4.5),

    E[sup0cuϖε(c)ϖε(c)p](1Γ(a))p2p1εpaE[sup0cuc0(cφ)a1(f(φ,ϖε(φ),ϖε(φs))˜f(ϖε(φ),ϖε(φs)))dφp]+(1Γ(a))p2p1ε(a12)pE[sup0cuc0(cφ)a1(g(φ,ϖε(φ),ϖε(φs))˜g(ϖε(φ),ϖε(φs)))dw(φ)p]=Q1+Q2. (4.8)

    From Q1, we have

    Q1(1Γ(a))p22p2εpaE[sup0cuc0(cφ)a1(f(φ,ϖε(φ),ϖε(φs))f(φ,ϖε(φ),ϖε(φs)))dφp]+(1Γ(a))p22p2εpaE[sup0cuc0(cφ)a1(f(φ,ϖε(φ),ϖε(φs))˜f(ϖε(φ),ϖε(φs)))dφp]=Q11+Q12. (4.9)

    By Hölder's inequality, Jensen's inequality, and (H3) applied to Q11:

    Q11(1Γ(a))p22p2εpa(u0(uφ)(a1)pp1dφ)p1E[sup0cuc0f(φ,ϖε(φ),ϖε(φs))f(φ,ϖε(φ),ϖε(φs))pdφ](1Γ(a))p23p3εpaUp3(u(ap1)p1)p1(p1(ap1))p1(E[sup0cuc0ϖε(φ)ϖε(φ)pdφ]+E[sup0cuc0ϖε(φs)ϖε(φs)pdφ])=Q11εpau(ap1)(u0E[sup0Λφϖε(Λ)ϖε(Λ)p]dφ+u0E[sup0Λφϖε(Λs)ϖε(Λs)p]dφ), (4.10)

    here, Q11=(p1(ap1))p1(1Γ(a))p23p3Up3.

    By Hölder's inequality, Jensen's inequality, and (H5) on Q12,

    Q12(1Γ(a))p22p2εpa(u0(uφ)(a1)pp1dφ)p1E[sup0cuc0f(φ,ϖε(φ),ϖε(φs))˜f(ϖε(φ),ϖε(φs))pdφ](1Γ(a))p22p2εpa(u(ap1)p1)p1(p1(ap1))p11(u)u(1+Eϖε(φ)p+Eϖε(φs)p)=Q12εpauap, (4.11)

    where Q12=(1Γ(a))p22p2(p1(ap1))p11(u)(1+Eϖε(φ)p+Eϖε(φs)p).

    The following is provided by Q2 via Jensen's inequality:

    Q2(1Γ(a))p22p2ε(a12)p(E[sup0cuc0(cφ)a1[g(φ,ϖε(φ),ϖε(φs))g(φ,ϖε(φ),ϖε(φs))]dw(φ)p])+(1Γ(a))p22p2ε(a12)p(E[sup0cuc0(cφ)a1[g(φ,ϖε(φ),ϖε(φs))˜g(ϖε(φ),ϖε(φs))]dw(φ)p])=Q21+Q22. (4.12)

    By applying (H3), Hölder's inequality, and Burkholder-Davis-Gundy inequality on Q21,

    Q21(1Γ(a))p22p2ε(a12)p(2(p1)1ppp+1)p2E[u0(uφ)2a2g(φ,ϖε(φ),ϖε(φs))g(φ,ϖε(φ),ϖε(φs))2dφ]p2(1Γ(a))p23p3ε(a12)pup21Up3(pp+12(1p)p1)p2u0(uφ)(a1)pE[sup0Λφ[ϖε(Λ)ϖε(Λ)p+ϖε(Λs)ϖε(Λs)p]dφ](1Γ(a))p23p3ε(a12)pup21Up3(pp+12(1p)p1)p2u0(uφ)(a1)pE[sup0Λφ[ϖε(Λ)ϖε(Λ)p+ϖε(Λs)ϖε(Λs)p]dφ]=Q21ε(a12)pup21(u0(uφ)(a1)pE[sup0Λφϖε(Λ)ϖε(Λ)p]dφ+u0(uφ)(a1)pE[sup0Λφϖε(Λs)ϖε(Λs)p]dφ), (4.13)

    where Q21=23p3Up3(pp+12(p1)p1)p2(1Γ(a))p.

    By Hölder's inequality and Burkholder-Davis-Gundy inequality,

    Q22(1Γ(a))p22p2(2(p1)1ppp+1)p2ε(a12)pE[u0f(φ,ϖε(φ),ϖε(φs))˜g(φ,ϖε(φ),ϖε(φs))2(uφ)2a2dφ]p2(1Γ(a))p22p2ε(a12)pup21(2(p1)p1pp+1)p2E[u0(uφ)(a1)p(g(φ,ϖε(φ),ϖε(φs))p+˜g(ϖε(φ),ϖε(φs))p)dφ](1Γ(a))p23p33p1ε(a12)pu((a1)p+1)up21Up4(Up4+U6)p((a1)p+1)(2(p1)1ppp+1)p2(1+E[ϖε(φ)p]+E[ϖε(φs)p])=Q22ε(a12)pu(a12)p, (4.14)

    where

    Q22=23p33p1Up4(Up4+U6)p1(ϑ(a1)p+1)(2(p1)1ppp+1)p2(1+E[ϖε(φ)p]+E[ϖε(φs)p])(1Γ(a))p.

    Using Eqs (4.9) to (4.14) in (4.8),

    E[sup0cuϖε(c)ϖε(c)p]Q12εpauap+Q22ε(a12)pu(a12)p+u0(Q11εpau(ap1)+Q21ε(a12)pup21(uφ)(a1)pdφ)E[sup0Λφϖε(Λ)ϖε(Λ)p]dφ+u0(Q11εpau(ap1)+Q21ε(a12)pup21(uφ)(a1)p)E[sup0Λφϖε(Λs)ϖε(Λs)p]dφ. (4.15)

    From Eq (4.15),

    E[sup0cuϖε(c)ϖε(c)p](Q12εpauap+Q22ε(a12)pu(a12)p)exp(2Q11εpauap+2Q21((a1)p+1)ε(a12)pu(a12)p).

    So, for ϱ>0 and κ(0,app2) with c[s,ϱεκ][0,M], we obtain

    E[supscϱεκϖε(c)ϖε(c)p]Zε1κ, (4.16)

    where

    Z=εκ1(Q12εpa(ϱεκ)ap+Q22ε(a12)p(ϱεκ)(a12)p)exp(2Q11εpa(ϱεκ)ap+2Q21((a1)p+1)ε(a12)p(ϱεκ)(a12)p).

    So, proved the required result.

    To better understand the theoretical results established in this research, we present examples along with graphical comparisons of the original and averaged solutions. Figures 14 illustrate these comparisons, supporting the validity of our theoretical findings.

    Example 1. Consider the following:

    {Dϑ,0.950+ϖε(c)=6ε0.95sin2(c)ϖε(c12)+ε0.95ϖε(c12)cos2(c)+3ε0.9512ϖε(c12)cos2(c)sin(ϖε(c))dw(c)dc,c[0,π],ϖ(0)=σ, (5.1)

    where a=0.95, s=12, and

    f(c,ϖ(c),ϖ(cs))=6sin2(c)ϖε(c12)+ϖε(c12)cos2(c),g(c,ϖ(c),ϖ(cs))=3ϖε(c12)cos2(c)sin(ϖε(c)).

    The criteria of existence and uniqueness are fulfilled by f(c,ϖ(c),ϖ(cs)) and g(c,ϖ(c),ϖ(cs)).

    Figure 1.  Red: original equation; blue: averaged equation for ϵ=0.001.
    Figure 2.  The red curve indicates the solution of the original equation, while the blue curve represents the solution of the averaged equation for ϵ=0.001.
    Figure 3.  The red curve shows the solution of the original model, while the blue curve depicts the solution of the averaged model for ϵ=0.001.
    Figure 4.  The solution of the original equation is shown in red, while the solution of the averaged equation is shown in blue for ϵ=0.001.

    The averages of f and g are as

    ˜f(ϖ(c),ϖ(cs))=1ππ0(6sin2(c)ϖε(c)+ϖε(c)cos2(12c))dc=72ϖε(c12),˜g(ϖ(c),ϖ(cs))=1ππ03ϖε(c)cos2(c)sin(ϖε(c))dc=32ϖε(c12)sin(ϖε(c)).

    The corresponding average is

    {Dϑ,0.950+ϖε(c)=72ε0.95ϖε(c12)+32ε0.9512ϖε(c12)sin(ϖε(c))dw(c)dc,ϖε(0)=σ. (5.2)

    All conditions in Theorem 4.1 are satisfied by system (5.1). As a result, solutions ϖε(c) and ϖε(c) are equivalent at the pth moment in the limit as ε0. Figure 1 presents a graphical comparison between solutions of the original system (5.1) and averaged system (5.2), demonstrating a strong agreement between solutions ϖε(c) and ϖε(c) and confirming the accuracy of our theoretical conclusions.

    Example 2. Take the following:

    {Dϑ,0.900+ϖε(c)=3ε0.90sin(ϖε(c13))sin2(c)ϖε(c)+ε0.9012sin(ϖε(c))cos(ϖε(c))dw(c)dc,c[0,π],ϖ(0)=σ, (5.3)

    where a=0.90, s=13, and

    f(c,ϖ(c),ϖ(cs))=3sin(ϖε(c13))sin2(c)ϖε(c),g(c,ϖ(c),ϖ(cs))=sin(ϖε(c))cos(ϖε(c)).

    The criteria of existence and uniqueness are fulfilled by f(c,ϖ(c),ϖ(cs)) and g(c,ϖ(c),ϖ(cs)).

    The averages of f and g are as

    ˜f(ϖ(c),ϖ(cs))=1ππ03sin(ϖε(c13))sin2(c)ϖε(c)dc=32sin(ϖε(c13))ϖε(c),˜g(ϖ(c),ϖ(cs))=1ππ0sin(ϖε(c))cos(ϖε(c))dc=sin(ϖε(c))cos(ϖε(c)).

    The corresponding average is

    {Dϑ,0.900+ϖε(c)=32ε0.90sin(ϖε(c13))ϖε(c)+ε0.9012sin(ϖε(c))cos(ϖε(c))dc,ϖε(0)=σ. (5.4)

    All requirements in Theorem 4.1 are fulfilled by Example 2. Consequently, solutions ϖε(c) and ϖε(c) are equivalent at the pth moment in the limit as ε0. Figure 2 provides a graphical comparison between solutions of the original system (5.3) and the averaged system (5.4), illustrating a strong agreement between ϖε(c) and ϖε(c) and validating the accuracy of our theoretical findings.

    Example 3. Examine the following:

    {Dϑ,0.950+ϖε(c)=13ε0.95ϖε(c14)cos(ϖε(c))sin(ϖε(c))+3π4ε0.9512sin3ccos(ϖε(c))sin(ϖε(c))ϖε(c)dw(c)dc,c[0,π],ϖ(0)=σ, (5.5)

    where a=0.95, s=14, and

    f(c,ϖ(c),ϖ(cs))=13ϖε(c14)cos(ϖε(c))sin(ϖε(c)),g(c,ϖ(c),ϖ(cs))=3π4sin3ccos(ϖε(c))ϖε(c)sin(ϖε(c)).

    f(c,ϖ(c),ϖ(cs)) and g(c,ϖ(c),ϖ(cs)) satisfy the needs of existence and uniqueness.

    The following are the averages:

    ˜f(ϖ(c),ϖ(cs))=1ππ013ϖε(c14)sin(ϖε(c))cos(ϖε(c))dc=13ϖε(c14)sin(ϖε(c))cos(ϖε(c)),˜g(ϖ(c),ϖ(cs))=1ππ03π4sin3ccos(ϖε(c))ϖε(c)sin(ϖε(c))dc=sin(ϖε(c))cos(ϖε(c))ϖε(c).

    Thus,

    {Dϑ,0.950+ϖε(c)=13ε0.95ϖε(c14)sin(ϖε(c))cos(ϖε(c))+ε0.9512cos(ϖε(c))ϖε(c)sin(ϖε(c))dw(c)dc,ϖε(0)=σ. (5.6)

    All conditions stated in Theorem 4.1 are satisfied by Example 3. As a result, solutions ϖε(c) and ϖε(c) are equivalent at the pth moment in the limit as ε0. Figure 3 depicts a graphical comparison between solutions of the original system (5.5) and the averaged system (5.6), demonstrating a strong agreement between ϖε(c) and ϖε(c) and confirming the accuracy of our theoretical results.

    Example 4. Take the following:

    {Dϑ,0.950+ϖε(c)=92ε0.95sin(ϖε(c))cos(ϖε(c))expc+ε0.9512sin(ϖε(c))ϖε(c23)cos(ϖε(c))dw(c)dc,c[0,π],ϖ(0)=σ, (5.7)

    where a=0.95, s=23, and

    f(c,ϖ(c),ϖ(cs))=92sin(ϖε(c))cos(ϖε(c))expc,g(c,ϖ(c),ϖ(cs))=sin(ϖε(c))ϖε(c23)cos(ϖε(c)).

    The 92sin(ϖε(c))cos(ϖε(c))expc and sin(ϖε(c))ϖε(c23)cos(ϖε(c)) satisfy the conditions of existence and uniqueness.

    The averages of f and g:

    ˜f(ϖ(c),ϖ(cs))=1ππ0(92sin(ϖε(c))cos(ϖε(c))expc)dc=92πsin(ϖε(c))cos(ϖε(c))(1expπ),˜g(ϖ(c),ϖ(cs))=1ππ0sin(ϖε(c))ϖε(c23)cos(ϖε(c))dc=sin(ϖε(c))ϖε(c23)cos(ϖε(c)).

    So, we get

    {Dϑ,0.950+ϖε(c)=ε0.9592πsin(ϖε(c))cos(ϖε(c)))(1expπ)+ε0.9512sin(ϖε(c))ϖε(c23)cos(ϖε(c))dw(c)dc,ϖε(0)=σ. (5.8)

    Figure 4 presents the same results as in Examples 1–3.

    Our research work is important as follows: First, by proving results of existence and uniqueness, Con-D, regularity, and average principle in the pth moment, we extend the outcomes for p=2. Secondly, for the first time in the literature, we construct well-posedness and average principle results in the context of HFrD of SFDDEs. Third, we consider SFDDEs, which represent a more generalized class of FSDEs, and we present some graphical results to prove the validity of our results.

    The following are the main points we can work on in the future: We can explore the important concept of controllability for SFDDEs concerning HFrD. We can establish well-posedness, regularity, and average principle results for stochastic Volterra-Fredholm integral equations.

    W. Albalawi, M. I. Liaqat, F. U. Din, K. S. Nisar and A. H. Abdel-Aty: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Writing–original draft preparation, Writing–review and editing, Visualization, Resources, Funding acquisition. All authors have read and approved the final version of the manuscript for publication.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The research work was supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2025R157), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. The authors are thankful to the Deanship of Graduate Studies and Scientific Research at University of Bisha for supporting this work through the Fast-Track Research Support Program.

    The authors declare no conflicts of interest.



    [1] M. M. Raja, V. Vijayakumar, K. C. Veluvolu, A. Shukla, K. S. Nisar, Existence and optimal control results for Caputo fractional delay Clark's subdifferential inclusions of order r(1,2) with sectorial operators, Optim. Control Appl. Methods, 45 (2024), 1832–1850. https://doi.org/10.1002/oca.3125 doi: 10.1002/oca.3125
    [2] M. M. Raja, V. Vijayakumar, K. C. Veluvolu, An analysis on approximate controllability results for impulsive fractional differential equations of order 1<r<2 with infinite delay using sequence method, Math. Methods Appl. Sci., 47 (2024), 336–351. https://doi.org/10.1002/mma.9657 doi: 10.1002/mma.9657
    [3] Y. K. Ma, M. M. Raja, A. Shukla, V. Vijayakumar, K. S. Nisar, K. Thilagavathi, New results on approximate controllability of fractional delay integrodifferential systems of order 1<r<2 with Sobolev-type, Alex. Eng. J., 81 (2023), 501–518. https://doi.org/10.1016/j.aej.2023.09.043 doi: 10.1016/j.aej.2023.09.043
    [4] M. I. Liaqat, S. Etemad, S. Rezapour, C. Park, A novel analytical Aboodh residual power series method for solving linear and nonlinear time-fractional partial differential equations with variable coefficients, AIMS Math., 7 (2022), 16917–16948. https://doi.org/10.3934/math.2022929 doi: 10.3934/math.2022929
    [5] Y. Luchko, Fractional differential equations with the general fractional derivatives of arbitrary order in the Riemann-Liouville sense, Mathematics, 10 (2022), 1–24. https://doi.org/10.3390/math10060849 doi: 10.3390/math10060849
    [6] M. I. Liaqat, A. Akgül, M. Bayram, Series and closed form solution of Caputo time-fractional wave and heat problems with the variable coefficients by a novel approach, Opt. Quantum Electron., 56 (2024), 203. https://doi.org/10.1007/s11082-023-05751-3 doi: 10.1007/s11082-023-05751-3
    [7] R. Hilfer, Applications of fractional calculus in physics, World Scientific, 2000.
    [8] D. Raghavan, J. F. Gómez-Aguilar, N. Sukavanam, Analytical approach of Hilfer fractional order differential equations using iterative Laplace transform method, J. Math. Chem., 61 (2023), 219–241. https://doi.org/10.1007/s10910-022-01419-7 doi: 10.1007/s10910-022-01419-7
    [9] F. Li, C. L. Wang, H. W. Wang, Existence results for Hilfer fractional differential equations with variable coefficient, Fractal Fract., 6 (2022), 1–15. https://doi.org/10.3390/fractalfract6010011 doi: 10.3390/fractalfract6010011
    [10] S. G. Zhu, H. W. Wang, F. Li, Solutions for Hilfer-type linear fractional integro-differential equations with a variable coefficient, Fractal Fract., 8 (2024), 1–15. https://doi.org/10.3390/fractalfract8010063 doi: 10.3390/fractalfract8010063
    [11] P. Bedi, A. Kumar, T. Abdeljawad, A. Khan, Existence of mild solutions for impulsive neutral Hilfer fractional evolution equations, Adv. Differ. Equ., 2020 (2020), 1–16. https://doi.org/10.1186/s13662-020-02615-y doi: 10.1186/s13662-020-02615-y
    [12] R. Kasinathan, R. Kasinathan, D. Baleanu, A. Annamalai, Hilfer fractional neutral stochastic differential equations with non-instantaneous impulses, AIMS Math., 6 (2021), 4474–4491. https://doi.org/10.3934/math.2021265 doi: 10.3934/math.2021265
    [13] J. Y. Lv, X. Y. Yang, A class of Hilfer fractional stochastic differential equations and optimal controls, Adv. Differ. Equ., 2019 (2019), 17. https://doi.org/10.1186/s13662-019-1953-3 doi: 10.1186/s13662-019-1953-3
    [14] Y. H. Jin, W. C. He, L. Y. Wang, J. Mu, Existence of mild solutions to delay diffusion equations with Hilfer fractional derivative, Fractal Fract., 8 (2024), 1–15. https://doi.org/10.3390/fractalfract7100724 doi: 10.3390/fractalfract7100724
    [15] K. Karthikeyan, P. R. Sekar, P. Karthikeyan, A. Kumar, T. Botmart, W. Weera, A study on controllability for Hilfer fractional differential equations with impulsive delay conditions, AIMS Math., 8 (2023), 4202–4219. https://doi.org/10.3934/math.2023209 doi: 10.3934/math.2023209
    [16] A. Hegade, S. Bhalekar, Stability analysis of Hilfer fractional-order differential equations, Eur. Phys. J. Spec. Top., 232 (2023), 2357–2365. https://doi.org/10.1140/epjs/s11734-023-00960-z doi: 10.1140/epjs/s11734-023-00960-z
    [17] T. K. Yuldashev, B. J. Kadirkulovich, Nonlocal problem for a mixed type fourth-order differential equation with Hilfer fractional operator, Ural Math. J., 6 (2020), 153–167. http://dx.doi.org/10.15826/umj.2020.1.013 doi: 10.15826/umj.2020.1.013
    [18] M. R. Admon, N. Senu, A. Ahmadian, Z. A. Majid, S. Salahshour, A new accurate method for solving fractional relaxation-oscillation with Hilfer derivatives, Comput. Appl. Math., 42 (2023), 10. https://doi.org/10.1007/s40314-022-02154-0 doi: 10.1007/s40314-022-02154-0
    [19] I. M. Batiha, A. A. Abubaker, I. H. Jebril, S. B. Al-Shaikh, K. Matarneh, A numerical approach of handling fractional stochastic differential equations, Axioms, 12 (2023), 1–12. https://doi.org/10.3390/axioms12040388 doi: 10.3390/axioms12040388
    [20] J. H. Chen, S. Ke, X. F. Li, W. B. Liu, Existence, uniqueness and stability of solutions to fractional backward stochastic differential equations, Appl. Math. Sci. Eng., 30 (2022), 811–829. https://doi.org/10.1080/27690911.2022.2142219 doi: 10.1080/27690911.2022.2142219
    [21] S. Moualkia, Y. Xu, On the existence and uniqueness of solutions for multidimensional fractional stochastic differential equations with variable order, Mathematics, 9 (2021), 1–12. https://doi.org/10.3390/math9172106 doi: 10.3390/math9172106
    [22] A. Ali, K. Hayat, A. Zahir, K. Shah, T. Abdeljawad, Qualitative analysis of fractional stochastic differential equations with variable order fractional derivative, Qual. Theory Dyn. Syst., 23 (2024), 120. https://doi.org/10.1007/s12346-024-00982-5 doi: 10.1007/s12346-024-00982-5
    [23] S. Li, S. U. Khan, M. B. Riaz, S. A. AlQahtani, A. M. Alamri, Numerical simulation of a fractional stochastic delay differential equations using spectral scheme: a comprehensive stability analysis, Sci. Rep., 14 (2024), 6930. https://doi.org/10.1038/s41598-024-56944-z doi: 10.1038/s41598-024-56944-z
    [24] W. Albalawi, M. I. Liaqat, F. U. Din, K. S. Nisar, A. H. Abdel-Aty, Well-posedness and Ulam-Hyers stability results of solutions to pantograph fractional stochastic differential equations in the sense of conformable derivatives, AIMS Math., 9 (2024), 12375–12398. https://doi.org/10.3934/math.2024605 doi: 10.3934/math.2024605
    [25] T. S. Doan, P. T. Huong, P. E. Kloeden, A. M. Vu, Euler-Maruyama scheme for Caputo stochastic fractional differential equations, J. Comput. Appl. Math., 380 (2020), 112989. https://doi.org/10.1016/j.cam.2020.112989 doi: 10.1016/j.cam.2020.112989
    [26] P. Umamaheswari, K. Balachandran, N. Annapoorani, Existence and stability results for Caputo fractional stochastic differential equations with Lévy noise, Filomat, 34 (2020), 1739–1751. https://doi.org/10.2298/FIL2005739U doi: 10.2298/FIL2005739U
    [27] M. Li, Y. J. Niu, J. Zou, A result regarding finite-time stability for Hilfer fractional stochastic differential equations with delay, Fractal Fract., 7 (2023), 1–16. https://doi.org/10.3390/fractalfract7080622 doi: 10.3390/fractalfract7080622
    [28] M. Abouagwa, R. A. R. Bantan, W. Almutiry, A. D. Khalaf, M. Elgarhy, Mixed Caputo fractional neutral stochastic differential equations with impulses and variable delay, Fractal Fract., 5 (2021), 1–19. https://doi.org/10.3390/fractalfract5040239 doi: 10.3390/fractalfract5040239
    [29] W. Albalawi, M. I. Liaqat, F. U. Din, K. S. Nisar, A. H. Abdel-Aty, The analysis of fractional neutral stochastic differential equations in space, AIMS Math., 9 (2024), 17386–17413. https://doi.org/10.3934/math.2024845 doi: 10.3934/math.2024845
    [30] M. I. Liaqat, F. U. Din, W. Albalawi, K. S. Nisar, A. H. Abdel-Aty, Analysis of stochastic delay differential equations in the framework of conformable fractional derivatives, AIMS Math., 9 (2024), 11194–11211. https://doi.org/10.3934/math.2024549 doi: 10.3934/math.2024549
    [31] Z. A. Khan, M. I. Liaqat, A. Akgül, J. A. Conejero, Qualitative analysis of stochastic Caputo-Katugampola fractional differential equations, Axioms, 13 (2024), 1–27. https://doi.org/10.3390/axioms13110808 doi: 10.3390/axioms13110808
    [32] R. Kasinathan, R. Kasinathan, D. Baleanu, A. Annamalai, Well posedness of second-order impulsive fractional neutral stochastic differential equations, AIMS Math., 6 (2021), 9222–9235. https://doi.org/10.3934/math.2021536 doi: 10.3934/math.2021536
    [33] J. Zou, D. F. Luo, M. M. Li, The existence and averaging principle for stochastic fractional differential equations with impulses, Math. Methods Appl. Sci., 46 (2023), 6857–6874. https://doi.org/10.1002/mma.8945 doi: 10.1002/mma.8945
    [34] J. Zou, D. F. Luo, A new result on averaging principle for Caputo-type fractional delay stochastic differential equations with Brownian motion, Appl. Anal., 103 (2024), 1397–1417. https://doi.org/10.1080/00036811.2023.2245845 doi: 10.1080/00036811.2023.2245845
    [35] J. Zou, D. F. Luo, On the averaging principle of Caputo type neutral fractional stochastic differential equations, Qual. Theory Dyn. Syst., 23 (2024), 82. https://doi.org/10.1007/s12346-023-00916-7 doi: 10.1007/s12346-023-00916-7
    [36] W. Mao, S. R. You, X. Q. Wu, X. R. Mao, On the averaging principle for stochastic delay differential equations with jumps, Adv. Differ. Equ., 2015 (2015), 1–19.
    [37] W. J. Xu, W. Xu, K. Lu, An averaging principle for stochastic differential equations of fractional order 0<α<1, Fract. Calc. Appl. Anal., 23 (2020), 908–919. https://doi.org/10.1515/fca-2020-0046 doi: 10.1515/fca-2020-0046
    [38] Z. K. Guo, G. Y. Lv, J. L. Wei, Averaging principle for stochastic differential equations under a weak condition, Chaos, 30 (2020), 123139. https://doi.org/10.1063/5.0031030 doi: 10.1063/5.0031030
    [39] J. K. Liu, W. Xu, An averaging result for impulsive fractional neutral stochastic differential equations, Appl. Math. Lett., 114 (2021), 106892. https://doi.org/10.1016/j.aml.2020.106892 doi: 10.1016/j.aml.2020.106892
    [40] J. K. Liu, W. Xu, Q. Guo, Averaging principle for impulsive stochastic partial differential equations, Stoch. Dyn., 21 (2021), 2150014. https://doi.org/10.1142/S0219493721500143 doi: 10.1142/S0219493721500143
    [41] H. M. Ahmed, Q. X. Zhu, The averaging principle of Hilfer fractional stochastic delay differential equations with Poisson jumps, Appl. Math. Lett., 112 (2021), 106755. https://doi.org/10.1016/j.aml.2020.106755 doi: 10.1016/j.aml.2020.106755
    [42] W. J. Xu, W. Xu, S. Zhang, The averaging principle for stochastic differential equations with Caputo fractional derivative, Appl. Math. Lett., 93 (2019), 79–84. https://doi.org/10.1016/j.aml.2019.02.005 doi: 10.1016/j.aml.2019.02.005
    [43] Y. Y. Jing, Z. Li, Averaging principle for backward stochastic differential equations, Discrete Dyn. Nat. Soc., 2021 (2021), 6615989. https://doi.org/10.1155/2021/6615989 doi: 10.1155/2021/6615989
    [44] A. M. Djaouti, Z. A. Khan, M. I. Liaqat, A. Al-Quran, Existence, uniqueness, and averaging principle of fractional neutral stochastic differential equations in the Lp space with the framework of the Ψ-Caputo derivative, Mathematics, 12 (2024), 1–20. https://doi.org/10.3390/math12071037 doi: 10.3390/math12071037
    [45] M. Mouy, H. Boulares, S. Alshammari, M. Alshammari, Y. Laskri, W. W. Mohammed, On averaging principle for Caputo-Hadamard fractional stochastic differential pantograph equation, Fractal Fract., 7 (2023), 1–9. https://doi.org/10.3390/fractalfract7010031 doi: 10.3390/fractalfract7010031
    [46] J. K. Liu, W. Wei, J. B. Wang, W. Xu, Limit behavior of the solution of Caputo-Hadamard fractional stochastic differential equations, Appl. Math. Lett., 140 (2023), 108586. https://doi.org/10.1016/j.aml.2023.108586 doi: 10.1016/j.aml.2023.108586
    [47] J. K. Liu, H. D. Zhang, J. B. Wang, C. Jin, J. Li, W. Xu, A note on averaging principles for fractional stochastic differential equations, Fractal Fract., 8 (2024), 1–9. https://doi.org/10.3390/fractalfract8040216 doi: 10.3390/fractalfract8040216
    [48] D. D. Yang, J. F. Wang, C. Z. Bai, Averaging principle for ψ-Capuo fractional stochastic delay differential equations with Poisson jumps, Symmetry, 15 (2023), 1–15. https://doi.org/10.3390/sym15071346 doi: 10.3390/sym15071346
    [49] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
    [50] M. I. Liaqat, F. U. Din, A. Akgül, M. B. Riaz, Some important results for the conformable fractional stochastic pantograph differential equations in the Lp space, J. Math. Comput. Sci., 37 (2025), 106–131. https://doi.org/10.22436/jmcs.037.01.08 doi: 10.22436/jmcs.037.01.08
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(197) PDF downloads(27) Cited by(0)

Figures and Tables

Figures(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog