Loading [MathJax]/jax/element/mml/optable/SuppMathOperators.js
Research article

Existence and stability analysis of solutions for periodic conformable differential systems with non-instantaneous impulses

  • Received: 16 December 2024 Revised: 18 January 2025 Accepted: 06 February 2025 Published: 27 February 2025
  • MSC : 34A37, 34C25

  • This paper focuses on analyzing the existence and stability of solutions for periodic conformable systems with non-instantaneous impulses. First, we define the notion of the conformable Cauchy matrix to present solutions and demonstrate fundamental characteristics including periodicity and exponential estimation. Moreover, the effect of the non-instantaneous impulses on the exponential stability is comprehensively analyzed. Next, by applying the constant variation method, we can derive the solution for the linear nonhomogeneous system with non-instantaneous impulses. In addition, the existence of periodic solutions for the given linear nonhomogeneous system is investigated. Further, the conditions required to guarantee the existence and uniqueness of the periodic solutions for nonlinear systems are provided.

    Citation: Yuanlin Ding. Existence and stability analysis of solutions for periodic conformable differential systems with non-instantaneous impulses[J]. AIMS Mathematics, 2025, 10(2): 4040-4066. doi: 10.3934/math.2025188

    Related Papers:

    [1] Kui Liu . Stability analysis for (ω,c)-periodic non-instantaneous impulsive differential equations. AIMS Mathematics, 2022, 7(2): 1758-1774. doi: 10.3934/math.2022101
    [2] Fidel Meléndez-Vázquez, Guillermo Fernández-Anaya, Aldo Jonathan Muñóz-Vázquez, Eduardo Gamaliel Hernández-Martínez . Generalized conformable operators: Application to the design of nonlinear observers. AIMS Mathematics, 2021, 6(11): 12952-12975. doi: 10.3934/math.2021749
    [3] Awais Younus, Khizra Bukhsh, Manar A. Alqudah, Thabet Abdeljawad . Generalized exponential function and initial value problem for conformable dynamic equations. AIMS Mathematics, 2022, 7(7): 12050-12076. doi: 10.3934/math.2022670
    [4] Muhammad Bilal, Javed Iqbal, Ikram Ullah, Aditi Sharma, Hasim Khan, Sunil Kumar Sharma . Novel optical soliton solutions for the generalized integrable (2+1)- dimensional nonlinear Schrödinger system with conformable derivative. AIMS Mathematics, 2025, 10(5): 10943-10975. doi: 10.3934/math.2025497
    [5] Xinwei Su, Shuqin Zhang, Lixin Zhang . Periodic boundary value problem involving sequential fractional derivatives in Banach space. AIMS Mathematics, 2020, 5(6): 7510-7530. doi: 10.3934/math.2020481
    [6] Mustafa Inc, Hadi Rezazadeh, Javad Vahidi, Mostafa Eslami, Mehmet Ali Akinlar, Muhammad Nasir Ali, Yu-Ming Chu . New solitary wave solutions for the conformable Klein-Gordon equation with quantic nonlinearity. AIMS Mathematics, 2020, 5(6): 6972-6984. doi: 10.3934/math.2020447
    [7] Youness Chatibi, El Hassan El Kinani, Abdelaziz Ouhadan . Lie symmetry analysis of conformable differential equations. AIMS Mathematics, 2019, 4(4): 1133-1144. doi: 10.3934/math.2019.4.1133
    [8] Mohammed Aldandani, Omar Naifar, Abdellatif Ben Makhlouf . Practical stability for nonlinear systems with generalized conformable derivative. AIMS Mathematics, 2023, 8(7): 15618-15632. doi: 10.3934/math.2023797
    [9] Lahcene Rabhi, Mohammed Al Horani, Roshdi Khalil . Existence results of mild solutions for nonlocal fractional delay integro-differential evolution equations via Caputo conformable fractional derivative. AIMS Mathematics, 2022, 7(7): 11614-11634. doi: 10.3934/math.2022647
    [10] Narongrit Kaewbanjak, Watcharin Chartbupapan, Kamsing Nonlaopon, Kanit Mukdasai . The Lyapunov-Razumikhin theorem for the conformable fractional system with delay. AIMS Mathematics, 2022, 7(3): 4795-4802. doi: 10.3934/math.2022267
  • This paper focuses on analyzing the existence and stability of solutions for periodic conformable systems with non-instantaneous impulses. First, we define the notion of the conformable Cauchy matrix to present solutions and demonstrate fundamental characteristics including periodicity and exponential estimation. Moreover, the effect of the non-instantaneous impulses on the exponential stability is comprehensively analyzed. Next, by applying the constant variation method, we can derive the solution for the linear nonhomogeneous system with non-instantaneous impulses. In addition, the existence of periodic solutions for the given linear nonhomogeneous system is investigated. Further, the conditions required to guarantee the existence and uniqueness of the periodic solutions for nonlinear systems are provided.



    In the natural sciences and human social activities, impulsive and periodic phenomena are both widespread and of profound significance. Impulse systems, a prevalent mathematical model, are used to depict sudden change phenomena in practical problems across various fields such as economics, population dynamics systems, physics, machinery, and biotechnology. Not only can they fully consider the impact of perturbation or disturbance on the system state, but they can also accurately reflect the characteristics of the system itself. With the deepening of research, researchers have conducted extensive studies on the impulsive effect, such as [1,2,3,4,5,6,7,8,9].

    Periodic theory is an attractive subject in the qualitative theory of differential equations. Applications in fields such as physics, mathematical biology, control theory, and other technical sciences are of great significance. There are many papers concerning the periodic systems, and they have yielded a variety of valuable outcomes, such as [10,11]. Further, in biomathematics, periodic phenomena and impulsive phenomena often occur simultaneously within one system. Hence, many scholars focus on the periodic differential systems with impulsive effects, such as [12,13,14,15,16,17]. As an extension and expansion of integer order calculus, a large number of scholars have conducted research on different types of derivatives and obtained many excellent results, such as [18,19]. Subsequently, following the introduction of the concept of conformable derivatives [20], many results have been published about conformable derivatives, such as [21,22,23,24,25,26,27,28,29,30,31,32]. Previous research has focused on the existence, uniqueness, and stability of solutions to non-instantaneous impulsive differential equations, as well as the existence and asymptotic stability of periodic solutions. However, the relationship between the solutions and the periodic solutions of periodic conformable differential systems with non-instantaneous impulses has not been investigated. Such research can help us establish a more complete theoretical system and further deepen our understanding of related issues. In this paper, we mainly analyze the existence and stability of solutions for the systems given as below:

    {Dςlκγ(ι)=Bγ(ι),ι(ςl,ιl+1],lN0:={0,1,2,},0<κ<1,γ(ι+l)=(I+Cl)γ(ιl),lN:={1,2,},γ(ι)=(I+Cl)γ(ιl),ι(ιl,ςl],lN,γ(ς+l)=γ(ςl),lN, (1.1)

    and

    {Dςlκγ(ι)=Bγ(ι)+a(ι),ι(ςl,ιl+1],lN0,0<κ<1,γ(ι+l)=(I+Cl)γ(ιl)+bl,lN,γ(ι)=(I+Cl)γ(ιl)+bl,ι(ιl,ςl],lN,γ(ς+l)=γ(ςl),lN, (1.2)

    and

    {Dςlκγ(ι)=Bγ(ι)+A(ι,γ(ι)),ι(ςl,ιl+1],lN0,0<κ<1,γ(ι+l)=(I+Cl)γ(ιl)+bl,lN,γ(ι)=(I+Cl)γ(ιl)+bl,ι(ιl,ςl],lN,γ(ς+l)=γ(ςl),lN, (1.3)

    in which BRn×n and ClRn×n, a:l=0(ςl,ιl+1]Rn and A:l=0(ςl,ιl+1]×RnRn. {ιl}lN0 and {ςl}lN0 satisfy Q=ι0=ς0<ι1ς1<<ιlςl<ιl+1 and B(I+Cl)=(I+Cl)B for lN. What's more, I denotes the unit matrix.

    We propose the following assumptions:

    (G1) There are qN and δR+ satisfy ιl+q=ιl+δ,lN and ςl+q=ςl+δ,lN0.

    (G2) For each lN, Cl+q=Cl and bl+q=bl.

    Among the 6 sections of this paper, section 2 introduces the conformable Cauchy matrix Ξ(,) and discusses its properties. Section 3 discusses the results concerning the periodicity and stability of the solution for (1.1). Section 4 gives the expression of the solution and sufficient conditions for the existence of a periodic solution for (1.2). Section 5 studies the periodic solution of (1.3). Last, examples are given to verify our results.

    Set Q=[Q,+) and PC(Q,Rn):={γ:QRn:γC((ιl,ιl+1],Rn),lN0, there exists γ(ιl) and γ(ι+l),lN with γ(ιl)=γ(ιl)}, where C((ιl,ιl+1],Rn) denotes the space of all continuous functions from (ιl,ιl+1] into Rn with γ=supιQγ(ι). One denotes a=(a1,,an)Rn with a=max1in|ai| and αRn×n with α=max1innj=1|αij|.

    To start, one presents the relevant concepts.

    Definition 2.1. (see [20, Definition 2.1]) The conformable derivative of a function γ:QR is

    DQκγ(ι)=limε0γ(ι+ε(ιQ)1κ)γ(ι)ε,ιQ,0<κ<1,DQκγ(Q)=limιQ+DQκγ(ι).

    Remark 2.2. If γC1(Q,R), then DQκγ(ι)=(ιQ)1κγ(ι).

    Definition 2.3. (see [20, Notation]) The conformable integral of a function γ:QR is

    JQκγ(ι)=ιQγ(ς)dκ(ς,Q)=ιQ(ςQ)κ1γ(ς)dς,ιQ,0<κ<1,

    if Q=0, then we write dκ(ς,Q) as dκ(ς).

    In order to derive the solution for (1.1), we present this definition.

    Definition 2.4. Denote the conformable Cauchy matrix Ξ(,) as

    Ξ(ι,ς)=ϕ(Q,ι)l=ϕ(Q,ς)+1(I+Cl)eB[((ιςϕ(Q,ι))κκ)+((ςςϕ(Q,ς))κκ)++ϕ(Q,ι)1l=ϕ(Q,ς)(ιl+1ςl)κκ], (2.1)

    where ϕ(Q,ι) denotes the number of ιl existing in (Q,ι) and z+:=max{0,z} for zR. If ϕ(Q,ι)=ϕ(Q,ς), then ϕ(Q,ι)l=ϕ(Q,ς)+1(I+Cl)=I,ϕ(Q,ι)1l=ϕ(Q,ς)=0.

    Theorem 2.5. The solution γ(ι,ς;γς)PC(Q,Rn) of (1.1) with γ(ς)=γς is

    γ(ι,ς;γς)=Ξ(ι,ς)γς,ιςQ.

    Particularly,

    γ(ι;γQ):=γ(ι,Q;γQ)=Ξ(ι,Q)γQ=ϕ(Q,ι)l=1(I+Cl)eB[((ιςϕ(Q,ι))κκ)++ϕ(Q,ι)1l=0(ιl+1ςl)κκ]γQ.

    Proof.

    There are many conditions to consider.

    Condition 1: ϕ(Q,ι)=ϕ(Q,ς).

    (ⅰ) Set any ι,ς(ςl,ιl+1], for ι[ς0,ι1], by Remark 2.2, we obtain

    γ(ι)=eB(ις0)κκγQ,

    and when ι(ι1,ς1],

    γ(ι)=(I+C1)γ(ι1)=(I+C1)eB(ι1ς0)κκγQ.

    For ι(ς1,ι2],

    γ(ι)=eB(ις1)κκγ(ς1)=eB(ις1)κκ(I+C1)eB(ι1ς0)κκγQ=(I+C1)eB[(ις1)κκ+(ι1ς0)κκ]γQ,

    and

    γ(ς)=(I+C1)eB[(ςς1)κκ+(ι1ς0)κκ]γQ.

    So

    γ(ι)=eB[(ις1)κκ(ςς1)κκ]γ(ς).

    Then for a positive integer l, we suppose that the following equalities hold.

    When ι(ςl,ιl+1],

    γ(ι)=eB(ιςl)κκγ(ςl)=(I+Cl)(I+Cl1)(I+C1)eB[(ιςl)κκ+(ιlςl1)κκ++(ι1ς0)κκ]γQ,

    and when ι(ιl+1,ςl+1],

    γ(ι)=(I+Cl+1)γ(ιl+1)=(I+Cl+1)eB(ιl+1ςl)κκγ(ςl)=(I+Cl+1)(I+Cl)(I+C1)eB[(ιl+1ςl)κκ+(ιlςl1)κκ++(ι1ς0)κκ]γQ.

    Thus, for ι(ςl+1,ιl+2],

    γ(ι)=eB(ιςl+1)κκγ(ςl+1)=(I+Cl+1)(I+Cl)(I+C1)eB[(ιςl+1)κκ+(ιl+1ςl)κκ++(ι1ς0)κκ]γQ,

    and

    γ(ς)=(I+Cl+1)(I+Cl)(I+C1)eB[(ςςl+1)κκ+(ιl+1ςl)κκ++(ι1ς0)κκ]γQ.

    In conclusion,

    γ(ι)=eB[(ιςl)κκ(ςςl)κκ]γ(ς).

    (ⅱ) Set any ι,ς(ιl,ςl], by

    γ(ι)=(I+Cl)γ(ιl),

    we know γ(ι)=γ(ς).

    (ⅲ) Set any ς(ιϕ(Q,ς),ςϕ(Q,ς)] and any ι(ςϕ(Q,ι),ιϕ(Q,ι)+1],

    γ(ι)=eB(ιςϕ(Q,ι))κκγ(ςϕ(Q,ι)),

    then

    γ(ι)=eB(ιςϕ(Q,ι))κκγ(ς).

    Condition 2: ϕ(Q,ι)=ϕ(Q,ς)+1.

    (ⅰ) Set any ς(ςϕ(Q,ς),ιϕ(Q,ς)+1] and any ι(ιϕ(Q,ι),ςϕ(Q,ι)],

    γ(ι)=(I+Cϕ(Q,ι))γ(ιϕ(Q,ι))=(I+Cϕ(Q,ι))eB[(ιϕ(Q,ι)ςϕ(Q,ς))κκ(ςςϕ(Q,ς))κκ]γ(ς).

    (ⅱ) Set any ς(ςϕ(Q,ς),ιϕ(Q,ς)+1] and any ι(ςϕ(Q,ι),ιϕ(Q,ι)+1],

    γ(ι)=eB(ιςϕ(Q,ι))κκγ(ςϕ(Q,ι))=eB(ιςϕ(Q,ι))κκ(I+Cϕ(Q,ι))γ(ιϕ(Q,ι))=(I+Cϕ(Q,ι))eB[(ιςϕ(Q,ι))κκ(ςςϕ(Q,ς))κκ+(ιϕ(Q,ι)ςϕ(Q,ς))κκ]γ(ς).

    (ⅲ) Set any ς(ιϕ(Q,ς),ςϕ(Q,ς)] and any ι(ιϕ(Q,ι),ςϕ(Q,ι)],

    γ(ι)=(I+Cϕ(Q,ι))γ(ιϕ(Q,ι))=(I+Cϕ(Q,ι))eB(ιϕ(Q,ι)ςϕ(Q,ς))κκγ(ςϕ(Q,ς))=(I+Cϕ(Q,ι))eB(ιϕ(Q,ι)ςϕ(Q,ς))κκγ(ς).

    (ⅳ) Set any ς(ιϕ(Q,ς),ςϕ(Q,ς)] and any ι(ςϕ(Q,ι),ιϕ(Q,ι)+1],

    γ(ι)=eB(ιςϕ(Q,ι))κκγ(ςϕ(Q,ι))=eB(ιςϕ(Q,ι))κκ(I+Cϕ(Q,ι))γ(ιϕ(Q,ι))=eB(ιςϕ(Q,ι))κκ(I+Cϕ(Q,ι))eB(ιϕ(Q,ι)ςϕ(Q,ς))κκγ(ςϕ(Q,ς))=eB(ιςϕ(Q,ι))κκ(I+Cϕ(Q,ι))eB(ιϕ(Q,ι)ςϕ(Q,ς))κκγ(ς)=(I+Cϕ(Q,ι))eB[(ιςϕ(Q,ι))κκ+(ιϕ(Q,ι)ςϕ(Q,ς))κκ]γ(ς).

    Condition 3: general ϕ(Q,ι) and ϕ(Q,ς).

    (ⅰ) Set any ς(ςϕ(Q,ς),ιϕ(Q,ς)+1] and any ι(ιϕ(Q,ι),ςϕ(Q,ι)],

    γ(ι)=(I+Cϕ(Q,ι))(I+Cϕ(Q,ς)+1)×eB[(ιϕ(Q,ι)ςϕ(Q,ι)1)κκ++(ιϕ(Q,ς)+1ςϕ(Q,ς))κκ(ςςϕ(Q,ς))κκ]γ(ς).

    (ⅱ) Set any ς(ςϕ(Q,ς),ιϕ(Q,ς)+1] and any ι(ςϕ(Q,ι),ιϕ(Q,ι)+1],

    γ(ι)=(I+Cϕ(Q,ι))(I+Cϕ(Q,ς)+1)×eB[(ιςϕ(Q,ι))κκ+(ιϕ(Q,ι)ςϕ(Q,ι)1)κκ++(ιϕ(Q,ς)+1ςϕ(Q,ς))κκ(ςςϕ(Q,ς))κκ]γ(ς).

    (ⅲ) Set any ς(ιϕ(Q,ς),ςϕ(Q,ς)] and any ι(ιϕ(Q,ι),ςϕ(Q,ι)],

    γ(ι)=(I+Cϕ(Q,ι))(I+Cϕ(Q,ς)+1)×eB[(ιϕ(Q,ι)ςϕ(Q,ι)1)κκ++(ιϕ(Q,ς)+1ςϕ(Q,ς))κκ]γ(ς).

    (ⅳ) Set any ς(ιϕ(Q,ς),ςϕ(Q,ς)] and any ι(ςϕ(Q,ι),ιϕ(Q,ι)+1],

    γ(ι)=(I+Cϕ(Q,ι))(I+Cϕ(Q,ς)+1)×eB[(ιςϕ(Q,ι))κκ+(ιϕ(Q,ι)ςϕ(Q,ι)1)κκ++(ιϕ(Q,ς)+1ςϕ(Q,ς))κκ]γ(ς).

    To sum up,

    γ(ι)=ϕ(Q,ι)l=ϕ(Q,ς)+1(I+Cl)eB[((ιςϕ(Q,ι))κκ)+((ςςϕ(Q,ς))κκ)++ϕ(Q,ι)1l=ϕ(Q,ς)(ιl+1ςl)κκ]γ(ς). (2.2)

    Let

    Ξ(ι,ς)=ϕ(Q,ι)l=ϕ(Q,ς)+1(I+Cl)eB[((ιςϕ(Q,ι))κκ)+((ςςϕ(Q,ς))κκ)++ϕ(Q,ι)1l=ϕ(Q,ς)(ιl+1ςl)κκ],

    then (2.2) can be written as

    γ(ι,ς;γς)=Ξ(ι,ς)γς.

    Particularly, when ς=Q,

    γ(ι,Q;γQ)=Ξ(ι,Q)γQ,ιQ,

    and

    Ξ(ι,Q)=ϕ(Q,ι)l=1(I+Cl)eB[((ιςϕ(Q,ι))κκ)++ϕ(Q,ι)1l=0(ιl+1ςl)κκ].

    Following this, we introduce the definitions and lemma that are used in this work.

    Definition 2.6. If γ(ι)=γ(ι+δ),ιQ, then γ() is δ-periodic.

    Definition 2.7. If there are constants L1 and v>0 satisfying

    Ξ(ι,ς)Lev(ις),Qςι,

    then system (1.1) is exponentially stable.

    Lemma 2.8. (see [33]) Let BRn×n and φ(B)=max{|σ(B)}. Then for any θ>0, there is Lθ1 such that

    eBιLθe(φ(B)+θ)ι,

    for any ι0. Here σ(B) is the spectrum of B.

    Lemma 2.9. (Gronwall inequality, see [34]) Set x(),f() as the nonnegative continuous function on [t0,). If

    x(t)

    then

    \begin{eqnarray*} x(t) \leqslant x_0e^{\int_{t_{0}}^{t} f(s)ds},\; t\geqslant t_{0}. \end{eqnarray*}

    Next, we present the properties of \Xi(\iota, \varsigma) .

    For the following results, we assume

    \begin{eqnarray*} \varrho = \sup\limits_{l\in\mathbb{N}}\|\mathcal{I}+\mathcal{C}_{l}\| < \infty,\; \lambda_{1} = \inf\limits_{l\in\mathbb{N}_0}\frac{(\iota_{l+1}-\varsigma_{l})^{\kappa}}{\kappa} < \infty,\; \lambda_{2} = \sup\limits_{l\in\mathbb{N}}\frac{(\iota_{l+1}-\varsigma_{l})^{\kappa}}{\kappa} < \infty, \end{eqnarray*}

    and let

    \begin{eqnarray*} \lambda = \left\{ \begin{array}{l} \lambda_{1},\; \varphi(\mathcal{B})+\theta < 0,\\ \lambda_{2},\; \varphi(\mathcal{B})+\theta\geq0. \end{array} \right. \end{eqnarray*}

    Theorem 2.10. When \mathcal{Q}\leq \varsigma\leq \iota , there are

    \begin{eqnarray*} \|\Xi(\iota,\varsigma)\|\leq L_{\theta}e^{(\varphi(\mathcal{B})+\theta)\lambda }e^{\phi(\varsigma,\iota)(\ln\varrho+(\varphi(\mathcal{B})+\theta)\lambda)}, \end{eqnarray*}

    or

    \begin{eqnarray*} \|\Xi(\iota,\varsigma)\|\leq L_{\theta}e^{\phi(\varsigma,\iota)(\ln\varrho+(\varphi(\mathcal{B})+\theta)\lambda)}. \end{eqnarray*}

    Proof. For any \theta > 0 , with \varsigma\in(\varsigma_{\phi(\mathcal{Q}, \varsigma)}, \; \iota_{\phi(\mathcal{Q}, \varsigma)+1}], \; \iota\in(\varsigma_{\phi(\mathcal{Q}, \iota)}, \iota_{\phi(\mathcal{Q}, \iota)+1}] , by taking the norm of (2.1), we can get

    \begin{eqnarray*} \|\Xi(\iota,\varsigma)\| & = & \| \prod\limits_{l = \phi(\mathcal{Q},\varsigma)+1}^{\phi(\mathcal{Q},\iota)}(\mathcal{I}+\mathcal{C}_{l})e^{\mathcal{B}\big[\frac{(\iota-\varsigma_{\phi(\mathcal{Q},\iota)})^{\kappa}}{\kappa}-\frac{(\varsigma-\varsigma_{\phi(\mathcal{Q},\varsigma)})^{\kappa}}{\kappa}+\sum\limits_{l = \phi(\mathcal{Q},\varsigma)}^{\phi(\mathcal{Q},\iota)-1}\frac{(\iota_{l+1}-\varsigma_{l})^{\kappa}}{\kappa}\big]}\|\\ &\leq& e^{\phi(\varsigma,\iota)\ln\varrho} L_{\theta}e^{(\varphi(\mathcal{B})+\theta)\big[\frac{(\iota-\varsigma_{\phi(\mathcal{Q},\iota)})^{\kappa}}{\kappa}+\phi(\varsigma,\iota)\lambda\big]}\leq L_{\theta}e^{(\varphi(\mathcal{B})+\theta)\lambda }e^{\phi(\varsigma,\iota)(\ln\varrho+(\varphi(\mathcal{B})+\theta)\lambda)}. \end{eqnarray*}

    With \varsigma\in(\varsigma_{\phi(\mathcal{Q}, \varsigma)}, \iota_{\phi(\mathcal{Q}, \varsigma)+1}], \; \iota\in(\iota_{\phi(\mathcal{Q}, \iota)}, \varsigma_{\phi(\mathcal{Q}, \iota)}] , there is

    \begin{eqnarray*} \|\Xi(\iota,\varsigma)\| & = & \| \prod\limits_{l = \phi(\mathcal{Q},\varsigma)+1}^{\phi(\mathcal{Q},\iota)}(\mathcal{I}+\mathcal{C}_{l})e^{\mathcal{B}\big[-\frac{(\varsigma-\varsigma_{\phi(\mathcal{Q},\varsigma)})^{\kappa}}{\kappa}+\sum\limits_{l = \phi(\mathcal{Q},\varsigma)}^{\phi(\mathcal{Q},\iota)-1}\frac{(\iota_{l+1}-\varsigma_{l})^{\kappa}}{\kappa}\big]}\|\\ &\leq& e^{\phi(\varsigma,\iota)\ln\varrho} L_{\theta}e^{(\varphi(\mathcal{B})+\theta)\phi(\varsigma,\iota)\lambda}\\ &\leq& L_{\theta}e^{\phi(\varsigma,\iota)(\ln\varrho+(\varphi(\mathcal{B})+\theta)\lambda)}. \end{eqnarray*}

    Theorem 2.11. Suppose that (G_{1}) and (G_{2}) hold, we have

    \Xi(\iota,\varsigma) = \Xi(\iota,\eta)\Xi(\eta,\varsigma),\; \mathcal{Q}\leq \varsigma < \eta < \iota.

    Proof. By the form of (2.1), we have

    \begin{eqnarray*} \Xi(\iota,\eta)\Xi(\eta,\varsigma) && = e^{\mathcal{B}\big[\big(\frac{(\iota-\varsigma_{\phi(\mathcal{Q},\iota)})^{\kappa}}{\kappa}\big)_{+}-\big(\frac{(\eta-\varsigma_{\phi(\mathcal{Q},\eta)})^{\kappa}}{\kappa}\big)_{+}+\sum\limits_{l = \phi(\mathcal{Q},\eta)}^{\phi(\mathcal{Q},\iota)-1}\frac{(\iota_{l+1}-\varsigma_{l})^{\kappa}}{\kappa}\big]}\prod\limits_{l = \phi(\mathcal{Q},\eta)+1}^{\phi(\mathcal{Q},\iota)}(\mathcal{I}+\mathcal{C}_{l})\\ &&\times\prod\limits_{l = \phi(\mathcal{Q},\varsigma)+1}^{\phi(\mathcal{Q},\eta)}(\mathcal{I}+\mathcal{C}_{l})e^{\mathcal{B}\big[\big(\frac{(\eta-\varsigma_{\phi(\mathcal{Q},\eta)})^{\kappa}}{\kappa}\big)_{+}-\big(\frac{(\varsigma-\varsigma_{\phi(\mathcal{Q},\varsigma)})^{\kappa}}{\kappa}\big)_{+}+\sum\limits_{l = \phi(\mathcal{Q},\varsigma)}^{\phi(\mathcal{Q},\eta)-1}\frac{(\iota_{l+1}-\varsigma_{l})^{\kappa}}{\kappa}\big]}\\ && = \Xi(\iota,\varsigma). \end{eqnarray*}

    Theorem 2.12. If (G_{1}) and (G_{2}) hold, we can obtain

    \Xi(\iota+\delta,\varsigma+\delta) = \Xi(\iota,\varsigma),\; \mathcal{Q} < \varsigma < \iota.

    Proof. By using (2.1), there is

    \begin{eqnarray*} \Xi(\iota+\delta,\varsigma+\delta) && = \prod\limits_{l = \phi(\mathcal{Q},\varsigma+\delta)+1}^{\phi(\mathcal{Q},\iota+\delta)}(\mathcal{I}+\mathcal{C}_{l})e^{\mathcal{B}\big[\big(\frac{(\iota+\delta-\varsigma_{\phi(\mathcal{Q},\iota+\delta)})^{\kappa}}{\kappa}\big)_{+}-(\frac{(\varsigma+\delta-\varsigma_{\phi(\mathcal{Q},\varsigma+\delta)})^{\kappa}}{\kappa}\big)_{+}+\sum\limits_{l = \phi(\mathcal{Q},\varsigma+\delta)}^{\phi(\mathcal{Q},\iota+\delta)-1}\frac{(\iota_{l+1}-\varsigma_{l})^{\kappa}}{\kappa}\big]}\\ && = \prod\limits_{l = \phi(\mathcal{Q},\varsigma)+q+1}^{\phi(\mathcal{Q},\iota)+q}(\mathcal{I}+\mathcal{C}_{l})e^{\mathcal{B}\big[\big(\frac{(\iota+\delta-(\varsigma_{\phi(\mathcal{Q},\iota)}+\delta))^{\kappa}}{\kappa}\big)_{+}-(\frac{(\varsigma+\delta-(\varsigma_{\phi(\mathcal{Q},\varsigma)}+\delta))^{\kappa}}{\kappa}\big)_{+}+\sum\limits_{l = \phi(\mathcal{Q},\varsigma)+q}^{\phi(\mathcal{Q},\iota)+q-1}\frac{(\iota_{l+1}-\varsigma_{l})^{\kappa}}{\kappa}\big]}\\ && = \prod\limits_{l = \phi(\mathcal{Q},\varsigma)+1}^{\phi(\mathcal{Q},\iota)}(\mathcal{I}+\mathcal{C}_{l})e^{\mathcal{B}\big[\big(\frac{(\iota-\varsigma_{\phi(\mathcal{Q},\iota)})^{\kappa}}{\kappa}\big)_{+}-\big(\frac{(\varsigma-\varsigma_{\phi(\mathcal{Q},\varsigma)})^{\kappa}}{\kappa}\big)_{+}+\sum\limits_{l = \phi(\mathcal{Q},\varsigma)}^{\phi(\mathcal{Q},\iota)-1}\frac{(\iota_{l+1}-\varsigma_{l})^{\kappa}}{\kappa}\big]}\\ && = \Xi(\iota,\varsigma). \end{eqnarray*}

    Theorem 2.13. Let (G_{1}) and (G_{2}) be satisfied, for N\in\mathbb{N} , then

    \Xi(\iota+N\delta,\mathcal{Q}) = \Xi(\iota,\mathcal{Q})[\Xi(\mathcal{Q}+\delta,\mathcal{Q})]^{N}.

    Proof. Theorems 2.11 and 2.12 obtain

    \begin{eqnarray*} \Xi(\iota+N\delta,\mathcal{Q})& = &\prod\limits_{l = 1}^{\phi(\mathcal{Q},\iota)+Nq}(\mathcal{I}+\mathcal{C}_{l}) e^{\mathcal{B}\big[\big(\frac{(\iota+N\delta-\varsigma_{\phi(\mathcal{Q},\iota+N\delta)})^{\kappa}}{\kappa}\big)_{+}+\sum\limits_{l = 0}^{\phi(\mathcal{Q},\iota)+Nq-1}\frac{(\iota_{l+1}-\varsigma_{l})^{\kappa}}{\kappa}\big]}\\ & = &\prod\limits_{l = 1}^{\phi(\mathcal{Q},\iota)+Nq}(\mathcal{I}+\mathcal{C}_{l}) e^{\mathcal{B}\big[\big(\frac{(\iota+N\delta-(\varsigma_{\phi(\mathcal{Q},\iota)}+N\delta))^{\kappa}}{\kappa}\big)_{+}+\sum\limits_{l = 0}^{\phi(\mathcal{Q},\iota)+Nq-1}\frac{(\iota_{l+1}-\varsigma_{l})^{\kappa}}{\kappa}\big]}\\ & = &\prod\limits_{l = Nq+1}^{\phi(\mathcal{Q},\iota)+Nq}(\mathcal{I}+\mathcal{C}_{l}) e^{\mathcal{B}\big[\big(\frac{(\iota+N\delta-(\varsigma_{\phi(\mathcal{Q},\iota)}+N\delta))^{\kappa}}{\kappa}\big)_{+}+\sum\limits_{l = Nq}^{\phi(\mathcal{Q},\iota)+Nq-1}\frac{(\iota_{l+1}-\varsigma_{l})^{\kappa}}{\kappa}\big]} \times\prod\limits_{l = 1}^{Nq}(\mathcal{I}+\mathcal{C}_{l}) e^{\mathcal{B}\sum\limits_{l = 0}^{Nq-1}\frac{(\iota_{l+1}-\varsigma_{l})^{\kappa}}{\kappa}}\\ & = &\prod\limits_{l = 1}^{\phi(\mathcal{Q},\iota)}(\mathcal{I}+\mathcal{C}_{l}) e^{\mathcal{B}\big[\big(\frac{(\iota-\varsigma_{\phi(\mathcal{Q},\iota)})^{\kappa}}{\kappa}\big)_{+}+\sum\limits_{l = 0}^{\phi(\mathcal{Q},\iota)-1}\frac{(\iota_{l+1}-\varsigma_{l})^{\kappa}}{\kappa}\big]} \times\bigg[\prod\limits_{l = 1}^{q}(\mathcal{I}+\mathcal{C}_{l}) e^{\mathcal{B}\sum\limits_{l = 0}^{q-1}\frac{(\iota_{l+1}-\varsigma_{l})^{\kappa}}{\kappa}}\bigg]^{N}\\ & = &\Xi(\iota,\mathcal{Q})[\Xi(\mathcal{Q}+\delta,\mathcal{Q})]^{N}. \end{eqnarray*}

    The focus of this section is on the linear homogeneous problem.

    Theorem 3.1. Let (G_{1}) and (G_{2}) be satisfied; one of the results follows:

    (i) (1.1) has the unique trivial \delta- periodic solution iff rank(\mathcal{I}-\Xi(\mathcal{Q}+\delta, \mathcal{Q})) = n .

    (ii) (1.1) has at least one nontrivial \delta- periodic solution iff rank(\mathcal{I}-\Xi(\mathcal{Q}+\delta, \mathcal{Q})) < n .

    Proof. Sufficiency: (ⅰ) If rank(\mathcal{I}-\Xi(\mathcal{Q}+\delta, \mathcal{Q})) = n , then (\mathcal{I}-\Xi(\mathcal{Q}+\delta, \mathcal{Q}))\gamma = 0 only has the zero solution, thus the solution of (1.1) are trivial.

    (ⅱ) If rank(\mathcal{I}-\Xi(\mathcal{Q}+\delta, \mathcal{Q})) < n , then there exist nonzero solutions of (\mathcal{I}-\Xi(\mathcal{Q}+\delta, \mathcal{Q}))\gamma = 0 and (1.1) has nontrivial \delta- periodic solutions.

    Next, we prove the necessity via the method of proof by contradiction:

    (ⅰ) If rank(\mathcal{I}-\Xi(\mathcal{Q}+\delta, \mathcal{Q})) < n , then (1.1) has nontrivial \delta- periodic solutions, which is contradictory to the given condition. Thus, rank(\mathcal{I}-\Xi(\mathcal{Q}+\delta, \mathcal{Q})) = n .

    (ⅱ) If rank(\mathcal{I}-\Xi(\mathcal{Q}+\delta, \mathcal{Q})) = n , then (1.1) has the unique trivial \delta- periodic solution, which contradicts the fact that (1.1) has at least one nontrivial \delta- periodic solution. Thus, rank(\mathcal{I}-\Xi(\mathcal{Q}+\delta, \mathcal{Q})) < n .

    Before the discussion about the stability, we introduce this relationship.

    Theorem 3.2. Let (G_{1}) be satisfied; one has

    \lim\limits_{\iota-\varsigma\rightarrow \infty}\frac{\phi(\varsigma,\iota)}{\iota-\varsigma} = \frac{q}{\delta}.

    Proof. Using (G_{1}) , with \varsigma\in[\mathcal{M}\delta, (\mathcal{M}+1)\delta] and \iota\in[\mathcal{N}\delta, (\mathcal{N}+1)\delta] where \mathcal{M}\leq \mathcal{N} , there are

    \begin{eqnarray*} (\mathcal{N}-\mathcal{M}-1)\delta\leq \iota-\varsigma\leq(\mathcal{N}+1-\mathcal{M})\delta, \end{eqnarray*}

    and

    \begin{eqnarray*} (\mathcal{N}-\mathcal{M}-1)q\leq \phi(\varsigma,\iota)\leq(\mathcal{N}+1-\mathcal{M})q. \end{eqnarray*}

    Hence,

    \begin{eqnarray*} \frac{ (\mathcal{N}-\mathcal{M}-1)q}{(\mathcal{N}+1-\mathcal{M})\delta}\leq\frac{\phi(\varsigma,\iota)}{\iota-\varsigma}\leq\frac{(\mathcal{N}+1-\mathcal{M})q}{(\mathcal{N}-\mathcal{M}-1)\delta}. \end{eqnarray*}

    It obviously holds that \iota-\varsigma\to\infty iff \mathcal{N}-\mathcal{M}\to\infty . So,

    \begin{eqnarray*} \frac{q}{\delta}\leq\lim\limits_{\iota-\varsigma\to\infty}\frac{\phi(\varsigma,\iota)}{\iota-\varsigma}\leq\frac{q}{\delta}, \end{eqnarray*}

    and

    \begin{eqnarray*} \lim\limits_{\iota-\varsigma\to\infty}\frac{\phi(\varsigma,\iota)}{\iota-\varsigma} = \frac{q}{\delta}. \end{eqnarray*}

    Next, we consider the stability of (1.1).

    Theorem 3.3. Suppose that (G_{1}) and (G_{2}) are satisfied. If \ln\varrho+(\varphi(\mathcal{B})+\theta)\lambda < 0 , then system (1.1) is exponentially stable.

    Proof. Theorem 3.2 implies that for an arbitrarily small \varepsilon > 0 , one has

    \begin{eqnarray*} \bigg|\frac{\phi(\varsigma,\iota)}{\iota-\varsigma}-\frac{q}{\delta}\bigg| < \varepsilon, \end{eqnarray*}

    and

    \begin{eqnarray*} (\frac{q}{\delta}-\varepsilon)(\iota-\varsigma)\leq\phi(\varsigma,\iota)\leq(\frac{q}{\delta}+\varepsilon)(\iota-\varsigma). \end{eqnarray*}

    For \iota\in(\varsigma_{\phi(\mathcal{Q}, \iota)}, \iota_{\phi(\mathcal{Q}, \iota)+1}] , with any \varepsilon\in(0, \frac{q}{\delta}) , Theorem 2.10 implies

    \begin{eqnarray*} \|\Xi(\iota,\mathcal{Q})\|&\leq&L_{\theta}e^{(\varphi(\mathcal{B})+\theta)\lambda }e^{\phi(\mathcal{Q},\iota)(\ln\varrho+(\varphi(\mathcal{B})+\theta)\lambda)}\\ &\leq&L_{\theta}e^{(\varphi(\mathcal{B})+\theta)\lambda }e^{(\frac{q}{\delta}-\varepsilon)(\ln\varrho+(\varphi(\mathcal{B})+\theta)\lambda)(\iota-\mathcal{Q})}\\ &\leq&L_{\theta}e^{|\varphi(\mathcal{B})+\theta|\lambda }e^{-(\varepsilon-\frac{q}{\delta})(\ln\varrho+(\varphi(\mathcal{B})+\theta)\lambda)(\iota-\mathcal{Q})}, \end{eqnarray*}

    in which L = L_{\theta}e^{|\varphi(\mathcal{B})+\theta|\lambda }\geq1 and v = (\varepsilon-\frac{q}{\delta})(\ln\varrho+(\varphi(\mathcal{B})+\theta)\lambda) > 0 .

    For \iota\in(\iota_{\phi(\mathcal{Q}, \iota)}, \varsigma_{\phi(\mathcal{Q}, \iota)}] , one has

    \begin{eqnarray*} \|\Xi(\iota,\mathcal{Q})\|&\leq& L_{\theta}e^{\phi(\mathcal{Q},\iota)(\ln\varrho+(\varphi(\mathcal{B})+\theta)\lambda)}\\ &\leq&L_{\theta}e^{(\frac{q}{\delta}-\varepsilon)(\ln\varrho+(\varphi(\mathcal{B})+\theta)\lambda)(\iota-\mathcal{Q})}\\ &\leq&L_{\theta}e^{-(\varepsilon-\frac{q}{\delta})(\ln\varrho+(\varphi(\mathcal{B})+\theta)\lambda)(\iota-\mathcal{Q})}, \end{eqnarray*}

    in which L = L_{\theta} and v = (\varepsilon-\frac{q}{\delta})(\ln\varrho+(\varphi(\mathcal{B})+\theta)\lambda) > 0 .

    Hence, (1.1) is exponentially stable.

    Theorem 3.4. Suppose that (G_{1}) and (G_{2}) are satisfied. If there is a \zeta > 0 such that

    \begin{eqnarray} \varphi(\mathcal{B})+\theta+\frac{1}{\overline{\lambda}}\ln\varrho\leq-\zeta < 0, \end{eqnarray} (3.1)

    where

    \begin{eqnarray*} \overline{\lambda} = \left\{ \begin{array}{l} \lambda_{1},\; \zeta+\varphi(\mathcal{B})+\theta < 0,\\ \lambda_{2},\; \zeta+\varphi(\mathcal{B})+\theta\geq0, \end{array} \right. \end{eqnarray*}

    then system (1.1) is exponentially stable.

    Proof.

    It is clear that

    \begin{eqnarray} \bigg(\frac{(\iota-\varsigma_{\phi(\mathcal{Q},\iota)})^{\kappa}}{\kappa}\bigg)_{+}+\sum\limits_{l = 0}^{\phi(\mathcal{Q},\iota)-1}\frac{(\iota_{l+1}-\varsigma_{l})^{\kappa}}{\kappa}\geq(\phi(\mathcal{Q},\iota)-1)\lambda_{1}, \end{eqnarray} (3.2)
    \begin{eqnarray} \bigg(\frac{(\iota-\varsigma_{\phi(\mathcal{Q},\iota)})^{\kappa}}{\kappa}\bigg)_{+}+\sum\limits_{l = 0}^{\phi(\mathcal{Q},\iota)-1}\frac{(\iota_{l+1}-\varsigma_{l})^{\kappa}}{\kappa}\leq(\phi(\mathcal{Q},\iota)+1)\lambda_{2}. \end{eqnarray} (3.3)

    Combining (3.2) with (3.3), we obtain

    \begin{eqnarray*} (\phi(\mathcal{Q},\iota)-1)\lambda_{1}\leq\bigg(\frac{(\iota-\varsigma_{\phi(\mathcal{Q},\iota)})^{\kappa}}{\kappa}\bigg)_{+}+\sum\limits_{l = 0}^{\phi(\mathcal{Q},\iota)-1}\frac{(\iota_{l+1}-\varsigma_{l})^{\kappa}}{\kappa}\leq(\phi(\mathcal{Q},\iota)+1)\lambda_{2}, \end{eqnarray*}

    and

    \begin{eqnarray} &&\frac{1}{\lambda_{2}}\bigg[\bigg(\frac{(\iota-\varsigma_{\phi(\mathcal{Q},\iota)})^{\kappa}}{\kappa}\bigg)_{+}+\sum\limits_{l = 0}^{\phi(\mathcal{Q},\iota)-1}\frac{(\iota_{l+1}-\varsigma_{l})^{\kappa}}{\kappa}\bigg]-1 \leq \phi(\mathcal{Q},\iota)\\&\leq&\frac{1}{\lambda_{1}}\bigg[\bigg(\frac{(\iota-\varsigma_{\phi(\mathcal{Q},\iota)})^{\kappa}}{\kappa}\big)_{+}+\sum\limits_{l = 0}^{\phi(\mathcal{Q},\iota)-1}\frac{(\iota_{l+1}-\varsigma_{l})^{\kappa}}{\kappa}\bigg]+1. \end{eqnarray} (3.4)

    So

    \begin{eqnarray} && -\overline{\lambda}(\zeta+\varphi(\mathcal{B})+\theta)\phi(\mathcal{Q},\iota)\\ &\leq& \left\{ \begin{array}{l} -\lambda_1(\zeta+\varphi(\mathcal{B})+\theta)\big[\frac{1}{\lambda_{1}}\big(\big(\frac{(\iota-\varsigma_{\phi(\mathcal{Q},\iota)})^{\kappa}}{\kappa}\big)_{+}+\sum\limits_{l = 0}^{\phi(\mathcal{Q},\iota)-1}\frac{(\iota_{l+1}-\varsigma_{l})^{\kappa}}{\kappa}\big)+1\big]\\ = -(\zeta+\varphi(\mathcal{B})+\theta)\big[\big(\frac{(\iota-\varsigma_{\phi(\mathcal{Q},\iota)})^{\kappa}}{\kappa}\big)_{+}+\sum\limits_{l = 0}^{\phi(\mathcal{Q},\iota)-1}\frac{(\iota_{l+1}-\varsigma_{l})^{\kappa}}{\kappa}\big]-\lambda_1(\zeta+\varphi(\mathcal{B})+\theta),\; \zeta+\varphi(\mathcal{B})+\theta < 0,\nonumber\\ -\lambda_2(\zeta+\varphi(\mathcal{B})+\theta)[\frac{1}{\lambda_{2}}\big(\big(\frac{(\iota-\varsigma_{\phi(\mathcal{Q},\iota)})^{\kappa}}{\kappa}\big)_{+}+\sum\limits_{l = 0}^{\phi(\mathcal{Q},\iota)-1}\frac{(\iota_{l+1}-\varsigma_{l})^{\kappa}}{\kappa}\big)-1\big]\\ = -(\zeta+\varphi(\mathcal{B})+\theta)\big[\big(\frac{(\iota-\varsigma_{\phi(\mathcal{Q},\iota)})^{\kappa}}{\kappa}\big)_{+}+\sum\limits_{l = 0}^{\phi(\mathcal{Q},\iota)-1}\frac{(\iota_{l+1}-\varsigma_{l})^{\kappa}}{\kappa}\big] +\lambda_2(\zeta+\varphi(\mathcal{B})+\theta),\; \zeta+\varphi(\mathcal{B})+\theta\geq0, \end{array} \right.\\ & = &-(\zeta+\varphi(\mathcal{B})+\theta)\bigg[\bigg(\frac{(\iota-\varsigma_{\phi(\mathcal{Q},\iota)})^{\kappa}}{\kappa}\bigg)_{+}+\sum\limits_{l = 0}^{\phi(\mathcal{Q},\iota)-1}\frac{(\iota_{l+1}-\varsigma_{l})^{\kappa}}{\kappa}\bigg]+\overline{\lambda}|\zeta+\varphi(\mathcal{B})+\theta|. \end{eqnarray} (3.5)

    Equation (3.1) implies

    \begin{eqnarray} -\overline{\lambda}(\zeta+\varphi(\mathcal{B})+\theta)\phi(\mathcal{Q},\iota)\geq\phi(\mathcal{Q},\iota)\ln\varrho\geq\sum\limits_{l = 1}^{\phi(\mathcal{Q},\iota)}\ln\|\mathcal{I}+\mathcal{C}_{l}\|. \end{eqnarray} (3.6)

    With (3.4)–(3.6), we obtain

    \begin{eqnarray*} &&(\varphi(\mathcal{B})+\theta)\bigg[\bigg(\frac{(\iota-\varsigma_{\phi(\mathcal{Q},\iota)})^{\kappa}}{\kappa}\bigg)_{+}+\sum\limits_{l = 0}^{\phi(\mathcal{Q},\iota)-1}\frac{(\iota_{l+1}-\varsigma_{l})^{\kappa}}{\kappa}\bigg]+\sum\limits_{l = 1}^{\phi(\mathcal{Q},\iota)}\ln\|\mathcal{I}+\mathcal{C}_{l}\|\nonumber\\ &\leq&-\zeta\bigg[\bigg(\frac{(\iota-\varsigma_{\phi(\mathcal{Q},\iota)})^{\kappa}}{\kappa}\bigg)_{+}+\sum\limits_{l = 0}^{\phi(\mathcal{Q},\iota)-1}\frac{(\iota_{l+1}-\varsigma_{l})^{\kappa}}{\kappa}\bigg]+\overline{\lambda}|\zeta+\varphi(\mathcal{B})+\theta|\nonumber\\ &\leq& -\zeta\lambda_{1}\phi(\mathcal{Q},\iota)+\overline{\lambda}|\zeta+\varphi(\mathcal{B})+\theta|. \end{eqnarray*}

    Finally, we know

    \begin{eqnarray*} \|\Xi(\iota,\mathcal{Q})\|&\leq & L_{\theta}e^{\sum\limits_{l = 1}^{\phi(\mathcal{Q},\iota)}\ln\|\mathcal{I}+\mathcal{C}_{l}\|+(\varphi(\mathcal{B})+\theta)\big[\big(\frac{(\iota-\varsigma_{\phi(\mathcal{Q},\iota)})^{\kappa}}{\kappa}\big)_{+}+\sum\limits_{l = 0}^{\phi(\mathcal{Q},\iota)-1}\frac{(\iota_{l+1}-\varsigma_{l})^{\kappa}}{\kappa}\big]}\\ &\leq&L_{\theta}e^{\overline{\lambda}|\zeta+\varphi(\mathcal{B})+\theta|}e^{-\zeta\lambda_{1}(\frac{q}{\delta}-\varepsilon)(\iota-\mathcal{Q})}, \end{eqnarray*}

    in which L = L_{\theta}e^{\overline{\lambda}|\zeta+\varphi(\mathcal{B})+\theta|}\geq1 and v = \zeta\lambda_{1}(\frac{q}{\delta}-\varepsilon) > 0 .

    Hence, (1.1) is exponentially stable.

    This section considers the linear nonhomogeneous problem.

    We present the following condition: (G_{3}) a(\iota) = a(\iota+\delta) for \iota\in\bigcup\limits_{l = 0}^{\infty}(\varsigma_{l}, \iota_{l+1}] .

    Following this, we present the solution of (1.2).

    Theorem 4.1. The solution of (1.2) with \gamma(\mathcal{Q}) = \gamma_{\mathcal{Q}} is

    \begin{eqnarray} \gamma(\iota)& = &\Xi(\iota,\mathcal{Q})\gamma_{\mathcal{Q}}+\sum\limits_{l = 0}^{\phi(\mathcal{Q},\iota)-1}\int_{\varsigma_{l}}^{\iota_{l+1}}\Xi(\iota,\varsigma)a(\varsigma)(\varsigma-\varsigma_{l})^{\kappa-1}d\varsigma \\ &&+\int_{\varsigma_{\phi(\mathcal{Q},\iota)}}^{\iota}\Xi(\iota,\varsigma)a(\varsigma)(\varsigma-\varsigma_{\phi(\mathcal{Q},\iota)})^{\kappa-1}d\varsigma+\sum\limits_{l = 1}^{\phi(\mathcal{Q},\iota)}\Xi(\iota,\varsigma_{l})b_{l}. \end{eqnarray} (4.1)

    Proof. For \iota\in[\varsigma_{0}, \iota_{1}] ,

    \begin{eqnarray*} \gamma(\iota) = \Xi(\iota,\mathcal{Q})\gamma_{\mathcal{Q}}+\int_{\varsigma_{0}}^{\iota}\Xi(\iota,\varsigma)a(\varsigma)(\varsigma-\varsigma_{0})^{\kappa-1}d\varsigma. \end{eqnarray*}

    If (4.1) holds for \iota\in(\varsigma_{\phi(\mathcal{Q}, \iota)-1}, \iota_{\phi(\mathcal{Q}, \iota)}] , then

    \begin{eqnarray*} \gamma(\iota)& = &\Xi(\iota,\mathcal{Q})\gamma_{\mathcal{Q}}+\sum\limits_{l = 0}^{\phi(\mathcal{Q},\iota)-2}\int_{\varsigma_{l}}^{\iota_{l+1}}\Xi(\iota,\varsigma)a(\varsigma)(\varsigma-\varsigma_{l})^{\kappa-1}d\varsigma \\ &&+\int_{\varsigma_{\phi(\mathcal{Q},\iota)-1}}^{\iota}\Xi(\iota,\varsigma)a(\varsigma)(\varsigma-\varsigma_{\phi(\mathcal{Q},\iota)-1})^{\kappa-1}d\varsigma+\sum\limits_{l = 1}^{\phi(\mathcal{Q},\iota)-1}\Xi(\iota,\varsigma_{l})b_{l}, \end{eqnarray*}

    and for \iota\in(\iota_{\phi(\mathcal{Q}, \iota)}, \varsigma_{\phi(\mathcal{Q}, \iota)}] ,

    \begin{eqnarray*} \gamma(\iota)& = &(\mathcal{I}+\mathcal{C}_{\phi(\mathcal{Q},\iota)})\gamma(\iota_{\phi(\mathcal{Q},\iota)}^{-})+b_{\phi(\mathcal{Q},\iota)}\\ & = &(\mathcal{I}+\mathcal{C}_{\phi(\mathcal{Q},\iota)})\bigg[\Xi(\iota_{\phi(\mathcal{Q},\iota)}^{-},\mathcal{Q})\gamma_{\mathcal{Q}}+\sum\limits_{l = 0}^{\phi(\mathcal{Q},\iota)-1}\int_{\varsigma_{l}}^{\iota_{l+1}}\Xi(\iota_{\phi(\mathcal{Q},\iota)}^{-},\varsigma)a(\varsigma)(\varsigma-\varsigma_{l})^{\kappa-1}d\varsigma \\ &&+\sum\limits_{l = 1}^{\phi(\mathcal{Q},\iota)-1}\Xi(\iota_{\phi(\mathcal{Q},\iota)}^{-},\varsigma_{l})b_{l}\bigg]+b_{\phi(\mathcal{Q},\iota)}. \end{eqnarray*}

    Next, for \iota\in(\varsigma_{\phi(\mathcal{Q}, \iota)}, \iota_{\phi(\mathcal{Q}, \iota)+1}] ,

    \begin{eqnarray*} \gamma(\iota)& = &\Xi(\iota,\varsigma_{\phi(\mathcal{Q},\iota)})\gamma(\varsigma_{\phi(\mathcal{Q},\iota)})+\int_{\varsigma_{\phi(\mathcal{Q},\iota)}}^{\iota}\Xi(\iota,\varsigma)a(\varsigma)(\varsigma-\varsigma_{\phi(\mathcal{Q},\iota)})^{\kappa-1}d\varsigma\\ & = &\Xi(\iota,\varsigma_{\phi(\mathcal{Q},\iota)})(\mathcal{I}+\mathcal{C}_{\phi(\mathcal{Q},\iota)})\Xi(\iota_{\phi(\mathcal{Q},\iota)}^{-},\mathcal{Q})\gamma_{\mathcal{Q}}\\ &&+\sum\limits_{l = 0}^{\phi(\mathcal{Q},\iota)-1}\int_{\varsigma_{l}}^{\iota_{l+1}}\Xi(\iota,\varsigma_{\phi(\mathcal{Q},\iota)})(\mathcal{I}+\mathcal{C}_{\phi(\mathcal{Q},\iota)})\Xi(\iota_{\phi(\mathcal{Q},\iota)}^{-},\varsigma)a(\varsigma)(\varsigma-\varsigma_{l})^{\kappa-1}d\varsigma \\ &&+\sum\limits_{l = 1}^{\phi(\mathcal{Q},\iota)-1}\Xi(\iota,\varsigma_{\phi(\mathcal{Q},\iota)})(\mathcal{I}+\mathcal{C}_{\phi(\mathcal{Q},\iota)})\Xi(\iota_{\phi(\mathcal{Q},\iota)}^{-},\varsigma_{l})b_{l}+\Xi(\iota,\varsigma_{\phi(\mathcal{Q},\iota)})b_{\phi(\mathcal{Q},\iota)}\\ &&+\int_{\varsigma_{\phi(\mathcal{Q},\iota)}}^{\iota}\Xi(\iota,\varsigma)a(\varsigma)(\varsigma-\varsigma_{\phi(\mathcal{Q},\iota)})^{\kappa-1}d\varsigma\\ & = &\Xi(\iota,\mathcal{Q})\gamma_{\mathcal{Q}}+\sum\limits_{l = 0}^{\phi(\mathcal{Q},\iota)-1}\int_{\varsigma_{l}}^{\iota_{l+1}}\Xi(\iota,\varsigma)a(\varsigma)(\varsigma-\varsigma_{l})^{\kappa-1}d\varsigma \\ &&+\int_{\varsigma_{\phi(\mathcal{Q},\iota)}}^{\iota}\Xi(\iota,\varsigma)a(\varsigma)(\varsigma-\varsigma_{\phi(\mathcal{Q},\iota)})^{\kappa-1}d\varsigma+\sum\limits_{l = 1}^{\phi(\mathcal{Q},\iota)}\Xi(\iota,\varsigma_{l})b_{l}. \end{eqnarray*}

    With the mathematical induction method, we obtain

    \begin{eqnarray*} \gamma(\iota)& = &\Xi(\iota,\mathcal{Q})\gamma_{\mathcal{Q}}+\sum\limits_{l = 0}^{\phi(\mathcal{Q},\iota)-1}\int_{\varsigma_{l}}^{\iota_{l+1}}\Xi(\iota,\varsigma)a(\varsigma)(\varsigma-\varsigma_{l})^{\kappa-1}d\varsigma \\ &&+\int_{\varsigma_{\phi(\mathcal{Q},\iota)}}^{\iota}\Xi(\iota,\varsigma)a(\varsigma)(\varsigma-\varsigma_{\phi(\mathcal{Q},\iota)})^{\kappa-1}d\varsigma+\sum\limits_{l = 1}^{\phi(\mathcal{Q},\iota)}\Xi(\iota,\varsigma_{l})b_{l}. \end{eqnarray*}

    Theorem 4.2. Suppose that (G_{1}) , (G_{2}) , and (G_{3}) hold. If the solution of (1.2) is bounded, then it is \delta- periodic.

    Proof. Since the solution of (1.2) is bounded, one set \widetilde{\gamma}(\mathcal{Q}+n\delta) is bounded. Using Theorems 2.11 and 2.12, one obtains

    \begin{align*} \widetilde{\gamma}(\mathcal{Q}+(n+1)\delta) & = \Xi(\mathcal{Q}+(n+1)\delta,\mathcal{Q})\gamma_{\mathcal{Q}}+\sum\limits_{l = 0}^{(n+1)q-1}\int_{\varsigma_{l}}^{\iota_{l+1}}\Xi(\mathcal{Q}+(n+1)\delta,\varsigma)a(\varsigma)(\varsigma-\varsigma_{l})^{\kappa-1}d\varsigma \\ &+\sum\limits_{l = 1}^{(n+1)q}\Xi(\mathcal{Q}+(n+1)\delta,\varsigma_{l})b_{l}\\ & = \Xi(\mathcal{Q}+(n+1)\delta,\mathcal{Q}+n\delta)\bigg[\Xi(\mathcal{Q}+n\delta,\mathcal{Q})\gamma_{\mathcal{Q}}+\sum\limits_{l = 0}^{nq-1}\int_{\varsigma_{l}}^{\iota_{l+1}}\Xi(\mathcal{Q}+n\delta,\varsigma)a(\varsigma)(\varsigma-\varsigma_{l})^{\kappa-1}d\varsigma \\ &+\sum\limits_{l = 1}^{nq}\Xi(\mathcal{Q}+n\delta,\varsigma_{l})b_{l}\bigg]+\sum\limits_{l = nq}^{(n+1)q-1}\int_{\varsigma_{l}}^{\iota_{l+1}}\Xi(\mathcal{Q}+(n+1)\delta,\varsigma)a(\varsigma)(\varsigma-\varsigma_{l})^{\kappa-1}d\varsigma\\ &+\sum\limits_{l = nq+1}^{(n+1)q}\Xi(\mathcal{Q}+(n+1)\delta,\varsigma_{l})b_{l}\\ & = \Xi(\mathcal{Q}+\delta,\mathcal{Q})\widetilde{\gamma}(\mathcal{Q}+n\delta)+\sum\limits_{l = 0}^{q-1}\int_{\varsigma_{l}}^{\iota_{l+1}}\Xi(\mathcal{Q}+(n+1)\delta,\varsigma+n\delta)a(\varsigma+n\delta)(\varsigma-\varsigma_{l})^{\kappa-1}d\varsigma\\ &+\sum\limits_{l = 1}^{q}\Xi(\mathcal{Q}+(n+1)\delta,\varsigma_{l}+n\delta)b_{l+nq}\\ & = \Xi(\mathcal{Q}+\delta,\mathcal{Q})\widetilde{\gamma}(\mathcal{Q}+n\delta)+\sum\limits_{l = 0}^{q-1}\int_{\varsigma_{l}}^{\iota_{l+1}}\Xi(\mathcal{Q}+\delta,\varsigma)a(\varsigma)(\varsigma-\varsigma_{l})^{\kappa-1}d\varsigma+\sum\limits_{l = 1}^{q}\Xi(\mathcal{Q}+\delta,\varsigma_{l})b_{l}\\ & = \Xi(\mathcal{Q}+\delta,\mathcal{Q})\widetilde{\gamma}(\mathcal{Q}+n\delta)+\Gamma_{q}, \end{align*}

    where

    \Gamma_{q} = \sum\limits_{l = 0}^{q-1}\int_{\varsigma_{l}}^{\iota_{l+1}}\Xi(\mathcal{Q}+\delta,\varsigma)a(\varsigma)(\varsigma-\varsigma_{l})^{\kappa-1}d\varsigma +\sum\limits_{l = 1}^{q}\Xi(\mathcal{Q}+\delta,\varsigma_{l})b_{l}.

    Hence,

    \begin{eqnarray*} \widetilde{\gamma}(\mathcal{Q}+n\delta) = \Xi^{n}(\mathcal{Q}+\delta,\mathcal{Q})\widetilde{\gamma}(\mathcal{Q})+\sum\limits_{l = 0}^{n-1}\Xi^{l}(\mathcal{Q}+\delta,\mathcal{Q})\Gamma_{q}. \end{eqnarray*}

    With the proof by contradiction, one supposes that \widetilde{\gamma}(\iota) is not the \delta- periodic solution of (1.2). So there is not a \gamma_{\mathcal{Q}}\in\mathbb{R}^{n} such that

    \begin{eqnarray*} (\mathcal{I}-\Xi(\mathcal{Q}+\delta,\mathcal{Q}))\gamma_{\mathcal{Q}} = \Gamma_{q}. \end{eqnarray*}

    Fredholm alternative Theorem implies that there is a \mathcal{Z}\in\mathbb{R}^{n} satisfying

    \begin{eqnarray*} (\mathcal{I}-\Xi^{\top}(\mathcal{Q}+\delta,\mathcal{Q}))\mathcal{Z} = 0,\; < \Gamma_{q},\mathcal{Z} > \neq0. \end{eqnarray*}

    Since (\mathcal{I}-\Xi^{\top}(\mathcal{Q}+\delta, \mathcal{Q}))\mathcal{Z} = 0 , with any n\in\mathbb{N} , we have [\Xi^{n}(\mathcal{Q}+\delta, \mathcal{Q})]^{\top}\mathcal{Z} = \mathcal{Z} . Also,

    \begin{eqnarray*} < \widetilde{\gamma}(\mathcal{Q}+n\delta),\mathcal{Z} > & = & < \Xi^{n}(\mathcal{Q}+\delta,\mathcal{Q})\widetilde{\gamma}(\mathcal{Q})+\sum\limits_{l = 0}^{n-1}\Xi^{l}(\mathcal{Q}+\delta,\mathcal{Q})\Gamma_{q},\mathcal{Z} > \\ & = & < \widetilde{\gamma}(\mathcal{Q}),[\Xi^{n}(\mathcal{Q}+\delta,\mathcal{Q})]^{\top}\mathcal{Z} > +\sum\limits_{l = 0}^{n-1} < \Gamma_{q},[\Xi^{l}(\mathcal{Q}+\delta,\mathcal{Q})]^{\top}\mathcal{Z} > \\ & = & < \widetilde{\gamma}(\mathcal{Q}),\mathcal{Z} > +n < \Gamma_{q},\mathcal{Z} > \to\infty,\; \mbox{as}\; n\to\infty, \end{eqnarray*}

    which is contradictory to the boundedness of \widetilde{\gamma}(\iota) . So \widetilde{\gamma}(\iota) is a \delta- periodic solution of (1.2).

    We analyze the existence of periodic solutions for (1.2) in two different situations.

    Theorem 4.3. Suppose (G_{1}) and (G_{2}) hold. If \det(\mathcal{I}-\Xi(\mathcal{Q}+\delta, \mathcal{Q}))\neq0 , (1.2) has a \delta- periodic solution with

    \gamma_{\mathcal{Q}} = (\mathcal{I}-\Xi(\mathcal{Q}+\delta,\mathcal{Q}))^{-1}\Gamma_{q}.

    Next, if \det(\mathcal{I}-\Xi(\mathcal{Q}+\delta, \mathcal{Q})) = 0 , we present

    \begin{eqnarray} \left\{ \begin{array}{l} \mathfrak{D}_{\kappa}^{\varsigma_{l}}\beta(\iota) = -\mathcal{B}^{\top}\beta(\iota),\; \iota\in(\varsigma_{l},\iota_{l+1}],\; l\in \mathbb{N}_{0},\; 0 < \kappa < 1,\\ \beta(\iota_{l}^{+}) = (\mathcal{I}+\mathcal{C}^{\top}_{l})^{-1}\beta(\iota_{l}^{-}),\; l\in\mathbb{N},\\ \beta(\iota) = (\mathcal{I}+\mathcal{C}^{\top}_{l})^{-1}\beta(\iota_{l}^{-}),\; \iota\in(\iota_{l},\varsigma_{l}],\; l\in\mathbb{N},\\ \beta(\varsigma_{l}^{+}) = \beta(\varsigma_{l}^{-}),\; l\in \mathbb{N}. \end{array} \right. \end{eqnarray} (4.2)

    Theorem 4.4. Let (G_{1}) , (G_{2}) , and (G_{3}) be satisfied. (1.2) has a \delta- periodic solution iff < \beta_{\mathcal{Q}}, \Gamma_{q} > = 0 , where \beta_{\mathcal{Q}} is the initial value of (4.2).

    Proof. (1.2) has a \delta- periodic solution iff there exists \gamma_{\mathcal{Q}} such that

    (\mathcal{I}-\Xi(\mathcal{Q}+\delta,\mathcal{Q}))\gamma_{\mathcal{Q}} = \Gamma_{q}.

    Then,

    \begin{eqnarray*} < \beta_{\mathcal{Q}},\Gamma_{q} > & = & < \beta_{\mathcal{Q}}, (\mathcal{I}-\Xi(\mathcal{Q}+\delta,\mathcal{Q}))\gamma_{\mathcal{Q}} > \\ & = & < (\mathcal{I}-\Xi(\mathcal{Q}+\delta,\mathcal{Q}))^{\top}\beta_{\mathcal{Q}},\gamma_{\mathcal{Q}} > \\ & = & < (\mathcal{I}-\Xi^{\top}(\mathcal{Q}+\delta,\mathcal{Q}))\beta_{\mathcal{Q}},\gamma_{\mathcal{Q}} > \\ & = & < 0,\gamma_{\mathcal{Q}} > = 0. \end{eqnarray*}

    This section studies the \delta- periodic solution of (1.3).

    One presents the conditions:

    (G_{4}) For \gamma\in\mathbb{R}^{n} and \iota\in\bigcup\limits_{l = 0}^{\infty}(\varsigma_{l}, \iota_{l+1}] , \mathcal{A}(\iota+\delta, \gamma) = \mathcal{A}(\iota, \gamma) .

    (G_{5}) For \gamma\in\mathbb{R}^{n} and \iota\in\bigcup\limits_{l = 0}^{\infty}(\varsigma_{l}, \iota_{l+1}] , there is a \overline{\mathcal{A}} > 0 such that \|\mathcal{A}(\iota, \gamma)\|\leq\overline{\mathcal{A}} .

    One studies

    \begin{eqnarray*} \mathfrak{D}_{\kappa}^{\varsigma_{l}} \gamma(\iota) = \mathcal{B}\gamma(\iota)+ \mathcal{A}(\iota, \gamma(\iota)),\; \gamma(\varsigma_{l-1}) = \gamma_{l-1},\; \iota\in(\varsigma_{l-1},\iota_{l}],\; 0 < \kappa < 1,\; l\in \mathbb{N}, \end{eqnarray*}

    and the solution is

    \begin{eqnarray} \gamma(\iota) = \Xi(\iota,\varsigma_{l}) \gamma_{l-1}+\int_{\varsigma_{l-1}}^{\iota}\Xi(\iota,\varsigma) \mathcal{A}(\varsigma, \gamma(\varsigma))(\varsigma-\varsigma_{l-1})^{\kappa-1}d\varsigma. \end{eqnarray} (5.1)

    We set this mapping

    \begin{eqnarray} \mathcal{G}_{l}( \gamma_{l-1}): = (\mathcal{I}+\mathcal{C}_{l})\circ \gamma(\iota_{l})+b_{l}. \end{eqnarray} (5.2)

    Equation (5.1) implies

    \begin{eqnarray*} \| \gamma(\iota_{l})\|&\leq& L_{\theta}e^{|\varphi(\mathcal{B})+\theta|\frac{(\iota_{l}-\varsigma_{l-1})^{\kappa}}{\kappa}}\| \gamma_{l-1}\|+\frac{L_{\theta}\overline{\mathcal{A}}}{|\varphi(\mathcal{B})+\theta|}\bigg(e^{|\varphi(\mathcal{B})+\theta|\frac{(\iota_{l}-\varsigma_{l-1})^{\kappa}}{\kappa}}-1\bigg), \end{eqnarray*}

    and (5.2) implies

    \begin{eqnarray*} \|\mathcal{G}_{l}( \gamma_{l-1})\|\leq \varrho L_{\theta}e^{|\varphi(\mathcal{B})+\theta|\frac{(\iota_{l}-\varsigma_{l-1})^{\kappa}}{\kappa}}\| \gamma_{l-1}\|+\frac{\varrho L_{\theta}\overline{\mathcal{A}}}{|\varphi(\mathcal{B})+\theta|}\bigg(e^{|\varphi(\mathcal{B})+\theta|\frac{(\iota_{l}-\varsigma_{l-1})^{\kappa}}{\kappa}}-1\bigg)+\overline{b}, \end{eqnarray*}

    where \overline{b} = \max\limits_{l\in \mathbb{N}}\|b_{l}\| .

    Then we construct this operator

    \begin{eqnarray*} \mathcal{G}: = \mathcal{G}_{q}\circ \mathcal{G}_{q-1}\circ\cdots\circ \mathcal{G}_{1}, \end{eqnarray*}

    and set \chi_{l} = e^{|\varphi(\mathcal{B})+\theta|\frac{(\iota_{l}-\varsigma_{l-1})^{\kappa}}{\kappa}} , \varpi = \varrho L_{\theta} .

    Next, one presents the norm estimation of \mathcal{G} .

    Theorem 5.1. If (G_5) holds, there is

    \begin{eqnarray} \|\mathcal{G}( \gamma_{\mathcal{Q}})\| &\leq&\varpi^{q}\prod\limits_{l = 1}^{q}\chi _{l}\| \gamma_{\mathcal{Q}}\|+\frac{\overline{\mathcal{A}}}{|\varphi(\mathcal{B})+\theta|}\sum\limits_{l = 1}^{q-1}\prod\limits_{j = l}^{q-1}\varpi^{q-j+1}\chi _{q}\dots\chi _{j+1}(\chi _{j}-1)\\ &&+\bigg(\sum\limits_{l = 2}^{q}\prod\limits_{j = l}^{q}\varpi^{q-j+1}\chi _{q}\dots\chi _{j}+1\bigg)\overline{b}+\frac{\overline{\mathcal{A}}\varpi}{|\varphi(\mathcal{B})+\theta|}(\chi _{q}-1). \end{eqnarray} (5.3)

    Proof. For l = 1 , there is

    \begin{eqnarray*} \| \gamma_{1}\| \leq\varpi \chi_{1}\| \gamma_{\mathcal{Q}}\|+\frac{\varpi\overline{\mathcal{A}}}{|\varphi(\mathcal{B})+\theta|}(\chi_{1}-1)+\overline{b}. \end{eqnarray*}

    For l = 2 , there is

    \begin{eqnarray*} \| \gamma_{2}\| &\leq&\varpi \chi_{2}\| \gamma_{1}\|+\frac{\varpi\overline{\mathcal{A}}}{|\varphi(\mathcal{B})+\theta|}(\chi_{2}-1)+\overline{b}\\ &\leq&\varpi \chi_{2}\bigg(\varpi \chi_{1}\| \gamma_{\mathcal{Q}}\|+\frac{\varpi\overline{\mathcal{A}}}{|\varphi(\mathcal{B})+\theta|}(\chi_{1}-1)+\overline{b}\bigg)+\frac{\varpi\overline{\mathcal{A}}}{|\varphi(\mathcal{B})+\theta|}(\chi_{2}-1)+\overline{b}\\ &\leq&\varpi \chi_{2}\varpi \chi_{1}\| \gamma_{\mathcal{Q}}\|+\frac{\varpi \chi_{2}\varpi\overline{\mathcal{A}}}{|\varphi(\mathcal{B})+\theta|}(\chi_{1}-1)+\varpi \chi_{2}\overline{b}+\frac{\varpi\overline{\mathcal{A}}}{|\varphi(\mathcal{B})+\theta|}(\chi_{2}-1)+\overline{b}. \end{eqnarray*}

    For l = 3 , there is

    \begin{eqnarray*} \| \gamma_{3}\| &\leq&\varpi \chi_{3}\| \gamma_{2}\|+\frac{\varpi\overline{\mathcal{A}}}{|\varphi(\mathcal{B})+\theta|}(\chi_{3}-1)+\overline{b}\\ &\leq&\varpi \chi_{3}\bigg(\varpi \chi_{2}\varpi \chi_{1}\| \gamma_{\mathcal{Q}}\|+\frac{\varpi \chi_{2}\varpi\overline{\mathcal{A}}}{|\varphi(\mathcal{B})+\theta|}(\chi_{1}-1)+\varpi \chi_{2}\overline{b}+\frac{\varpi\overline{\mathcal{A}}}{|\varphi(\mathcal{B})+\theta|}(\chi_{2}-1)+\overline{b}\bigg)\\ &&+\frac{\varpi\overline{\mathcal{A}}}{|\varphi(\mathcal{B})+\theta|}(\chi_{3}-1)+\overline{b}\\ &\leq&\varpi \chi_{3}\varpi \chi_{2}\varpi \chi_{1}\| \gamma_{\mathcal{Q}}\|+\frac{\varpi \chi_{3}\varpi \chi_{2}\varpi\overline{\mathcal{A}}}{|\varphi(\mathcal{B})+\theta|}(\chi_{1}-1)+\varpi \chi_{3}\varpi \chi_{2}\overline{b}+\frac{\varpi \chi_{3}\varpi\overline{\mathcal{A}}}{|\varphi(\mathcal{B})+\theta|}(\chi_{2}-1)+\varpi \chi_{3}\overline{b}\\ &&+\frac{\varpi\overline{\mathcal{A}}}{|\varphi(\mathcal{B})+\theta|}(\chi_{3}-1)+\overline{b}. \end{eqnarray*}

    Suppose that (5.3) holds for l = q-1 ; when l = q ,

    \begin{eqnarray*} &&\| \gamma_{q}\| \leq\varpi \chi_{q}\| \gamma_{q-1}\|+\frac{\varpi\overline{\mathcal{A}}}{|\varphi(\mathcal{B})+\theta|}(\chi_{q}-1)+\overline{b}\\ &\leq&\varpi \chi_{q}\bigg[\varpi^{q-1}\prod\limits_{l = 1}^{q-1}\chi_{l}\| \gamma_{\mathcal{Q}}\|+\frac{\overline{\mathcal{A}}}{|\varphi(\mathcal{B})+\theta|}\sum\limits_{l = 1}^{q-2}\prod\limits_{j = l}^{q-2}\varpi^{q-j}\chi _{q-1}\ldots\chi _{j+1}(\chi _{j}-1) \\ &&+\frac{\varpi\overline{\mathcal{A}}}{|\varphi(\mathcal{B})+\theta|}(\chi _{q-1}-1)+\bigg(\sum\limits_{l = 2}^{q-1}\prod\limits_{j = l}^{q-1}\varpi^{q-j}\chi _{q-1}\ldots\chi _{j}+1\bigg)\overline{b}\bigg]+\frac{\varpi\overline{\mathcal{A}}}{\varpi(\mathcal{B})+\theta}(\chi_{q}-1)+\overline{b} \\ & = &\varpi^{q}\prod\limits_{l = 1}^{q}\chi _{l}\| \gamma_{\mathcal{Q}}\|+\frac{\overline{\mathcal{A}}}{|\varphi(\mathcal{B})+\theta|}\sum\limits_{l = 1}^{q-2}\prod\limits_{j = l}^{q-2}\varpi^{q-j+1}\chi _{q}\chi _{q-1}\dots\chi _{j+1}(\chi _{j}-1)+\frac{\overline{\mathcal{A}}\varpi^{2}}{|\varphi(\mathcal{B})+\theta|}\chi _{q}(\chi _{q-1}-1)\\ &&+\sum\limits_{l = 2}^{q-1}\prod\limits_{j = l}^{q-1}\varpi^{q-j+1}\chi _{q}\chi _{q-1}\dots\chi _{j}\overline{b}+\varpi\chi _{q}\overline{b}+\frac{\overline{\mathcal{A}}\varpi}{|\varphi(\mathcal{B})+\theta|}(\chi _{q}-1)+\overline{b} \\ & = &\varpi^{q}\prod\limits_{l = 1}^{q}\chi _{l}\| \gamma_{\mathcal{Q}}\|+\frac{\overline{\mathcal{A}}}{|\varphi(\mathcal{B})+\theta|}\sum\limits_{l = 1}^{q-1}\prod\limits_{j = l}^{q-1}\varpi^{q-j+1}\chi _{q}\dots\chi _{j+1}(\chi _{j}-1) \\ &&+\sum\limits_{l = 2}^{q}\prod\limits_{j = l}^{q}\varpi^{q-j+1}\chi _{q}\dots\chi _{j}\overline{b}+\frac{\overline{\mathcal{A}}\varpi}{|\varphi(\mathcal{B})+\theta|}(\chi _{q}-1)+\overline{b} \\ & = &\varpi^{q}\prod\limits_{l = 1}^{q}\chi _{l}\| \gamma_{\mathcal{Q}}\|+\frac{\overline{\mathcal{A}}}{|\varphi(\mathcal{B})+\theta|}\sum\limits_{l = 1}^{q-1}\prod\limits_{j = l}^{q-1}\varpi^{q-j+1}\chi _{q}\dots\chi _{j+1}(\chi _{j}-1) \\ &&+\bigg(\sum\limits_{l = 2}^{q}\prod\limits_{j = l}^{q}\varpi^{q-j+1}\chi _{q}\dots\chi _{j}+1\bigg)\overline{b}+\frac{\overline{\mathcal{A}}\varpi}{|\varphi(\mathcal{B})+\theta|}(\chi _{q}-1). \end{eqnarray*}

    Following this, we derive the equivalence between the \delta- periodic solution for (1.3) and the fixed point of \mathcal{G} .

    Theorem 5.2. If (G_{1}) , (G_{2}) , and (G_{4}) hold, (1.3) has a \delta- periodic solution iff \mathcal{G} has a fixed point.

    Proof. Sufficiency.

    According to the definition of \mathcal{G} , one has

    \begin{eqnarray*} \gamma_{\mathcal{Q}}& = &\mathcal{G}( \gamma_{\mathcal{Q}}) = \mathcal{G}_{q}\circ \mathcal{G}_{q-1}\circ\cdots\circ \mathcal{G}_{1}( \gamma_{\mathcal{Q}})\\ & = &\Xi(\mathcal{Q}+\delta,\mathcal{Q}) \gamma_{\mathcal{Q}}+\sum\limits_{l = 0}^{q-1}\int_{\varsigma_{l}}^{\iota_{l+1}}\Xi(\mathcal{Q}+\delta,\varsigma)\mathcal{A}(\varsigma,\gamma(\varsigma))(\varsigma-\varsigma_{l})^{\kappa-1}d\varsigma +\sum\limits_{l = 1}^{q}\Xi(\mathcal{Q}+\delta,\varsigma_{l})b_{l}. \end{eqnarray*}

    For \iota = \widetilde{\iota}+N\delta , Theorems 2.11–2.13 derive

    \begin{eqnarray*} \gamma(\iota) = \gamma(\widetilde{\iota}+N\delta) = \Xi(\widetilde{\iota}+N\delta,\mathcal{Q}) \gamma(\mathcal{Q}) = [\Xi(\widetilde{\iota}+\delta,\widetilde{\iota})]^{N}\Xi(\widetilde{\iota},\mathcal{Q}) \gamma(\mathcal{Q}), \end{eqnarray*}

    and

    \begin{eqnarray*} \gamma(\iota+\delta)& = & \gamma(\widetilde{\iota}+(N+1)\delta) \\ & = &\Xi(\widetilde{\iota}+(N+1)\delta,\mathcal{Q}) \gamma_{\mathcal{Q}} \\ & = &[\Xi(\widetilde{\iota}+\delta,\widetilde{\iota})]^{N+1}\Xi(\widetilde{\iota},\mathcal{Q}) \gamma_{\mathcal{Q}} \\ & = &[\Xi(\widetilde{\iota}+\delta,\widetilde{\iota})]^{N}\Xi(\widetilde{\iota}+\delta,\mathcal{Q}) \gamma_{\mathcal{Q}} \\ & = &[\Xi(\widetilde{\iota}+\delta,\widetilde{\iota})]^{N} \gamma(\widetilde{\iota}+\delta) \\ & = &[\Xi(\widetilde{\iota}+\delta,\widetilde{\iota})]^{N}\Xi(\widetilde{\iota}+\delta,\mathcal{Q}+\delta) \gamma(\mathcal{Q}+\delta) \\ & = &[\Xi(\widetilde{\iota}+\delta,\widetilde{\iota})]^{N}\Xi(\widetilde{\iota},\mathcal{Q}) \gamma_{\mathcal{Q}}, \end{eqnarray*}

    then \gamma(\iota+\delta) = \gamma(\iota) .

    Necessity.

    If \gamma(\iota) is a \delta- periodic solution of (1.3), then \mathcal{G}(\gamma_{\mathcal{Q}}) = \gamma_{\mathcal{Q}} and \gamma_{\mathcal{Q}} is a fixed point of \mathcal{G} .

    Next, we present this condition:

    (G_{6}) For \gamma\in\mathbb{R}^{n} and \iota\in\bigcup\limits_{l = 0}^{\infty}(\varsigma_{l}, \iota_{l+1}] , there is a L_{\mathcal{A}} > 0 such that \|\mathcal{A}(\iota, \gamma)-\mathcal{A}(\iota, \overline{\gamma})\|\leq L_{\mathcal{A}}\|\gamma-\overline{\gamma}\| .

    Theorem 5.3. Let (G_{1}) , (G_{2}) , (G_{4}) , and (G_{6}) be satisfied. If

    \begin{eqnarray*} \varpi^{q}e^{(L_{\theta} L_{\mathcal{A}}+|\varphi(\mathcal{B})+\theta|)\sum\limits_{l = 1}^{q}\frac{(\iota_l-\varsigma_{l-1})^{\kappa}}{\kappa}} < 1, \end{eqnarray*}

    then (1.3) has a unique \delta- periodic solution.

    Proof. Set \gamma(\iota) and \overline{\gamma}(\iota) respectively as the solutions of (1.3) with initial values \gamma_{\mathcal{Q}} and \overline{\gamma}_{\mathcal{Q}} .

    By calculation, for \iota\in[\varsigma_{0}, \iota_1] , there is

    \begin{eqnarray*} \|\gamma(\iota)-\overline{\gamma}(\iota)\| &&\leq\|\Xi(\iota,\varsigma_{0})\| \|\gamma_{\mathcal{Q}}-\overline{\gamma}_{\mathcal{Q}}\|+\int_{\varsigma_{0}}^{\iota}\|\Xi(\iota,\varsigma) \| \|\mathcal{A}(\varsigma, \gamma(\varsigma))-\mathcal{A}(\varsigma, \overline{\gamma}(\varsigma))\|(\varsigma-\varsigma_{0})^{\kappa-1}d\varsigma\\ &&\leq L_{\theta}e^{|\varphi(\mathcal{B})+\theta|\frac{(\iota-\varsigma_{0})^{\kappa}}{\kappa}} \|\gamma_{\mathcal{Q}}-\overline{\gamma}_{\mathcal{Q}}\|+\int_{\varsigma_{0}}^{\iota}L_{\theta}e^{|\varphi(\mathcal{B})+\theta|\big(\frac{(\iota-\varsigma_0)^{\kappa}}{\kappa}-\frac{(\varsigma-\varsigma_0)^{\kappa}}{\kappa}\big)} L_{\mathcal{A}}\|\gamma(\varsigma)-\overline{\gamma}(\varsigma)\|(\varsigma-\varsigma_{0})^{\kappa-1}d\varsigma, \end{eqnarray*}

    then

    \begin{eqnarray*} e^{-|\varphi(\mathcal{B})+\theta|\frac{(\iota-\varsigma_{0})^{\kappa}}{\kappa}} \|\gamma(\iota)-\overline{\gamma}(\iota)\| \leq L_{\theta} \|\gamma_{\mathcal{Q}}-\overline{\gamma}_{\mathcal{Q}}\|+\int_{\varsigma_{0}}^{\iota}L_{\theta}e^{-|\varphi(\mathcal{B})+\theta|\frac{(\varsigma-\varsigma_0)^{\kappa}}{\kappa}} L_{\mathcal{A}}\|\gamma(\varsigma)-\overline{\gamma}(\varsigma)\|(\varsigma-\varsigma_{0})^{\kappa-1}d\varsigma. \end{eqnarray*}

    Using Lemma 2.9, one has

    \begin{eqnarray*} e^{-|\varphi(\mathcal{B})+\theta|\frac{(\iota-\varsigma_{0})^{\kappa}}{\kappa}} \|\gamma(\iota)-\overline{\gamma}(\iota)\| \leq L_{\theta} \|\gamma_{\mathcal{Q}}-\overline{\gamma}_{\mathcal{Q}}\|e^{L_{\theta} L_{\mathcal{A}}\frac{(\iota-\varsigma_{0})^{\kappa}}{\kappa} }, \end{eqnarray*}

    and

    \begin{eqnarray*} \|\gamma(\iota)-\overline{\gamma}(\iota)\| \leq L_{\theta} \|\gamma_{\mathcal{Q}}-\overline{\gamma}_{\mathcal{Q}}\|e^{(L_{\theta} L_{\mathcal{A}}+|\varphi(\mathcal{B})+\theta|)\frac{(\iota-\varsigma_{0})^{\kappa}}{\kappa} }. \end{eqnarray*}

    Next, (5.2) implies

    \begin{eqnarray*} \|\gamma_{1}-\overline{\gamma}_{1}\|& = & \|\mathcal{G}_{1}( \gamma_{\mathcal{Q}})-\mathcal{G}_{1}(\overline{ \gamma}_{\mathcal{Q}})\|\\ &\leq& \varrho \|\gamma(\iota_1)-\overline{\gamma}(\iota_1)\|\\ &\leq&\varrho L_{\theta} \|\gamma_{\mathcal{Q}}-\overline{\gamma}_{\mathcal{Q}}\|e^{(L_{\theta} L_{\mathcal{A}}+|\varphi(\mathcal{B})+\theta|)\frac{(\iota_1-\varsigma_{0})^{\kappa}}{\kappa} }. \end{eqnarray*}

    For \iota\in(\varsigma_{1}, \iota_2] , there is

    \begin{eqnarray*} &&\|\gamma(\iota)-\overline{\gamma}(\iota)\| \leq\|\Xi(\iota,\varsigma_{1})\| \|\gamma_{1}-\overline{\gamma}_{1}\|+\int_{\varsigma_{1}}^{\iota}\|\Xi(\iota,\varsigma) \| \|\mathcal{A}(\varsigma, \gamma(\varsigma))-\mathcal{A}(\varsigma, \overline{\gamma}(\varsigma))\|(\varsigma-\varsigma_{1})^{\kappa-1}d\varsigma\\ &\leq&L_{\theta}e^{|\varphi(\mathcal{B})+\theta|\frac{(\iota-\varsigma_{1})^{\kappa}}{\kappa}} \|\gamma_{1}-\overline{\gamma}_{1}\|+\int_{\varsigma_{1}}^{\iota}L_{\theta}e^{|\varphi(\mathcal{B})+\theta|\big(\frac{(\iota-\varsigma_1)^{\kappa}}{\kappa}-\frac{(\varsigma-\varsigma_1)^{\kappa}}{\kappa}\big)} L_{\mathcal{A}}\|\gamma(\varsigma)-\overline{\gamma}(\varsigma)\|(\varsigma-\varsigma_{1})^{\kappa-1}d\varsigma, \end{eqnarray*}

    then

    \begin{eqnarray*} e^{-|\varphi(\mathcal{B})+\theta|\frac{(\iota-\varsigma_{1})^{\kappa}}{\kappa}} \|\gamma(\iota)-\overline{\gamma}(\iota)\| \leq L_{\theta} \|\gamma_{1}-\overline{\gamma}_{1}\|+\int_{\varsigma_{1}}^{\iota}L_{\theta}e^{-|\varphi(\mathcal{B})+\theta|\frac{(\varsigma-\varsigma_1)^{\kappa}}{\kappa}} L_{\mathcal{A}}\|\gamma(\varsigma)-\overline{\gamma}(\varsigma)\|(\varsigma-\varsigma_{1})^{\kappa-1}d\varsigma. \end{eqnarray*}

    Using Lemma 2.9, one has

    \begin{eqnarray*} e^{-|\varphi(\mathcal{B})+\theta|\frac{(\iota-\varsigma_{1})^{\kappa}}{\kappa}} \|\gamma(\iota)-\overline{\gamma}(\iota)\| \leq L_{\theta} \|\gamma_{1}-\overline{\gamma}_{1}\|e^{L_{\theta} L_{\mathcal{A}}\frac{(\iota-\varsigma_{1})^{\kappa}}{\kappa} }, \end{eqnarray*}

    and

    \begin{eqnarray*} \|\gamma(\iota)-\overline{\gamma}(\iota)\| &\leq &L_{\theta} \|\gamma_{1}-\overline{\gamma}_{1}\|e^{(L_{\theta} L_{\mathcal{A}}+|\varphi(\mathcal{B})+\theta|)\frac{(\iota-\varsigma_{1})^{\kappa}}{\kappa} }\\ &\leq &L_{\theta} \varrho L_{\theta} \|\gamma_{\mathcal{Q}}-\overline{\gamma}_{\mathcal{Q}}\|e^{(L_{\theta} L_{\mathcal{A}}+|\varphi(\mathcal{B})+\theta|)\big(\frac{(\iota_1-\varsigma_{0})^{\kappa}}{\kappa}+\frac{(\iota-\varsigma_{1})^{\kappa}}{\kappa} \big) }. \end{eqnarray*}

    Next, (5.2) implies

    \begin{eqnarray*} \|\gamma_{2}-\overline{\gamma}_{2}\|& = & \|\mathcal{G}_{2}( \gamma_{1})-\mathcal{G}_{1}(\overline{ \gamma}_{1})\|\\ &\leq& \varrho \|\gamma(\iota_2)-\overline{\gamma}(\iota_2)\|\\ &\leq&( \varrho L_{\theta})^2 \|\gamma_{\mathcal{Q}}-\overline{\gamma}_{\mathcal{Q}}\|e^{(L_{\theta} L_{\mathcal{A}}+|\varphi(\mathcal{B})+\theta|)\big(\frac{(\iota_1-\varsigma_{0})^{\kappa}}{\kappa}+\frac{(\iota_2-\varsigma_{1})^{\kappa}}{\kappa} \big) }. \end{eqnarray*}

    According to the above calculation, there is

    \begin{eqnarray*} \|\gamma_{q-1}-\overline{\gamma}_{q-1}\|& = & \|\mathcal{G}_{q-1}( \gamma_{q-2})-\mathcal{G}_{q-1}(\overline{ \gamma}_{q-2})\|\\ &\leq& \varrho \|\gamma(\iota_{q-1})-\overline{\gamma}(\iota_{q-1})\|\\ &\leq&( \varrho L_{\theta})^{q-1} \|\gamma_{\mathcal{Q}}-\overline{\gamma}_{\mathcal{Q}}\|e^{(L_{\theta} L_{\mathcal{A}}+|\varphi(\mathcal{B})+\theta|)\sum\limits_{l = 1}^{q-1}\frac{(\iota_l-\varsigma_{l-1})^{\kappa}}{\kappa}}. \end{eqnarray*}

    For \iota\in(\varsigma_{q-1}, \iota_q] , there is

    \begin{eqnarray*} &&\|\gamma(\iota)-\overline{\gamma}(\iota)\| \leq \|\Xi(\iota,\varsigma_{q-1})\| \|\gamma_{q-1}-\overline{\gamma}_{q-1}\|+\int_{\varsigma_{q-1}}^{\iota}\|\Xi(\iota,\varsigma) \| \|\mathcal{A}(\varsigma, \gamma(\varsigma))-\mathcal{A}(\varsigma, \overline{\gamma}(\varsigma))\|(\varsigma-\varsigma_{q-1})^{\kappa-1}d\varsigma\\ &&\leq L_{\theta}e^{|\varphi(\mathcal{B})+\theta|\frac{(\iota-\varsigma_{q-1})^{\kappa}}{\kappa}} \|\gamma_{q-1}-\overline{\gamma}_{q-1}\| +\int_{\varsigma_{q-1}}^{\iota}L_{\theta}e^{|\varphi(\mathcal{B})+\theta|\big(\frac{(\iota-\varsigma_{q-1})^{\kappa}}{\kappa}-\frac{(\varsigma-\varsigma_{q-1})^{\kappa}}{\kappa}\big)} L_{\mathcal{A}}\|\gamma(\varsigma)-\overline{\gamma}(\varsigma)\|(\varsigma-\varsigma_{q-1})^{\kappa-1}d\varsigma, \end{eqnarray*}

    then

    \begin{eqnarray*} e^{-|\varphi(\mathcal{B})+\theta|\frac{(\iota-\varsigma_{q-1})^{\kappa}}{\kappa}} \|\gamma(\iota)-\overline{\gamma}(\iota)\| \leq L_{\theta} \|\gamma_{q-1}-\overline{\gamma}_{q-1}\|+\int_{\varsigma_{q-1}}^{\iota}L_{\theta}e^{-|\varphi(\mathcal{B})+\theta|\frac{(\varsigma-\varsigma_{q-1})^{\kappa}}{\kappa}} L_{\mathcal{A}}\|\gamma(\varsigma)-\overline{\gamma}(\varsigma)\|(\varsigma-\varsigma_{q-1})^{\kappa-1}d\varsigma. \end{eqnarray*}

    Using Lemma 2.9, one has

    \begin{eqnarray*} e^{-|\varphi(\mathcal{B})+\theta|\frac{(\iota-\varsigma_{q-1})^{\kappa}}{\kappa}} \|\gamma(\iota)-\overline{\gamma}(\iota)\| \leq L_{\theta} \|\gamma_{q-1}-\overline{\gamma}_{q-1}\|e^{L_{\theta} L_{\mathcal{A}}\frac{(\iota-\varsigma_{q-1})^{\kappa}}{\kappa} }, \end{eqnarray*}

    and

    \begin{eqnarray*} \|\gamma(\iota)-\overline{\gamma}(\iota)\| &\leq &L_{\theta} \|\gamma_{q-1}-\overline{\gamma}_{q-1}\|e^{(L_{\theta} L_{\mathcal{A}}+|\varphi(\mathcal{B})+\theta|)\frac{(\iota-\varsigma_{q-1})^{\kappa}}{\kappa} }\\ &\leq & L_{\theta}( \varrho L_{\theta})^{q-1} \|\gamma_{\mathcal{Q}}-\overline{\gamma}_{\mathcal{Q}}\|e^{(L_{\theta} L_{\mathcal{A}}+|\varphi(\mathcal{B})+\theta|)\sum\limits_{l = 1}^{q-1}\frac{(\iota_l-\varsigma_{l-1})^{\kappa}}{\kappa}}e^{(L_{\theta} L_{\mathcal{A}}+|\varphi(\mathcal{B})+\theta|)\frac{(\iota-\varsigma_{q-1})^{\kappa}}{\kappa} }. \end{eqnarray*}

    Next, (5.2) implies

    \begin{eqnarray*} \|\gamma_{q}-\overline{\gamma}_{q}\|& = & \|\mathcal{G}_{q}( \gamma_{q-1})-\mathcal{G}_{1}(\overline{ \gamma}_{q-1})\|\\ &\leq& \varrho \|\gamma(\iota_q)-\overline{\gamma}(\iota_q)\|\\ &\leq& ( \varrho L_{\theta})^{q} \|\gamma_{\mathcal{Q}}-\overline{\gamma}_{\mathcal{Q}}\|e^{(L_{\theta} L_{\mathcal{A}}+|\varphi(\mathcal{B})+\theta|)\sum\limits_{l = 1}^{q}\frac{(\iota_l-\varsigma_{l-1})^{\kappa}}{\kappa}}. \end{eqnarray*}

    Hence,

    \begin{eqnarray*} \|\mathcal{G}\gamma_{\mathcal{Q}}-\mathcal{G}\overline{\gamma}_{\mathcal{Q}}\| \leq\varpi^{q} \|\gamma_{\mathcal{Q}}-\overline{\gamma}_{\mathcal{Q}}\|e^{(L_{\theta} L_{\mathcal{A}}+|\varphi(\mathcal{B})+\theta|)\sum\limits_{l = 1}^{q}\frac{(\iota_l-\varsigma_{l-1})^{\kappa}}{\kappa}}. \end{eqnarray*}

    Since

    \varpi^{q}e^{(L_{\theta} L_{\mathcal{A}}+|\varphi(\mathcal{B})+\theta|)\sum\limits_{l = 1}^{q}\frac{(\iota_l-\varsigma_{l-1})^{\kappa}}{\kappa}} < 1,

    \mathcal{G} is a contraction mapping. Then, \mathcal{G} has a unique fixed point such that \mathcal{G}\gamma_{\mathcal{Q}} = \gamma_{\mathcal{Q}} .

    Theorem 5.4. Let (G_{1}) , (G_{2}) , (G_{4}) , and (G_{5}) be satisfied. If

    \begin{eqnarray*} \rho: = \varpi^{q}\prod\limits_{l = 1}^{q}\chi _{l} < 1, \end{eqnarray*}

    the Eq (1.3) has at least one \delta- periodic solution and \| \gamma_{\mathcal{Q}}\|\leq\psi: = \frac{\widetilde{\rho}}{1-\rho}, where

    \begin{eqnarray*} \widetilde{\rho}& = &\frac{\overline{\mathcal{A}}}{|\psi(\mathcal{B})+\theta|}\sum\limits_{l = 1}^{q-1}\prod\limits_{j = l}^{q-1}\varpi^{q-j+1}\chi _{q}\dots\chi _{j+1}(\chi _{j}-1) \nonumber\\ &&+\bigg(\sum\limits_{l = 2}^{q}\prod\limits_{j = l}^{q}\varpi^{q-j+1}\chi _{q}\dots\chi _{j}+1\bigg)\overline{b}+\frac{\overline{\mathcal{A}}\varpi}{|\psi(\mathcal{B})+\theta|}(\chi _{q}-1). \end{eqnarray*}

    Proof. \| \gamma_{\mathcal{Q}}\|\leq\psi and (5.3) imply

    \begin{eqnarray*} \|\mathcal{G}( \gamma_{\mathcal{Q}})\|\leq \rho\| \gamma_{\mathcal{Q}}\|+ \widetilde{\rho}\leq\psi. \end{eqnarray*}

    Then \mathcal{G}:\overline{B(0, \psi)}\to\overline{B(0, \psi)} . Brouwers fixed-point theorem implies that \mathcal{G} has fixed points, and Theorem 5.2 obtains that (1.3) has at least one \delta- periodic solution.

    Example 6.1 Consider (1.1). Let \varsigma_{0} = \frac{1}{2}, \; \kappa = \frac{1}{2}, \; \varsigma_{l} = l+\frac{1}{2}, \; \iota_{l} = l, \; q = 1, \; \delta = 1, \; l\in\mathbb{N}, and

    \begin{eqnarray*} &\; &\mathcal{B} = \left( \begin{array}{cc} -10 & 0 \\ 0 & -5\\ \end{array} \right)\in\mathbb{R}^{2\times2}, \; \mathcal{C}_{l} = \left( \begin{array}{cc} e^{2}-1 &0 \\ 0 & e^{2}-1 \\ \end{array} \right)\in\mathbb{R}^{2\times2},\\ &\; &\gamma_{\mathcal{Q}} = \left( \begin{array}{c} 0 \\ 1\\ \end{array} \right)\in\mathbb{R}^{2}. \end{eqnarray*}

    And we can obtain

    \begin{eqnarray*} e^{\mathcal{B}\iota} = \left( \begin{array}{cc} e^{-10\iota} & 0 \\ 0 & e^{-5\iota} \end{array} \right),\; \mathcal{I}+\mathcal{C}_{l} = \left( \begin{array}{cc} e^{2} & 0 \\ 0 & e^{2} \end{array} \right), \end{eqnarray*}

    so \|\mathcal{I}+\mathcal{C}_{l}\| = e^{2} , \ln\varrho = 2 and

    \begin{eqnarray*} \Xi(\iota,\mathcal{Q}) & = &\prod\limits_{l = 1}^{\phi(\mathcal{Q},\iota)}(\mathcal{I}+\mathcal{C}_{l})e^{\mathcal{B}\big[\big(\frac{(\iota-\varsigma_{\phi(\mathcal{Q},\iota)})^{\kappa}}{\kappa}\big)_{+}+\sum\limits_{l = 0}^{\phi(\mathcal{Q},\iota)-1}\frac{(\iota_{l+1}-\varsigma_{l})^{\kappa}}{\kappa}\big]}\\ & = &\left( \begin{array}{cc} e^{2 \phi(\mathcal{Q},\iota)}& 0 \\ 0 & e^{2\phi(\mathcal{Q},\iota)} \end{array} \right) \times\left( \begin{array}{cc} e^{-10(2(\iota-(\phi(\mathcal{Q},\iota)+\frac{1}{2}))^{\frac{1}{2}}_{+}+\phi(\mathcal{Q},\iota)\sqrt{2})} & 0 \\ 0 & e^{-5(2(\iota-(\phi(\mathcal{Q},\iota)+\frac{1}{2}))^{\frac{1}{2}}_{+}+\phi(\mathcal{Q},\iota)\sqrt{2})} \end{array} \right) \end{eqnarray*}

    Then, we set \varepsilon = \theta = 0.5 and obtain

    \begin{eqnarray*} \|\Xi(\iota,\mathcal{Q})\|& = &e^{-5(2(\iota-(\phi(\mathcal{Q},\iota)+\frac{1}{2}))^{\frac{1}{2}}_{+}+\phi(\mathcal{Q},\iota)\sqrt{2})}e^{2\phi(\mathcal{Q},\iota)}\\ &\leq&e^{4.5\sqrt{2}}e^{\phi(\mathcal{Q},\iota)(2-4.5\sqrt{2})}\\ &\leq&e^{4.5\sqrt{2}} e^{-(0.5-1)(2-4.5\sqrt{2})(\iota-\frac{1}{2})}, \end{eqnarray*}

    in which L = e^{4.5\sqrt{2}} > 1 and v = 0.5(4.5\sqrt{2}-2) > 0 .

    Thus, (1.1) is exponentially stable with L = e^{4.5\sqrt{2}} and v = 0.5(4.5\sqrt{2}-2) .

    Further,

    \begin{align*} &\Xi(\mathcal{Q}+\delta,\mathcal{Q}) = (\mathcal{I}+\mathcal{C}_{1})e^{\mathcal{B}\frac{(\iota_{1}-\varsigma_{0})^{\kappa}}{\kappa}} = \left( \begin{array}{cc} e^{2}& 0 \\ 0 & e^{2} \end{array} \right)\left( \begin{array}{cc} e^{-10\sqrt{2}} & 0 \\ 0 & e^{-5\sqrt{2}} \end{array} \right) = \left( \begin{array}{cc} e^{2-10\sqrt{2}} & 0 \\ 0 & e^{2-5\sqrt{2}} \end{array} \right).\\ &rank(\mathcal{I}-\Xi(\mathcal{Q}+\delta,\mathcal{Q})) = n. \end{align*}

    Then (1.1) only has the trivial 1- periodic solution.

    Example 6.2 Consider (1.2) and \kappa = \frac{1}{2}, \varsigma_{0} = 0, \varsigma_{l} = l, \iota_{l} = l-\frac{1}{2}, \delta = 1, q = 1, l\in N ,

    \begin{eqnarray*} a(\iota) = \left( \begin{array}{c} \iota-\varsigma_l\\ 0 \\ \end{array} \right),\; \iota\in(\varsigma_l,\iota_{l+1}],\; l\in\mathbb{N}. \end{eqnarray*}

    Set

    \begin{eqnarray*} \mathcal{B} = \left( \begin{array}{cc} 1 & 2 \\ 0 & 1 \end{array} \right), \mathcal{C}_{l} = \left( \begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right), b_{l} = \left( \begin{array}{cc} 1 \\ 0 \end{array} \right). \end{eqnarray*}

    It is easily obtain

    \begin{eqnarray*} &&\Xi(\iota,\varsigma) = \prod\limits_{l = \phi(\mathcal{Q},\varsigma)+1}^{\phi(\mathcal{Q},\iota)}(\mathcal{I}+\mathcal{C}_{l})e^{\mathcal{B}\big[\big(\frac{(\iota-\varsigma_{\phi(\mathcal{Q},\iota)})^{\kappa}}{\kappa}\big)_{+}-\big(\frac{(\varsigma-\varsigma_{\phi(\mathcal{Q},\varsigma)})^{\kappa}}{\kappa}\big)_{+}+\sum\limits_{l = \phi(\mathcal{Q},\varsigma)}^{\phi(\mathcal{Q},\iota)-1}\frac{(\iota_{l+1}-\varsigma_{l})^{\kappa}}{\kappa}\big]}\\ && = \left( \begin{array}{cc} 1 & \phi(\mathcal{Q},\iota)-\phi(\mathcal{Q},\varsigma) \\ 0 & 1 \\ \end{array} \right)e^{\big(2(\iota-\varsigma_{\phi(\mathcal{Q},\iota)})^{\kappa}\big)_{+}-\big(2(\varsigma-\varsigma_{\phi(\mathcal{Q},\varsigma)})^{\kappa}\big)_{+}+\sum\limits_{l = \phi(\mathcal{Q},\varsigma)}^{\phi(\mathcal{Q},\iota)-1}2(\iota_{l+1}-\varsigma_{l})^{\kappa}} \\ &&\times\left( \begin{array}{cc} 1& \big(4(\iota-\varsigma_{\phi(\mathcal{Q},\iota)})^{\kappa}\big)_{+}-\big(4(\varsigma-\varsigma_{\phi(\mathcal{Q},\varsigma)})^{\kappa}\big)_{+}+\sum\limits_{l = \phi(\mathcal{Q},\varsigma)}^{\phi(\mathcal{Q},\iota)-1}4(\iota_{l+1}-\varsigma_{l})^{\kappa} \\ 0 & 1\\ \end{array} \right)\\ && = e^{\big(2(\iota-\varsigma_{\phi(\mathcal{Q},\iota)})^{\kappa}\big)_{+}-\big(2(\varsigma-\varsigma_{\phi(\mathcal{Q},\varsigma)})^{\kappa}\big)_{+}+\sum\limits_{l = \phi(\mathcal{Q},\varsigma)}^{\phi(\mathcal{Q},\iota)-1}2(\iota_{l+1}-\varsigma_{l})^{\kappa}}\\ &&\times \left( \begin{array}{cc} 1 & \big(4(\iota-\varsigma_{\phi(\mathcal{Q},\iota)})^{\kappa}\big)_{+}-\big(4(\varsigma-\varsigma_{\phi(\mathcal{Q},\varsigma)})^{\kappa}\big)_{+}+\sum\limits_{l = \phi(\mathcal{Q},\varsigma)}^{\phi(\mathcal{Q},\iota)-1}4(\iota_{l+1}-\varsigma_{l})^{\kappa}+\phi(\mathcal{Q},\iota)-\phi(\mathcal{Q},\varsigma)\\ 0 & 1 \end{array} \right). \end{eqnarray*}

    Next,

    \begin{eqnarray*} \Gamma_{q}& = &\int_{\varsigma_{0}}^{\iota_{1}}\Xi(1,\varsigma)a(\varsigma)(\varsigma-\varsigma_{0})^{\kappa-1}d\varsigma+\sum\limits_{l = 1}^{\phi(\mathcal{Q},1)}\Xi(1,\varsigma_{l})b_{l}\\ & = &\left( \begin{array}{c} \frac{e^{\sqrt{2}}}{2}- \frac{\sqrt{2}}{2} \\ 0 \\ \end{array} \right) . \end{eqnarray*}

    By

    \begin{eqnarray*} \Xi(1,\varsigma_{0}) = \left( \begin{array}{cc} e^{\sqrt{2}} & e^{\sqrt{2}}+2^{1.5}e^{\sqrt{2}} \\ 0 & e^{\sqrt{2}} \\ \end{array} \right), \end{eqnarray*}

    and

    \begin{eqnarray*} (\mathcal{I}-\Xi(1,\varsigma_{0}))^{-1} = \left( \begin{array}{cc} \frac{1}{1-e^{\sqrt{2}} } & -\frac{e^{\sqrt{2}}+2^{1.5}e^{\sqrt{2}} }{1-2e^{\sqrt{2}}+e^{2\sqrt{2}}} \\ 0 & \frac{1}{1-e^{\sqrt{2}} } \\ \end{array} \right), \end{eqnarray*}

    so

    \begin{eqnarray*} \gamma_{\mathcal{Q}} = (\mathcal{I}-\Xi(1,\varsigma_{0}))^{-1}\Gamma_{q} = \left( \begin{array}{c} \frac{ \frac{e^{\sqrt{2}}}{2}- \frac{\sqrt{2}}{2}}{1-e^{\sqrt{2}} }\\ 0\\ \end{array} \right) . \end{eqnarray*}

    Thus, for t\in(\varsigma_{\phi(\mathcal{Q}, \iota)}, \iota_{\phi(\mathcal{Q}, \iota)+1}] ,

    \begin{align*} \gamma(\iota,\mathcal{Q},\gamma_{\mathcal{Q}}) & = \Xi(\iota,\mathcal{Q})\gamma_{\mathcal{Q}}+\sum\limits_{l = 0}^{\phi(\mathcal{Q},\iota)-1}\int_{\varsigma_{l}}^{\iota_{l+1}}\Xi(\iota,\varsigma)a(\varsigma)(\varsigma-\varsigma_{l})^{\kappa-1}d\varsigma \\ &+\int_{\varsigma_{\phi(\mathcal{Q},\iota)}}^{\iota}\Xi(\iota,\varsigma)a(\varsigma)(\varsigma-\varsigma_{\phi(\mathcal{Q},\iota)})^{\kappa-1}d\varsigma+\sum\limits_{l = 1}^{\phi(\mathcal{Q},\iota)}\Xi(\iota,\varsigma_{l})b_{l}\\ & = e^{2(\iota-\varsigma_{\phi(\mathcal{Q},\iota)})^{\frac{1}{2}}+\sqrt{2}\phi(\mathcal{Q},\iota)}\left( \begin{array}{c} \frac{ \frac{e^{\sqrt{2}}}{2}- \frac{\sqrt{2}}{2}}{1-e^{\sqrt{2}} } \\ 0\\ \end{array} \right) \\ &+\sum\limits_{l = 0}^{\phi(\mathcal{Q},\iota)-1}\int_{\varsigma_{l}}^{\iota_{l+1}}\left( \begin{array}{c} e^{2(\iota-\varsigma_{\phi(\mathcal{Q},\iota)})^{\frac{1}{2}}-2(\varsigma-\varsigma_{\phi(\mathcal{Q},\varsigma)})^{\frac{1}{2}}+\sum\limits_{l = \phi(\mathcal{Q},\varsigma)}^{\phi(\mathcal{Q},\iota)-1}2(\iota_{l+1}-\varsigma_{l})^{\frac{1}{2}}} (\varsigma-\varsigma_{l})^{\frac{1}{2}} \\ 0 \\ \end{array} \right) d\varsigma\\ &+\int_{\varsigma_{\phi(\mathcal{Q},\iota)}}^{\iota}\left( \begin{array}{c} e^{2(\iota-\varsigma_{\phi(\mathcal{Q},\iota)})^{\frac{1}{2}}-2(\varsigma-\varsigma_{\phi(\mathcal{Q},\varsigma)})^{\frac{1}{2}}} (\varsigma-\varsigma_{\phi(\mathcal{Q},\iota)})^{\frac{1}{2}} \\ 0 \\ \end{array} \right)d\varsigma\\ &+\sum\limits_{l = 1}^{\phi(\mathcal{Q},\iota)} \left( \begin{array}{c}e^{2(\iota-\varsigma_{\phi(\mathcal{Q},\iota)})^{\frac{1}{2}}+\sum\limits_{l = \phi(\mathcal{Q},\varsigma_l)}^{\phi(\mathcal{Q},\iota)-1}2(\iota_{l+1}-\varsigma_{l})^{\frac{1}{2}}} \\ 0 \\ \end{array} \right)\end{align*}
    \begin{align*} & = e^{2(\iota-\varsigma_{\phi(\mathcal{Q},\iota)})^{\frac{1}{2}}}\bigg[\left( \begin{array}{c} e^{\sqrt{2}\phi(\mathcal{Q},\iota)} \frac{ \frac{e^{\sqrt{2}}}{2}- \frac{\sqrt{2}}{2}}{1-e^{\sqrt{2}} }\\ 0\\ \end{array} \right) \\ &+\sum\limits_{l = 0}^{\phi(\mathcal{Q},\iota)-1}\int_{\varsigma_{l}}^{\iota_{l+1}}\left( \begin{array}{c} e^{-2(\varsigma-\varsigma_{\phi(\mathcal{Q},\varsigma)})^{\frac{1}{2}}+\sum\limits_{l = \phi(\mathcal{Q},\varsigma)}^{\phi(\mathcal{Q},\iota)-1}2(\iota_{l+1}-\varsigma_{l})^{\frac{1}{2}}} (\varsigma-\varsigma_{l})^{\frac{1}{2}}\\ 0 \\ \end{array} \right) d\varsigma\\ &+\int_{\varsigma_{\phi(\mathcal{Q},\iota)}}^{\iota}\left( \begin{array}{c} e^{-2(\varsigma-\varsigma_{\phi(\mathcal{Q},\varsigma)})^{\frac{1}{2}}}(\varsigma-\varsigma_{\phi(\mathcal{Q},\iota)})^{\frac{1}{2}} \\ 0 \\ \end{array} \right)d\varsigma+\sum\limits_{l = 1}^{\phi(\mathcal{Q},\iota)} \left( \begin{array}{c}e^{\sum\limits_{l = \phi(\mathcal{Q},\varsigma_l)}^{\phi(\mathcal{Q},\iota)-1}2(\iota_{l+1}-\varsigma_{l})^{\frac{1}{2}}} \\ 0 \\ \end{array} \right) \bigg]\\ & = e^{2(\iota-\varsigma_{\phi(\mathcal{Q},\iota)})^{\frac{1}{2}}}\\ &\times\left( \begin{array}{c} e^{\sqrt{2}\phi(\mathcal{Q},\iota)} \frac{ \frac{e^{\sqrt{2}}}{2}- \frac{\sqrt{2}}{2}}{1-e^{\sqrt{2}} }+(\frac{1}{2}-\frac{\sqrt{2}}{2}e^{-\sqrt{2}}-e^{-\sqrt{2}})\times\frac{e^{\sqrt{2}}(1-e^{\sqrt{2}\phi(\mathcal{Q},\iota)})}{1-e^{\sqrt{2}}} \\ 0 \\ \end{array} \right) \\ &+e^{2(\iota-\varsigma_{\phi(\mathcal{Q},\iota)})^{\frac{1}{2}}}\\ &\times\left( \begin{array}{c} -(\iota-\varsigma_{\phi(\mathcal{Q},\iota)})e^{-2(\iota-\varsigma_{\phi(\mathcal{Q},\iota)})^{\frac{1}{2}}}- (\iota-\varsigma_{\phi(\mathcal{Q},\iota)})^{\frac{1}{2}}e^{-2(\iota-\varsigma_{\phi(\mathcal{Q},\iota)})^{\frac{1}{2}}}- \frac{1}{2}e^{-2(\iota-\varsigma_{\phi(\mathcal{Q},\iota)})^{\frac{1}{2}}}+\frac{1}{2} \\ 0 \\ \end{array} \right)\\ &+ e^{2(\iota-\varsigma_{\phi(\mathcal{Q},\iota)})^{\frac{1}{2}}}\left( \begin{array}{c}\frac{1-e^{\sqrt{2}\phi(\mathcal{Q},\iota)}}{1-e^{\sqrt{2}}}\\ 0 \\ \end{array} \right)\\ & = \left( \begin{array}{c} \frac{ \frac{e^{\sqrt{2}}}{2}- \frac{\sqrt{2}}{2}}{1-e^{\sqrt{2}} }e^{2(\iota-\varsigma_{\phi(\mathcal{Q},\iota)})^{\frac{1}{2}}}-(\iota-\varsigma_{\phi(\mathcal{Q},\iota)})- (\iota-\varsigma_{\phi(\mathcal{Q},\iota)})^{\frac{1}{2}}- \frac{1}{2}+\frac{1}{2}e^{2(\iota-\varsigma_{\phi(\mathcal{Q},\iota)})^{\frac{1}{2}}} \\ 0 \\ \end{array} \right) . \end{align*}

    Then

    \begin{eqnarray*} \gamma(\iota+1,0,\gamma_{\mathcal{Q}}) = \gamma(\iota,0,\gamma_{\mathcal{Q}}), \end{eqnarray*}

    so there is a 1 -periodic solution. The component of the solution is in Figure 1. Further,

    \begin{eqnarray*} \|\gamma(\iota)\|\leq \frac{ \frac{e^{\sqrt{2}}}{2}- \frac{\sqrt{2}}{2}}{1-e^{\sqrt{2}} }e^{\sqrt{2}}+\frac{1}{2}e^{\sqrt{2}} , \end{eqnarray*}

    and Theorem 4.2 is verified.

    Example 6.3 Consider (1.3) and \kappa = \frac{1}{2}, \varsigma_{0} = 0, \varsigma_{l} = l, \iota_{l} = l-\frac{1}{2}, \delta = 1, q = 1, l\in N ,

    \begin{eqnarray*} \mathcal{A}(\iota,\gamma(\iota)) = \left( \begin{array}{c} (\iota-\varsigma_{l})\cos \gamma\\ 0 \\ \end{array} \right),\; \iota\in(\varsigma_l,\iota_{l+1}],\; l\in\mathbb{N}. \end{eqnarray*}

    Set

    \begin{eqnarray*} \mathcal{B} = \left( \begin{array}{cc} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{array} \right), \mathcal{C}_{l} = \left( \begin{array}{cc} -\frac{9}{10} & 0 \\ 0 & -\frac{9}{10} \end{array} \right), b_{l} = \left( \begin{array}{cc} 1 \\ 1 \end{array} \right),\gamma_{Q} = \left( \begin{array}{cc} 1 \\ 0 \end{array} \right). \end{eqnarray*}
    Figure 1.  The component of the solution for Example 6.2.

    Next, \overline{\mathcal{A}} = \frac{1}{2} , \chi_{1} = e^{|\varphi(\mathcal{B})+\theta|\frac{(\iota_{1}-\varsigma_{0})^{\kappa}}{\kappa}} = e^{\sqrt{2}} , \varpi = \varrho L_{\theta} = \frac{1}{10}, \rho: = \varpi^{q}\prod\limits_{l = 1}^{q}\chi _{l} = \frac{e^{\sqrt{2}}}{10} < 1 and

    \begin{eqnarray*} \widetilde{\rho} = \frac{\overline{\mathcal{A}}\varpi}{|\varphi(\mathcal{B})+\theta|}(\chi _{1}-1)+\overline{b} = \frac{e^{\sqrt{2}}-1}{20}+1. \end{eqnarray*}

    Thus, (1.3) has at least one 1- periodic solution and 1 = \|\gamma_{Q}\| < \psi = 1.96 .

    In this paper, we investigate the existence and stability of solutions for periodic conformable systems with non-instantaneous impulses. A key focus is the introduction and analysis of the conformable Cauchy matrix and its properties. We conduct separate studies on linear homogeneous, linear nonhomogeneous, and nonlinear systems. For the linear nonhomogeneous system, we employ the constant variation method to derive the solution expression. Moreover, we discuss the existence of periodic solutions for the linear nonhomogeneous system under two conditions. Regarding the nonlinear system, the existence and uniqueness of periodic solutions are transformed into the existence and uniqueness of fixed points of a corresponding operator. This transformation enables us to utilize related fixed-point theory to analyze the existence of periodic solutions.

    The author declares that he has not used Artificial Intelligence (AI) tools in the creation of this article.

    The author is grateful to the referees for their careful reading of the manuscript and valuable comments. The author thanks the help from the editor too.

    The author declares that he has no conflict of interest.



    [1] E. Hernández, D. O'Regan, On a new class of abstract impulsive differential equations, Porc. Amer. Math. Soc., 141 (2013), 1641–1649. https://doi.org/10.1090/S0002-9939-2012-11613-2 doi: 10.1090/S0002-9939-2012-11613-2
    [2] M. U. Akhmet, J. Alzabut, A. Zafer, Perron's theorem for linear impulsive differential equations with distributed delay, J. Comput. Appl. Math., 193 (2006), 204–218. https://doi.org/10.1016/j.cam.2005.06.004 doi: 10.1016/j.cam.2005.06.004
    [3] S. I. Nenov, Impulsive controllability and optimization problems in population dynamics, Nonlinear Anal. Theory Meth. Appl., 36 (1999), 881–890. https://doi.org/10.1016/S0362-546X(97)00627-5 doi: 10.1016/S0362-546X(97)00627-5
    [4] J. Wang, M. Li, D. O'Regan, Lyapunov regularity and stability of linear non-instantaneous impulsive differential systems, IMA J. Appl. Math., 84 (2019), 712–747. https://doi.org/10.1093/imamat/hxz012 doi: 10.1093/imamat/hxz012
    [5] R. Agarwal, S. Shristova, D. O'Regan, Ulam type stability results for non-instantaneous impulsive differential equations with finite state dependent delay, Dyn. Syst. Appl., 28 (2018), 47–61. https://doi.org/10.12732/dsa.v28i1.3 doi: 10.12732/dsa.v28i1.3
    [6] V. D. Milman, A. D. Myshkis, On the stability of motion in the presence of impulses, Sibirskii Mate. Zhurnal, 1 (1960), 233–237.
    [7] Z. You, M. Fečkan, J. Wang, D. O'Regan, Relative controllability of impulsive multi-delay differential systems, Nonlinear Anal. Modell. Control, 27 (2022), 70–90. https://doi.org/10.15388/namc.2022.27.24623 doi: 10.15388/namc.2022.27.24623
    [8] M. Malik, A. Kumar, M. Fečkan, Existence, uniqueness and stability of solutions to second order nonlinear differential equations with non-instantaneous impulses, J. King Saud Uni. Sci., 30 (2018), 204–213. https://doi.org/10.1016/j.jksus.2016.11.005 doi: 10.1016/j.jksus.2016.11.005
    [9] J. Wang, Y. Tian, M. Fečkan, Stability analysis for a general class of non-instantaneous impulsive differential equations, Mediterr. J. Math., 14 (2017), 46. https://doi.org/10.1007/s00009-017-0867-0 doi: 10.1007/s00009-017-0867-0
    [10] T. Zhang, H. Qu, J. Zhou, Asymptotically almost periodic synchronization in fuzzy competitive neural networks with Caputo-Fabrizio operator, Fuzzy Sets Syst., 471 (2023), 108676. https://doi.org/10.1016/j.fss.2023.108676 doi: 10.1016/j.fss.2023.108676
    [11] A. Ivanov, S. Shelyag, Periodic solutions in a simple delay differential equation, Math. Comput. Appl., 29 (2024), 36. https://doi.org/10.3390/mca29030036 doi: 10.3390/mca29030036
    [12] Y. Tian, J. Wang, Y. Zhou, Almost periodic solutions for a class of non-instantaneous impulsive differential equations, Quaest. Math., 42 (2019), 885–905. https://doi.org/10.2989/16073606.2018.1499562 doi: 10.2989/16073606.2018.1499562
    [13] K. Liu, M. Fečkan, D. O'Regan, J. Wang, (\omega, c)-periodic solutions for time-varying non-instantaneous impulsive differential systems, Appl. Anal., 101 (2022), 5469–5489. https://doi.org/10.1080/00036811.2021.1895123 doi: 10.1080/00036811.2021.1895123
    [14] P. Yang, J. Wang, M. Fečkan, Boundedness, periodicity, and conditional stability of noninstantaneous impulsive evolution equations, Math. Meth. Appl. Sci., 43 (2020), 5905–5926. https://doi.org/10.1002/mma.6332 doi: 10.1002/mma.6332
    [15] P. Yang, J. Wang, D. O'Regan, Periodicity of non-homogeneous trajectories for non-instantaneous impulsive heat equations, Elect. J. Differ. Equ., 2020 (2020), 132. https://doi.org/10.58997/ejde.2020.18 doi: 10.58997/ejde.2020.18
    [16] K. Liu, J. Wang, D. O'Regan, M. Fečkan, A new class of (\omega, c)-periodic non-instantaneous impulsive differential equations, Mediterr. J. Math., 17 (2020), 155. https://doi.org/10.1007/s00009-020-01574-8 doi: 10.1007/s00009-020-01574-8
    [17] E. Alvarez, A. Gómez, M. Pinto, (\omega, c)-periodic functions and mild solutions to abstract fractional integro-differential equations, Elect. J. Qual. Theory Differ. Equ., 16 (2018), 1–8.
    [18] T. Zhang, Y. Li, Global exponential stability of discrete-time almost automorphic Caputo-Fabrizio BAM fuzzy neural networks via exponential Euler technique, Knowledge-Based Syst., 246 (2022), 108675. https://doi.org/10.1016/j.knosys.2022.108675 doi: 10.1016/j.knosys.2022.108675
    [19] M. Osman, M. Marwan, S. O. Shah, L. Loudahi, M. Samar, E. Bittaye, et al., Local fuzzy fractional partial differential equations in the realm of fractal calculus with local fractional derivatives, Fractal Fract., 7 (2023), 851. https://doi.org/10.3390/fractalfract7120851 doi: 10.3390/fractalfract7120851
    [20] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016
    [21] M. Abul-Ez, M. Zayed, A. Youssef, M. De Sen, On conformable fractional Legendre polynomials and their convergence properties with applications, Alex. Eng. J., 59 (2020), 5231–5245. https://doi.org/10.1016/j.aej.2020.09.052 doi: 10.1016/j.aej.2020.09.052
    [22] S. Mehmood, F. Zafar, N. Yasmin, Hermite-Hadamard-Fejer inequalities for generalized conformable fractional integrals, Math. Meth. Appl. Sci., 44 (2020), 3746–3758. https://doi.org/10.1002/mma.6978 doi: 10.1002/mma.6978
    [23] M. Ayata, O. Ozkan, A new application of conformable Laplace decomposition method for fractional Newell-Whitehead-Segel equation, AIMS Math., 5 (2020), 7402–7412. https://doi.org/10.3934/math.2020474 doi: 10.3934/math.2020474
    [24] Y. Ding, D. O'Regan, J. Wang, Stability analysis for conformable non-instantaneous impulsive differential equations, Bull. Iran. Math. Soc., 48 (2022), 1435–1459. https://doi.org/10.1007/s41980-021-00595-7 doi: 10.1007/s41980-021-00595-7
    [25] W. Qiu, J. Wang, D. O'Regan, Existence and Ulam stability of solutions for conformable impulsive differential equations, Bull. Iran. Math. Soc., 46 (2020), 1613–1637. https://doi.org/10.1007/s41980-019-00347-8 doi: 10.1007/s41980-019-00347-8
    [26] J. Rosales-García, J. A. Andrade-Lucio, O. Shulika, Conformable derivative applied to experimental Newton's law of cooling, Rev. Mex. Fis., 66 (2020), 224–227. https://doi.org/10.31349/revmexfis.66.224 doi: 10.31349/revmexfis.66.224
    [27] A. Nazir, N. Ahmed, U. Khan, S. T. Mohyud-Din, K. S. Nisar, I. Khan, An advanced version of a conformable mathematical model of Ebola virus disease in Africa, Alex. Eng. J., 59 (2020), 3261–3268. https://doi.org/10.1016/j.aej.2020.08.050 doi: 10.1016/j.aej.2020.08.050
    [28] F. Usta, M. Z. Sarıkaya, The analytical solution of Van der Pol and Lienard differential equations within conformable fractional operator by retarded integral inequalities, Demonst. Math., 52 (2019), 204–212. https://doi.org/10.1515/dema-2019-0017 doi: 10.1515/dema-2019-0017
    [29] A. G. Talafha, S. M. Alqaraleh, M. Al-Smadi, S. Hadid, S. Momani, Analytic solutions for a modified fractional three wave interaction equations with conformable derivative by unified method, Alex. Eng. J., 59 (2020), 3731–3739. https://doi.org/10.1016/j.aej.2020.06.027 doi: 10.1016/j.aej.2020.06.027
    [30] M. Bohner, V. F. Hatipoǧlu, Dynamic cobweb models with conformable fractional derivatives, Nonlinear Anal. Hybrid Syst., 32 (2019), 157–167. https://doi.org/10.1016/j.nahs.2018.09.004 doi: 10.1016/j.nahs.2018.09.004
    [31] M. Li, J. Wang, D. O'Regan, Existence and Ulam's stability for conformable fractional differential equations with constant coefficients, Bull. Malays. Math. Sci. Soc., 42 (2019), 1791–1812. https://doi.org/10.1007/s40840-017-0576-7 doi: 10.1007/s40840-017-0576-7
    [32] M. Z. Sarıkaya, F. Usta, On comparison theorems for conformable fractional differential equations, Int. J. Anal. Appl., 12 (2016), 207–214. https://doi.org/10.28924/2291-8639 doi: 10.28924/2291-8639
    [33] A. M. Samoilenko, N. A. Perestyuk, Impulsive differential equations, Singapore: World Scientific, 1995.
    [34] D. Bainov, P. Simeonov, Integral inequalities and applications, Holland: Kluwer Academic Publishers, 1992.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(444) PDF downloads(29) Cited by(0)

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog