The robust stability analysis of large-scale interconnected systems constrained by time-varying delays among subsystems is studied. In practical engineering applications, due to the spatially distributed nature of large-scale interconnected systems, the transfer of information among subsystems is usually affected by communication delays. Based on the integral quadratic constraint theory, the calculationally efficient conditions of robust stability for the large-scale interconnected systems were established by taking advantage of the sparsity of the subsystem connection topology. The derived decoupling robust stability conditions rely solely on the subsystem connection matrix, each subsystem parameter and the chosen integral quadratic constraint multiplier. Finally, the simulation results showed that the obtained conditions are valid for the analysis of large-scale interconnected systems constrained by time-varying delays among subsystems.
Citation: Xiaoyu Sun, Huabo Liu, Bin Wang. Robust stability analysis of large-scale interconnected systems with time-varying delays[J]. AIMS Mathematics, 2025, 10(4): 9674-9696. doi: 10.3934/math.2025445
The robust stability analysis of large-scale interconnected systems constrained by time-varying delays among subsystems is studied. In practical engineering applications, due to the spatially distributed nature of large-scale interconnected systems, the transfer of information among subsystems is usually affected by communication delays. Based on the integral quadratic constraint theory, the calculationally efficient conditions of robust stability for the large-scale interconnected systems were established by taking advantage of the sparsity of the subsystem connection topology. The derived decoupling robust stability conditions rely solely on the subsystem connection matrix, each subsystem parameter and the chosen integral quadratic constraint multiplier. Finally, the simulation results showed that the obtained conditions are valid for the analysis of large-scale interconnected systems constrained by time-varying delays among subsystems.
| [1] |
H. Tadayyoni, M. H. Ardakani, A. R. Heidarpour, M. Uysal, Ultraviolet communications for unmanned aerial vehicle networks, IEEE Wireless Commun. Lett., 11 (2021), 178–182. https://doi.org/10.1109/LWC.2021.3123568 doi: 10.1109/LWC.2021.3123568
|
| [2] |
A. Sarwar, P. G. Voulgaris, S. M. Salapaka, On $ {l}_\infty $ and $ {l}_{2} $ robustness of spatially invariant systems, Int. J. Robust Nonlinear Control IFAC-Affil. J., 20 (2010), 607–622. https://doi.org/10.1002/rnc.1448 doi: 10.1002/rnc.1448
|
| [3] |
S. Hayashi, C. J. Cameron, S. Gutschmidt, A novel sensing concept utilizing targeted, complex, nonlinear MEMS dynamics, J. Comput. Dyn., 9 (2022), 483–503. https://doi.org/10.3934/jcd.2022012 doi: 10.3934/jcd.2022012
|
| [4] |
P. Y. Kong, Effects of communication network performance on dynamic pricing in smart power grid, IEEE Syst. J., 8 (2013), 533–541. https://doi.org/10.1109/JSYST.2013.2260913 doi: 10.1109/JSYST.2013.2260913
|
| [5] |
T. Cokyasar, F. de Souza, J. Auld, O. Verbas, Dynamic ride-matching for large-scale transportation systems, Transport. Research Rec., 2676 (2022), 172–182. https://doi.org/10.1177/03611981211049422 doi: 10.1177/03611981211049422
|
| [6] |
Z. Wang, T. Zhou, IQC based robust stability verification for a networked system with communication delays, Sci. China Infor. Sci., 61 (2018), 1–15. https://doi.org/10.1007/s11432-017-9318-2 doi: 10.1007/s11432-017-9318-2
|
| [7] |
L. Xie, Output feedback $ {H}_\infty $ control of systems with parameter uncertainty, Int. J. Control, 63 (1996), 741–750. https://doi.org/10.1080/00207179608921866 doi: 10.1080/00207179608921866
|
| [8] |
M. Morrison, J. N. Kutz, Nonlinear control of networked dynamical systems, IEEE Transact. Network Sci. Engin., 8 (2020), 174–189. https://doi.org/10.1109/TNSE.2020.3032117 doi: 10.1109/TNSE.2020.3032117
|
| [9] |
Y. Chen, H. Liu, R. Dong, Robust stabilization for uncertain saturated systems with multiple time delays, AIMS Math., 7 (2022), 19180–19201. https://doi.org/10.3934/math.20221053 doi: 10.3934/math.20221053
|
| [10] |
K. Huang, Z. Tao, Y. Liu, D. Wu, C. Yang, W. Gui, Error-triggered adaptive sparse identification for predictive control and its application to multiple operating conditions processes, IEEE Transact. Neural Net. Learning Syst., 35 (2023), 2942–2955. https://doi.org/10.1109/TNNLS.2023.3262541 doi: 10.1109/TNNLS.2023.3262541
|
| [11] |
E. Summers, M. Arcak, A. Packard, Delay robustness of interconnected passive systems: An integral quadratic constraint approach, IEEE Transact. Auto. Control, 58 (2012), 712–724. https://doi.org/10.1109/TAC.2012.2219972 doi: 10.1109/TAC.2012.2219972
|
| [12] | A. Megretsky, Power distribution inequalities in optimization and robustness of uncertain systems, J. Math. Sys. Estima. Control, 3 (1993), 301–319. |
| [13] |
A. Megretski, A. Rantzer, System analysis via integral quadratic constraints, IEEE Tran. Auto. Control, 42 (1997), 819–830. https://doi.org/10.1109/9.587335 doi: 10.1109/9.587335
|
| [14] |
P. Seiler, Stability analysis with dissipation inequalities and integral quadratic constraints, IEEE Tran. Auto. Control, 60 (2015), 1704–1709. https://doi.org/10.1109/TAC.2014.2361004 doi: 10.1109/TAC.2014.2361004
|
| [15] | V. A. Yakubovich, S-procedure in nonlinear control theory, Vestnick Leningrad Univ. Math., 4 (1997), 73–93. |
| [16] |
R. D'Andrea, G. Dullerud, Distributed control design for spatially interconnected systems, IEEE Trans. Auto. Control, 48 (2003), 1478–1495. https://doi.org/10.1109/TAC.2003.816954 doi: 10.1109/TAC.2003.816954
|
| [17] |
T. Zhou, Coordinated one-step optimal distributed state prediction for a networked dynamical system, IEEE Tran. Auto. Control, 58 (2013), 2756–2771. https://doi.org/10.1109/TAC.2013.2266857 doi: 10.1109/TAC.2013.2266857
|
| [18] |
H. Liu, T. Zhou, Distributed state observer design for networked dynamic systems, IET Control Theory Appl., 10 (2016), 1001–1008. https://doi.org/10.1049/iet-cta.2015.0494 doi: 10.1049/iet-cta.2015.0494
|
| [19] |
S. H. Heijmans, D. P. Borgers, W. Heemels, Stability and performance analysis of spatially invariant systems with networked communication, IEEE Tran. Auto. Control, 62 (2017), 4994–5009. https://doi.org/10.1109/TAC.2017.2676983 doi: 10.1109/TAC.2017.2676983
|
| [20] | H. Liu, D. Wang, Stability and stabilisation of a class of networked dynamic systems. Int. J. Syst. Sci., 49 (2018), 964–973. https://doi.org/10.1080/00207721.2018.1433898 |
| [21] |
M. S. Mahmoud, N. B. Almutairi, Decentralized stabilization of interconnected systems with Time-varying delays, European J. Control, 15 (2009), 624–633. https://doi.org/10.3166/ejc.15.624-633 doi: 10.3166/ejc.15.624-633
|
| [22] |
C. Hua, X. Guan, P. Shi, Robust decentralized adaptive control for interconnected systems with time delays, J. Dyn. Syst. Measur. Control, 127 (2005), 656–662. https://doi.org/10.1115/1.2101845 doi: 10.1115/1.2101845
|
| [23] |
W. Wang, J. Wu, W. Chen, The characteristics method to study global exponential stability of delayed inertial neural networks, Math. Comput. Simulation, 232 (2025), 91–101. https://doi.org/10.1016/j.matcom.2024.12.021 doi: 10.1016/j.matcom.2024.12.021
|
| [24] |
W. Wang, W. Zeng, W. Chen, New sufficient conditions on the global exponential stability of delayed inertial neural networks, Neurocomputing, 622 (2025), 129301. https://doi.org/10.1016/j.neucom.2024.129301 doi: 10.1016/j.neucom.2024.129301
|
| [25] |
C. Y. Kao, On stability of discrete-time LTI systems with varying time delays, IEEE Tran. Auto. Control, 57 (2011), 1243–1248. https://doi.org/10.1109/TAC.2011.2174681 doi: 10.1109/TAC.2011.2174681
|
| [26] |
M. S. Andersen, S. K. Pakazad, A. Hansson, A. Rantzer, Robust stability analysis of sparsely interconnected uncertain systems, IEEE Tran. Auto. Control, 59 (2014), 2151–2156. https://doi.org/10.1109/TAC.2014.2305934 doi: 10.1109/TAC.2014.2305934
|
| [27] |
B. Hu, M. J. Lacerda, P. Seiler, Robustness analysis of uncertain discrete-time systems with dissipation inequalities and integral quadratic constraints, Int. J. Robust Nonlinear Control, 27 (2017), 1940–1962. https://doi.org/10.1002/rnc.3646 doi: 10.1002/rnc.3646
|
| [28] |
J. C. Willems, Least squares stationary optimal control and the algebraic Riccati equation, IEEE Tran. Auto. Control, 16 (1971), 621–634. https://doi.org/10.1109/TAC.1971.1099831 doi: 10.1109/TAC.1971.1099831
|
| [29] |
A. Rantzer, On the Kalman-Yakubovich-Popov lemma, Syst. Control Lett., 28 (1996), 7–10. https://doi.org/10.1016/0167-6911(95)00063-1 doi: 10.1016/0167-6911(95)00063-1
|
| [30] |
N. Kottenstette, M. J. McCourt, M. Xia, V. Gupta, P. J. Antsaklis, On relationships among passivity, positive realness, and dissipativity in linear systems, Automatica, 50 (2014), 1003–1016. https://doi.org/10.1016/j.automatica.2014.02.013 doi: 10.1016/j.automatica.2014.02.013
|
| [31] | K. Zhou, J. Doyle, K. Glover, Robust and optimal control, Prentice-Hall, 1996. |
| [32] |
T. Yu, J. Xiong, New necessary and sufficient conditions for decentralized $ {H}_\infty $ control of Discrete-Time interconnected systems, IEEE Control Syst. Lett., 5 (2021), 1495–1500. https://doi.org/10.1109/LCSYS.2020.3040574 doi: 10.1109/LCSYS.2020.3040574
|
| [33] |
P. Pinsler, Über das Vorkommen definiter und semidefiniter Formen in Scharen quadratischer Formen, Comment. Math. Helvetici, 9 (1936), 188–192. https://doi.org/10.1007/BF01258188 doi: 10.1007/BF01258188
|
| [34] | I. Pólik, T. Terlaky, A survey of the S-lemma, SIAM Rev., 49 (2007), 371–418. https://doi.org/10.1137/S003614450444614X |
| [35] |
S. J. Benson, Y. Ye, Algorithm 875: DSDP5-software for semidefinite programming, ACM Trans. Math. Softw., 34 (2008), 113–132. https://doi.org/10.1145/1356052.1356057 doi: 10.1145/1356052.1356057
|
| [36] |
H. Liu, H. Yu, Decentralized state estimation for a large-scale spatially interconnected system, ISA Tran., 74 (2018), 67–76. https://doi.org/10.1016/j.isatra.2018.01.007 doi: 10.1016/j.isatra.2018.01.007
|