Research article Special Issues

Generalized low-rank approximation to the symmetric positive semidefinite matrix

  • Published: 07 April 2025
  • MSC : 15A33, 65F30, 65K10, 68W25

  • In this paper, we consider the generalized low-rank approximation to the symmetric positive semidefinite matrix in the Frobenius norm: $ \underset{X}{\min} \sum^{m}_{i = 1}\left \Vert A_{i}-B_{i}XB_{i}^{T}\right \Vert^{2}_{F}, $ where $ X $ is an unknown symmetric positive semidefinite matrix whose rank is less than or equal to a positive integer $ k $. We first characterize the feasible set as $ X = YY^{T} $, where $ Y $ has the order $ n\times k $, and then convert the generalized low-rank approximation into an unconstrained generalized optimization problem. Finally, we employ the nonlinear conjugate gradient method with an exact line search to solve the generalized optimization problem. We also give numerical examples to exemplify the results.

    Citation: Haixia Chang, Chunmei Li, Longsheng Liu. Generalized low-rank approximation to the symmetric positive semidefinite matrix[J]. AIMS Mathematics, 2025, 10(4): 8022-8035. doi: 10.3934/math.2025368

    Related Papers:

  • In this paper, we consider the generalized low-rank approximation to the symmetric positive semidefinite matrix in the Frobenius norm: $ \underset{X}{\min} \sum^{m}_{i = 1}\left \Vert A_{i}-B_{i}XB_{i}^{T}\right \Vert^{2}_{F}, $ where $ X $ is an unknown symmetric positive semidefinite matrix whose rank is less than or equal to a positive integer $ k $. We first characterize the feasible set as $ X = YY^{T} $, where $ Y $ has the order $ n\times k $, and then convert the generalized low-rank approximation into an unconstrained generalized optimization problem. Finally, we employ the nonlinear conjugate gradient method with an exact line search to solve the generalized optimization problem. We also give numerical examples to exemplify the results.



    加载中


    [1] W. Jia, M. Sun, J. Lian, S. Hou, Feature dimensionality reduction: A review, Complex Intell. Syst., 8 (2022), 2663–2693. https://doi.org/10.1007/s40747-021-00637-x doi: 10.1007/s40747-021-00637-x
    [2] Y. Yan, D. Cheng, J. Feng, H. Li, J. Yue, Survey on applications of algebraic state space theory of logical systems to finite state machines, Sci. China Inf. Sci., 66 (2023), 111201. https://doi.org/10.1007/s11432-022-3538-4 doi: 10.1007/s11432-022-3538-4
    [3] J. Zhang, M. Huang, N. Wan, Z. Deng, Z. He, J. Luo, Missing measurement data recovery methods in structural health monitoring: The state, challenges and case study, Measurement, 231 (2024), 114528. https://doi.org/10.1016/j.measurement.2024.114528 doi: 10.1016/j.measurement.2024.114528
    [4] E. Schmidt, Zur Theorie der linearen und nichtlinearen Integralgleichungen, Math. Ann. 63 (1907), 433–476. https://doi.org/10.1007/BF01449770 doi: 10.1007/BF01449770
    [5] C. Eckart, G. Young, The approximation of one matrix by another of lower rank, Psychometrika, 1 (1936), 211–218. https://doi.org/10.1007/BF02288367 doi: 10.1007/BF02288367
    [6] L. Mirsky, Symmetric gauge functions and unitarily invariant norms, Quarterly J. Math., 11 (1960), 50–59. https://doi.org/10.1093/qmath/11.1.50 doi: 10.1093/qmath/11.1.50
    [7] G. H. Golub, A. Hoffman, G. W. Stewart, A generalization of the Eckart- Young-Mirsky matrix approximation theorm, Linear Algebra Appl., 88-89 (1987), 317–327. https://doi.org/10.1016/0024-3795(87)90114-5 doi: 10.1016/0024-3795(87)90114-5
    [8] M. T. Chu, R. E. Funderlic, R. J. Plemmons, Structured low rank approximation, Linear Algebra Appl., 366 (2003), 157–172. https://doi.org/10.1016/s0024-3795(02)00505-0 doi: 10.1016/s0024-3795(02)00505-0
    [9] I. Markovsky, Structured low rank approximation and its applications, Automatica, 44 (2008), 891–909. https://doi.org/10.1016/j.automatica.2007.09.011 doi: 10.1016/j.automatica.2007.09.011
    [10] I. Markovsky, Low rank approximation: Algorithms, implementation, applications, Cham: Springer, 2019. https://doi.org/10.1007/978-3-319-89620-5
    [11] M. T. Chu, R. J. Plemmons, Real-value, low rank, circulant approximation, SIAM J. Matrix Anal. Appl., 24 (2003), 645–659. https://doi.org/10.1137/S0895479801383166 doi: 10.1137/S0895479801383166
    [12] F. R. Bach, M. I. Jordan, Kernel independent component analysis, J. Mach. Learn. Res., 3 (2002), 1–48.
    [13] L. Boman, H. Koch, A. S. de Meras, Method specific Cholesky decomposition: Coulomb and exchange energies, J. Chem. Phys., 129 (2008), 134107. https://doi.org/10.1063/1.2988315 doi: 10.1063/1.2988315
    [14] H. Harbrecht, M. Peters, R. Schneider, On the low rank approximation by the pivoted Cholesky decomposition, Appl. Numer. Math., 62 (2012), 428–440. https://doi.org/10.1016/j.apnum.2011.10.001 doi: 10.1016/j.apnum.2011.10.001
    [15] Z. Y. Zhang, L. X. Wu, Optimal low rank approximation to a correlation matrix, Linear Algebra Appl., 364 (2003), 161–187. https://doi.org/10.1016/s0024-3795(02)00551-7 doi: 10.1016/s0024-3795(02)00551-7
    [16] X. F. Duan, J. C. Bai, M. J. Zhang, X. J. Zhang, On the generalized low rank approximation of the correlation matrices arising in the asset portfolio, Linear Algebra Appl., 461 (2014), 1–17. https://doi.org/10.1016/j.laa.2014.07.026 doi: 10.1016/j.laa.2014.07.026
    [17] H. Park, L. Zhang, J. B. Rosen, Low rank approximation of a Hankel matrix by structured total least norm, BIT Numer. Math., 39 (1999), 757–779. https://doi.org/10.1023/A:1022347425533 doi: 10.1023/A:1022347425533
    [18] U. Helmke, M. A. Shayman, Critical points of matrix least squares distance functions, Linear Algebra Appl., 215 (1995), 1–19. https://doi.org/10.1016/0024-3795(93)00070-g doi: 10.1016/0024-3795(93)00070-g
    [19] B. Y. Li, Z. Yang, L. H. Zhi, Fast low rank approximation of a Sylvester matrix by structured total least norm, Japan Soc. Symbolic Algebr. Comput., 11 (2005), 165–174.
    [20] J. Winkler, J. Allan, Structured low rank approximations of the Sylvester resultant matrix for approximation gcds of bernstein basis polynomials, Electron. Trans. Numer. Anal., 31 (2008), 141–155.
    [21] J. Winkler, J. Allan, Structured total least norm and approximate gcds of inexact polynomials, J. Comput. Appl. Math., 215 (2008), 1–13. https://doi.org/10.1016/j.cam.2007.03.018 doi: 10.1016/j.cam.2007.03.018
    [22] X. F. Duan, J. F. Li, Q. W. Wang, X. J. Zhang, Low rank approximation of the symmetric positive semidefinite matrix, J. Comput. Appl. Math., 260 (2014), 236–243. https://doi.org/10.1016/j.cam.2013.09.080 doi: 10.1016/j.cam.2013.09.080
    [23] X. Zhang, M. Y. Zhang, The rank-constrained Hermitian nonnegative-definite and positive -definite solutions to the matrix $AXA^{*} = B$, Linear Algebra Appl., 370 (2003), 163–174. https://doi.org/10.1016/S0024-3795(03)00385-9 doi: 10.1016/S0024-3795(03)00385-9
    [24] M. Wei, Q. Wang, On rank-constrained Hermitian nonnegative-definite least squares solutions to the matrix equation $AXA^{H} = B$, Int. J. Comput. Math., 84 (2007), 945–952. https://doi.org/10.1080/00207160701458344 doi: 10.1080/00207160701458344
    [25] H. Chang, Constrained low rank approximation of the Hermitian nonnegative-definite matrix, Adv. Linear Algebra Matrix Theory, 10 (2020), 22–33. https://doi.org/10.4236/alamt.2020.102003 doi: 10.4236/alamt.2020.102003
    [26] S. Friedland, A. Torokhti, Generalized rank-constrained matrix approximations, SIAM J. Matrix Anal. Appl., 29 (2007), 656–659. https://doi.org/10.1137/06065551 doi: 10.1137/06065551
    [27] M. Wei, D. Shen, Minimum rank solution to the matrix approximation problems in the spectral norm, SIAM J. Matrix Anal. Appl., 33 (2012), 940–957. https://doi.org/10.1137/110851134 doi: 10.1137/110851134
    [28] D. Shen, M. Wei, Y. Liu, Minimum rank (skew)Hermitian solutions to the matrix approximation problem in the spectral norm, J. Comput. Appl. Math., 288 (2015), 351–365. https://doi.org/10.1016/j.cam.2015.04.033 doi: 10.1016/j.cam.2015.04.033
    [29] F. Z. Zhang, Matrix theory: Basic results and techniques, New York: Springer, 2011. https://doi.org/10.1007/978-1-4614-1099-7
    [30] K. B. Petersen, M. S. Pedersen, The matrix cookbook, Technical Report, 2012.
    [31] D. H. Li, X. J. Tong, Z. Wan, Numerical optimization, Beijing: Science Press, 2005.
    [32] J. Nocedal, S. J. Wright, Numerical optimization, New York: Springer, 1999.
    [33] P. Benner, R. Byers, A exact line searches method for generalized continuous-time algebra Riccati equations, IEEE Trans. Autom. Control, 43 (1998), 101–107. https://doi.org/10.1109/9.654908 doi: 10.1109/9.654908
    [34] E. G. Birgin, J. M. Martínez, M. Raydan, Nonmonotone spectral projected gradient methods on convex sets, SIAM J. Optim., 10 (2000), 1196–1211. https://doi.org/10.1137/S1052623497330963 doi: 10.1137/S1052623497330963
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1040) PDF downloads(64) Cited by(0)

Article outline

Figures and Tables

Figures(2)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog