Research article Special Issues

Applications of Elzaki transform to non-conformable fractional derivatives

  • Received: 16 December 2024 Revised: 27 February 2025 Accepted: 04 March 2025 Published: 10 March 2025
  • MSC : 34-xx, 34A12, 34A30, 35A22

  • This study presents the nonconformable fractional Elzaki transform (NCFET) method. We used this method to solve various fractional differential equations (FDEs) with nonconformable fractional derivatives (NCFDs). We studied and proved the basic properties and advantages of this new method. We discussed some examples and conducted a comparative study, presenting exact results through graphs and tables. The results showed that the new method worked well, was easy to use, and could correctly solve several fractional differential equations, even those with nonconformable fractional derivatives.

    Citation: Shams A. Ahmed, Tarig M. Elzaki, Abdelgabar Adam Hassan, Husam E. Dargail, Hamdy M. Barakat, M. S. Hijazi. Applications of Elzaki transform to non-conformable fractional derivatives[J]. AIMS Mathematics, 2025, 10(3): 5264-5284. doi: 10.3934/math.2025243

    Related Papers:

  • This study presents the nonconformable fractional Elzaki transform (NCFET) method. We used this method to solve various fractional differential equations (FDEs) with nonconformable fractional derivatives (NCFDs). We studied and proved the basic properties and advantages of this new method. We discussed some examples and conducted a comparative study, presenting exact results through graphs and tables. The results showed that the new method worked well, was easy to use, and could correctly solve several fractional differential equations, even those with nonconformable fractional derivatives.



    加载中


    [1] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, John Wiley & Sons, 1993.
    [2] I. Podlubny, Fractional differential equations, An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and some of their Applications, Vol. 198, Academic Press, 1999.
    [3] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Vol. 204, Elsevier, 2006.
    [4] A. García, M. Negreanu, F. Ureña, A. M. Vargas, On the numerical solution to space fractional differential equations using meshless finite differences, J. Comput. Appl. Math., 457 (2025), 116322. https://doi.org/10.1016/j.cam.2024.116322 doi: 10.1016/j.cam.2024.116322
    [5] R. Khalil, M. Al-Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
    [6] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016
    [7] R. Ur Rahman, A. F. Al-Maaitah, M. Qousini, E. A. Az-Zo'bi, S. M. Eldin, M. Abuzar, New soliton solutions and modulation instability analysis of fractional Huxley equation, Results Phys., 44 (2023), 106163. https://doi.org/10.1016/j.rinp.2022.106163 doi: 10.1016/j.rinp.2022.106163
    [8] R. Ur Rahman, W. A. Faridi, M. A. El-Rahman, A. Taishiyeva, R. Myrzakulov, E. A. Az-Zo'bi, The sensitive visualization and generalized fractional solitons' construction for regularized long-wave governing model, Fractal Fract., 7 (2023), 136. https://doi.org/10.3390/fractalfract7020136 doi: 10.3390/fractalfract7020136
    [9] H. Tajadodi, A. Khan, J. F. Gómez-Aguilar, H. Khan, Optimal control problems with Atangana-Baleanu fractional derivative, Optim. Control Appl. Meth., 42 (2021), 96–109. https://doi.org/10.1002/oca.2664 doi: 10.1002/oca.2664
    [10] P. Bedi, A. Kumar, A. Khan, Controllability of neutral impulsive fractional differential equations with Atangana-Baleanu-Caputo derivatives, Chaos Soliton. Fract., 150 (2021), 111153. https://doi.org/10.1016/j.chaos.2021.111153 doi: 10.1016/j.chaos.2021.111153
    [11] S. A. Ahmed; A. Qazza; R. Saadeh, T. Elzaki, Conformable double Laplace-Sumudu iterative method, Symmetry, 15 (2022), 78. https://doi.org/10.3390/sym15010078 doi: 10.3390/sym15010078
    [12] S. A. Ahmed, R. Saadeh, A. Qazza, T. M. Elzaki, Modified conformable double Laplace-Sumudu approach with applications, Heliyon, 9 (2023), e15891. https://doi.org/10.1016/j.heliyon.2023.e15891 doi: 10.1016/j.heliyon.2023.e15891
    [13] S. A. Ahmed, An efficient new technique for solving nonlinear problems involving the conformable fractional derivatives, J. Appl. Math., 2024 (2024), 5958560. https://doi.org/10.1155/2024/5958560 doi: 10.1155/2024/5958560
    [14] S. Alfaqeih, E. Mısırlı, Conformable double Laplace transform method for solving conformable fractional partial differential equations, Comput. Methods Differ. Equ., 9 (2021), 908–918. https://doi.org/10.22034/cmde.2020.38135.1678 doi: 10.22034/cmde.2020.38135.1678
    [15] O. Özkan, A. Kurt, Conformable fractional double Laplace transform and its applications to fractional partial integro-differential equations, J. Fract. Calc. Appl., 11 (2020), 70–81.
    [16] O. Özkan, A. Kurt, On conformable double Laplace transform, Opt. Quant. Electron., 50 (2018), 103. https://doi.org/10.1007/s11082-018-1372-9 doi: 10.1007/s11082-018-1372-9
    [17] S. Alfaqeih, G. Bakcerler, E. Misirli, Conformable double Sumudu transform with applications, J. Appl. Comput. Mech., 7 (2021), 578–586. https://doi.org/10.22055/jacm.2020.35315.2625 doi: 10.22055/jacm.2020.35315.2625
    [18] A. Al-Raba, S. Al-Sharif, M. Al-Khaleel, Double conformable Sumudu transform, Symmetry, 14 (2022), 2249. https://doi.org/10.3390/sym14112249 doi: 10.3390/sym14112249
    [19] W. M. Osman, T. M. Elzaki, N. A. A. Siddig, Modified double conformable Laplace transform and singular fractional pseudo-hyperbolic and pseudo-parabolic equations, J. King Saud Univ.-Sci., 33 (2021), 101378. https://doi.org/10.1016/j.jksus.2021.101378 doi: 10.1016/j.jksus.2021.101378
    [20] F. Martínez González, P. O. Mohammed, J. E. Napoles Valdes, Non-conformable fractional Laplace transform, Kragujevac J. Math., 46 (2022), 341–354.
    [21] S. Injrou, I. Hatem, Solving some partial differential equations by using double Laplace transform in the sense of nonconformable fractional calculus, Math. Probl. Eng., 2022 (2022), 5326132. https://doi.org/10.1155/2022/5326132 doi: 10.1155/2022/5326132
    [22] K. Benyettou, D. Bouagada, On the positivity of fractional two-dimensional systems using the non-conformable derivative, Int. J. Dynam. Control, 11 (2023), 2751–2762. https://doi.org/10.1007/s40435-023-01137-1 doi: 10.1007/s40435-023-01137-1
    [23] G. K. Watugula, Sumudu transform: a new integral transform to solve differential equations and control engineering problems, Int. J. Math. Educ. Sci. Technol., 24 (1993), 35–43. https://doi.org/10.1080/0020739930240105 doi: 10.1080/0020739930240105
    [24] T. M. Elzaki, The new integral transform Elzaki transform, Glob. J. Pure Appl. Math., 7 (2011), 57–64.
    [25] K. Aboodh, A. Idris, R. Nuruddeen, On the Aboodh transform connections with some famous integral transforms, Int. J. Eng. Inform. Syst., 1 (2017), 143–151.
    [26] J. A. Ganie, A. Ahmad, R. Jain, Basic analogue of double Sumudu transform and its applicability in population dynamics, Asian J. Math. Stat., 11 (2018), 12–17. https://doi.org/10.3923/ajms.2018.12.17 doi: 10.3923/ajms.2018.12.17
    [27] S. A. Ahmed, T. Elzaki, M. Elbadri, M. Z. Mohamed, Solution of partial differential equations by new double integral transform (Laplace-Sumudu transform), Ain Shams Eng. J., 12 (2021), 4045–4049. https://doi.org/10.1016/j.asej.2021.02.032 doi: 10.1016/j.asej.2021.02.032
    [28] M. G. S. Al-Safi, A.Yousif, M. Abbas, Numerical investigation for solving non-linear partial differential equation using Sumudu-Elzaki transform decomposition method, Int. J. Nonlinear Anal. Appl., 13 (2022), 963–973. https://doi.org/10.22075/ijnaa.2022.5615 doi: 10.22075/ijnaa.2022.5615
    [29] Z. Ahmed, M. Kalim, A new transformation technique to find the analytical solution of general second order linear ordinary differential equation, Int. J. Adv. Appl. Sci., 5 (2018), 109–114. https://doi.org/10.21833/ijaas.2018.04.014 doi: 10.21833/ijaas.2018.04.014
    [30] F. B. M. Belgacem, A. A. Karaballi, Sumudu transform fundamental properties investigations and applications, J. Appl. Math. Stoch. Anal., 2006 (2006), 91083. https://doi.org/10.1155/JAMSA/2006/91083 doi: 10.1155/JAMSA/2006/91083
    [31] F. B. M. Belgacem, A. A. Karaballi, S. L. Kalla, Analytical investigations of the Sumudu transform and applications to integral production equations, Math. Probl. Eng., 2003 (2003), 103–118. https://doi.org/10.1155/S1024123X03207018 doi: 10.1155/S1024123X03207018
    [32] T. M. Elzaki, S. M. Elzaki, Application of new transform "Elzaki Transform" to partial differential equations, Glob. J. Pure Appl. Math., 7 (2011), 65–70.
    [33] S. D. Manjarekar, Fractional Elzaki transformation with its applications to fractional differential equations and special functions, In: B. Hazarika, S. Acharjee, D. S. Djordjević, Advances in functional analysis and fixed-point theory, Industrial and Applied Mathematics, Springer, Singapore, 2024,219–233. https://doi.org/10.1007/978-981-99-9207-2_12
    [34] T. M. Elzaki, S. M. Elzaki, On the Elzaki transform and ordinary differential equation with variable coefficients, Adv. Theor. Appl. Math., 6 (2011), 41–46.
    [35] T. M. Elzaki, S. M. Elzaki, On the ELzaki transform and systems of ordinary differential equations, Glob. J. Pure Appl. Math., 7 (2011), 113–119.
    [36] P. M. Guzman, G. E. Langton, L. M. Lugo Motta Bittencurt, J. Medina, J. E. Nápoles Valdés, A new definition of a fractional derivative of local type, J. Math. Anal., 9 (2018), 88–98.
    [37] J. E. Nápoles, P. M. Guzman, L. M. Lugo Motta Bittencurt, Some new results on non-conformable fractional calculus, Adv. Dyn. Syst. Appl., 13 (2018), 167–175.
    [38] J. E. Napoles Valdes, P. M. Guzmán, L. M. Lugo Motta Bittencurt, On the stability of solutions of fractional non conformable differential equations, Stud. Univ. Babeş-Bolyai Math., 65 (2020), 495–502. https://doi.org/10.24193/subbmath.2020.4.02 doi: 10.24193/subbmath.2020.4.02
    [39] F. S. Silva, D. M. Moreira, M. A. Moret, Conformable Laplace transform of fractional differential equations, Axioms, 7 (2018), 55. https://doi.org/10.3390/axioms7030055 doi: 10.3390/axioms7030055
    [40] A. Ali, K. Shah, R. A. Khan, Numerical treatment for traveling wave solutions of fractional Whitham-Broer-Kaup equations, Alex. Eng. J., 57 (2018), 1991–1998. https://doi.org/10.1016/j.aej.2017.04.012 doi: 10.1016/j.aej.2017.04.012
    [41] T. Botmart, R. P. Agarwal, M. Naeem, A. Khan, R. Shah, On the solution of fractional modified Boussinesq and approximate long wave equations with non-singular kernel operators, AIMS Mathematics, 7 (2022), 12483–12513. https://doi.org/10.3934/math.2022693 doi: 10.3934/math.2022693
    [42] O. Nave, Modification of semi-analytical method applied system of ODE, Mod. Appl. Sci., 14 (2020), 1–75.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1083) PDF downloads(73) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog