Research article Special Issues

Single-index logistic model for high-dimensional group testing data

  • † Changfu Yang and Wenxin Zhou contributed equally to this work.
  • Group testing is an efficient screening method that reduces the number of tests by pooling multiple samples, making it especially effective in low-prevalence settings. This strategy gained significant attention during the COVID-19 pandemic, and has since been applied to detect various infectious diseases, including HIV, chlamydia, gonorrhea, influenza, and Zika virus. In this paper, we introduce a semi-parametric logistic single-index model for analyzing high-dimensional group testing data, which is particularly flexible in capturing complex nonlinear relationships. The proposed method achieves variable selection by parameter regularization, which proves especially beneficial for extracting relevant information from high-dimensional data. The performance of the model is evaluated through simulations across four group testing strategies: master pool testing, Dorfman testing, halving testing, and array testing. Further validation is provided using real-world data. The results demonstrate that our approach offers a flexible and robust tool for analyzing high-dimensional group testing data, with important applications in epidemiology and public health.

    Citation: Changfu Yang, Wenxin Zhou, Wenjun Xiong, Junjian Zhang, Juan Ding. Single-index logistic model for high-dimensional group testing data[J]. AIMS Mathematics, 2025, 10(2): 3523-3560. doi: 10.3934/math.2025163

    Related Papers:

    [1] Muqeem Ahmad, Mobin Ahmad, Fatemah Mofarreh . Bi-slant lightlike submanifolds of golden semi-Riemannian manifolds. AIMS Mathematics, 2023, 8(8): 19526-19545. doi: 10.3934/math.2023996
    [2] Aliya Naaz Siddiqui, Meraj Ali Khan, Amira Ishan . Contact CR δ-invariant: an optimal estimate for Sasakian statistical manifolds. AIMS Mathematics, 2024, 9(10): 29220-29234. doi: 10.3934/math.20241416
    [3] Biswabismita Bag, Meraj Ali Khan, Tanumoy Pal, Shyamal Kumar Hui . Geometric analysis on warped product semi-slant submanifolds of a locally metallic Riemannian space form. AIMS Mathematics, 2025, 10(4): 8131-8143. doi: 10.3934/math.2025373
    [4] Mehmet Gülbahar . Qualar curvatures of pseudo Riemannian manifolds and pseudo Riemannian submanifolds. AIMS Mathematics, 2021, 6(2): 1366-1376. doi: 10.3934/math.2021085
    [5] Oğuzhan Bahadır . On lightlike geometry of indefinite Sasakian statistical manifolds. AIMS Mathematics, 2021, 6(11): 12845-12862. doi: 10.3934/math.2021741
    [6] Richa Agarwal, Fatemah Mofarreh, Sarvesh Kumar Yadav, Shahid Ali, Abdul Haseeb . On Riemannian warped-twisted product submersions. AIMS Mathematics, 2024, 9(2): 2925-2937. doi: 10.3934/math.2024144
    [7] Fatimah Alghamdi, Fatemah Mofarreh, Akram Ali, Mohamed Lemine Bouleryah . Some rigidity theorems for totally real submanifolds in complex space forms. AIMS Mathematics, 2025, 10(4): 8191-8202. doi: 10.3934/math.2025376
    [8] Fatemah Mofarreh, S. K. Srivastava, Anuj Kumar, Akram Ali . Geometric inequalities of PR-warped product submanifold in para-Kenmotsu manifold. AIMS Mathematics, 2022, 7(10): 19481-19509. doi: 10.3934/math.20221069
    [9] Mehmet Atçeken, Tuğba Mert . Characterizations for totally geodesic submanifolds of a K-paracontact manifold. AIMS Mathematics, 2021, 6(7): 7320-7332. doi: 10.3934/math.2021430
    [10] Yusuf Dogru . η-Ricci-Bourguignon solitons with a semi-symmetric metric and semi-symmetric non-metric connection. AIMS Mathematics, 2023, 8(5): 11943-11952. doi: 10.3934/math.2023603
  • Group testing is an efficient screening method that reduces the number of tests by pooling multiple samples, making it especially effective in low-prevalence settings. This strategy gained significant attention during the COVID-19 pandemic, and has since been applied to detect various infectious diseases, including HIV, chlamydia, gonorrhea, influenza, and Zika virus. In this paper, we introduce a semi-parametric logistic single-index model for analyzing high-dimensional group testing data, which is particularly flexible in capturing complex nonlinear relationships. The proposed method achieves variable selection by parameter regularization, which proves especially beneficial for extracting relevant information from high-dimensional data. The performance of the model is evaluated through simulations across four group testing strategies: master pool testing, Dorfman testing, halving testing, and array testing. Further validation is provided using real-world data. The results demonstrate that our approach offers a flexible and robust tool for analyzing high-dimensional group testing data, with important applications in epidemiology and public health.



    The concept of lightlike submanifolds in geometry was initially established and expounded upon in a work produced by Duggal and Bejancu [1]. A nondegenerate screen distribution was employed in order to produce a nonintersecting lightlike transversal vector bundle of the tangent bundle. They defined the CR-lightlike submanifold as a generalization of lightlike real hypersurfaces of indefinite Kaehler manifolds and showed that CR-lightlike submanifolds do not contain invariant and totally real lightlike submanifolds. Further, they defined and studied GCR-lightlike submanifolds of Kaehler manifolds as an umbrella of invariant submanifolds, screen real submanifolds, and CR-lightlike and SCR-lightlike submanifolds in [2,3], respectively. Subsequently, B. Sahin and R. Gunes investigated geodesic property of CR-lightlike submanifolds [4] and the integrability of distributions in CR-lightlike submanifolds [5]. In the year 2010, Duggal and Sahin published a book [6]pertaining to the field of differential geometry, specifically focusing on the study of lightlike submanifolds. This book provides a comprehensive examination of recent advancements in lightlike geometry, encompassing novel geometric findings, accompanied by rigorous proofs, and exploring their practical implications in the field of mathematical physics. The investigation of the geometric properties of lightlike hypersurfaces and lightlike submanifolds has been the subject of research in several studies (see [7,8,9,10,11,12,13,14]).

    Crasmareanu and Hretcanu[15] created a special example of polynomial structure [16] on a differentiable manifold, and it is known as the golden structure (¯M,g). Hretcanu C. E. [17] explored Riemannian submanifolds with the golden structure. M. Ahmad and M. A. Qayyoom studied geometrical properties of Riemannian submanifolds with golden structure [18,19,20,21] and metallic structure [22,23]. The integrability of golden structures was examined by A. Gizer et al. [24]. Lightlike hypersurfaces of a golden semi-Riemannian manifold was investigated by N. Poyraz and E. Yasar [25]. The golden structure was also explored in the studies [26,27,28,29].

    In this research, we investigate the CR-lightlike submanifolds of a golden semi-Riemannian manifold, drawing inspiration from the aforementioned studies. This paper has the following outlines: Some preliminaries of CR-lightlike submanifolds are defined in Section 2. We establish a number of properties of CR-lightlike submanifolds on golden semi-Riemannian manifolds in Section 3. In Section 4, we look into several CR-lightlike submanifolds characteristics that are totally umbilical. We provide a complex illustration of CR-lightlike submanifolds of a golden semi-Riemannian manifold in the final section.

    Assume that (¯,g) is a semi-Riemannian manifold with (k+j)-dimension, k,j1, and g as a semi-Riemannian metric on ¯. We suppose that ¯ is not a Riemannian manifold and the symbol q stands for the constant index of g.

    [15] Let ¯ be endowed with a tensor field ψ of type (1,1) such that

    ψ2=ψ+I, (2.1)

    where I represents the identity transformation on Γ(Υ¯). The structure ψ is referred to as a golden structure. A metric g is considered ψ-compatible if

    g(ψγ,ζ)=g(γ,ψζ) (2.2)

    for all γ, ζ vector fields on Γ(Υ¯), then (¯,g,ψ) is called a golden Riemannian manifold. If we substitute ψγ into γ in (2.2), then from (2.1) we have

    g(ψγ,ψζ)=g(ψγ,ζ)+g(γ,ζ). (2.3)

    for any γ,ζΓ(Υ¯).

    If (¯,g,ψ) is a golden Riemannian manifold and ψ is parallel with regard to the Levi-Civita connection ¯ on ¯:

    ¯ψ=0, (2.4)

    then (¯,g,ψ) is referred to as a semi-Riemannian manifold with locally golden properties.

    The golden structure is the particular case of metallic structure [22,23] with p=1, q=1 defined by

    ψ2=pψ+qI,

    where p and q are positive integers.

    [1] Consider the case where is a lightlike submanifold of k of ¯. There is the radical distribution, or Rad(Υ), on that applies to this situation such that Rad(Υ)=ΥΥ, p. Since RadΥ has rank r0, is referred to as an r-lightlike submanifold of ¯. Assume that is a submanifold of that is r-lightlike. A screen distribution is what we refer to as the complementary distribution of a Rad distribution on Υ, then

    Υ=RadΥS(Υ).

    As S(Υ) is a nondegenerate vector sub-bundle of Υ¯|, we have

    Υ¯|=S(Υ)S(Υ),

    where S(Υ) consists of the orthogonal vector sub-bundle that is complementary to S(Υ) in Υ¯|. S(Υ),S(Υ) is an orthogonal direct decomposition, and they are nondegenerate.

    S(Υ)=S(Υ)S(Υ).

    Let the vector bundle

    tr(Υ)=ltr(Υ)S(Υ).

    Thus,

    Υ¯=Υtr(Υ)=S(Υ)S(Υ)(Rad(Υ)ltr(Υ).

    Assume that the Levi-Civita connection is ¯ on ¯. We have

    ¯γζ=γζ+h(γ,ζ),γ,ζΓ(Υ) (2.5)

    and

    ¯γζ=Ahζ+γh,γΓ(Υ)andhΓ(tr(Υ)), (2.6)

    where {γζ,Ahγ} and {h(γ,ζ),γh} belongs to Γ(Υ) and Γ(tr(Υ)), respectively.

    Using projection L:tr(Υ)ltr(Υ), and S:tr(Υ)S(Υ), we have

    ¯γζ=γζ+hl(γ,ζ)+hs(γ,ζ), (2.7)
    ¯γ=Aγ+lγ+λs(γ,), (2.8)

    and

    ¯γχ=Aχγ+sγ+λl(γ,χ) (2.9)

    for any γ,ζΓ(Υ),Γ(ltr(Υ)), and χΓ(S(Υ)), where hl(γ,ζ)=Lh(γ,ζ),hs(γ,ζ)=Sh(γ,ζ),lγ,λl(γ,χ)Γ(ltr(T)),sγλs(γ,)Γ(S(Υ)), and γζ,Aγ,AχγΓ(Υ).

    The projection morphism of Υ on the screen is represented by P, and we take the distribution into consideration.

    γPζ=γPζ+h(γ,Pζ),γξ=Aξγ+tγξ, (2.10)

    where γ,ζΓ(Υ),ξΓ(Rad(Υ)).

    Thus, we have the subsequent equation.

    g(h(γ,Pζ),)=g(Aγ,Pζ), (2.11)

    Consider that ¯ is a metric connection. We get

    (γg)(ζ,η)=g(hl(γ,ζ),η)+g(hl(γ,ζη),ζ). (2.12)

    Using the characteristics of a linear connection, we can obtain

    (γhl)(ζ,η)=lγ(hl(ζ,η))hl(¯γζ,η)hl(ζ,¯γη), (2.13)
    (γhs)(ζ,η)=sγ(hs(ζ,η))hs(¯γζ,η)hs(ζ,¯γη). (2.14)

    Based on the description of a CR-lightlike submanifold in [4], we have

    Υ=λλ,

    where λ=Rad(Υ)ψRad(Υ)λ0.

    S and Q stand for the projection on λ and λ, respectively, then

    ψγ=fγ+wγ

    for γ,ζΓ(Υ), where fγ=ψSγ and wγ=ψQγ.

    On the other hand, we have

    ψζ=Bζ+Cζ

    for any ζΓ(tr(Υ)), BζΓ(Υ) and CζΓ(tr(Υ)), unless 1 and 2 are denoted as ψL1 and ψL2, respectively.

    Lemma 2.1. Assume that the screen distribution is totally geodesic and that is a CR-lightlike submanifold of the golden semi-Riemannian manifold, then γζΓ(S(ΥN)), where γ,ζΓ(S(Υ)).

    Proof. For γ,ζΓ(S(Υ)),

    g(γζ,)=g(¯γζh(γ,ζ),)=g(ζ,¯γ).

    Using (2.8),

    g(γζ,)=g(ζ,Aγ+γ)=g(ζ,Aγ).

    Using (2.11),

    g(γζ,)=g(h(γ,ζ),).

    Since screen distribution is totally geodesic, h(γ,ζ)=0,

    g(¯γζ,)=0.

    Using Lemma 1.2 in [1] p.g. 142, we have

    γζΓ(S(Υ)),

    where γ,ζΓ(S(Υ)).

    Theorem 2.2. Assume that is a locally golden semi-Riemannian manifold ¯ with CR-lightlike properties, then γψγ=ψγγ for γΓ(λ0).

    Proof. Assume that γ,ζΓ(λ0). Using (2.5), we have

    g(γψγ,ζ)=g(¯γψγh(γ,ψγ),ζ)g(γψγ,ζ)=g(ψ(¯γγ),ζ)g(γψγ,ζ)=g(ψ(γγ),ζ),g(γψγψ(γγ),ζ)=0.

    Nondegeneracy of λ0 implies

    γψγ=ψ(γγ),

    where γΓ(λ0).

    Definition 3.1. [4] A CR-lightlike submanifold of a golden semi-Riemannian manifold is mixed geodesic if h satisfies

    h(γ,α)=0,

    where h stands for second fundamental form, γΓ(λ), and αΓ(λ).

    For γ,ζΓ(λ) and α,βΓ(λ) if

    h(γ,ζ)=0

    and

    h(α,β)=0,

    then it is known as λ-geodesic and λ-geodesic, respectively.

    Theorem 3.2. Assume is a CR-lightlike submanifold of ¯, which is a golden semi-Riemannian manifold. is totally geodesic if

    (Lg)(γ,ζ)=0

    and

    (Lχg)(γ,ζ)=0

    for α,βΓ(Υ),ξΓ(Rad(Υ)), and χΓ(S(Υ)).

    Proof. Since is totally geodesic, then

    h(γ,ζ)=0

    for γ,ζΓ(Υ).

    We know that h(γ,ζ)=0 if

    g(h(γ,ζ),ξ)=0

    and

    g(h(γ,ζ),χ)=0.
    g(h(γ,ζ),ξ)=g(¯γζγζ,ξ)=g(ζ,[γ,ξ]+¯ξγ=g(ζ,[γ,ξ])+g(γ,[ξ,ζ])+g(¯ζξ,γ)=(Lξg)(γ,ζ)+g(¯ζξ,γ)=(Lξg)(γ,ζ)g(ξ,h(γ,ζ)))2g(h(γ,ζ)=(Lξg)(γ,ζ).

    Since g(h(γ,ζ),ξ)=0, we have

    (Lξg)(γ,ζ)=0.

    Similarly,

     g(h(γ,ζ),χ)=g(¯γζγζ,χ)=g(ζ,[γ,χ])+g(γ,[χ,ζ])+g(¯ζχ,γ)=(Lχg)(γ,ζ)+g(¯ζχ,γ)2g(h(γ,ζ),χ)=(Lχg)(γ,ζ).

    Since g(h(γ,ζ),χ)=0, we get

    (Lχg)(γ,ζ)=0

    for χΓ(S(Υ)).

    Lemma 3.3. Assume that ¯ is a golden semi-Riemannian manifold whose submanifold is CR-lightlike, then

    g(h(γ,ζ),χ)=g(Aχγ,ζ)

    for γΓ(λ),ζΓ(λ) and χΓ(S(Υ)).

    Proof. Using (2.5), we get

    g(h(γ,ζ),χ)=g(¯γζγζ,χ)=g(ζ,¯γχ).

    From (2.9), it follows that

    g(h(γ,ζ),χ)=g(ζ,Aχγ+sγχ+λs(γ,χ))=g(ζ,Aχγ)g(ζ,sγχ)g(ζ,λs(γ,χ))g(h(γ,ζ),χ)=g(ζ,Aχγ),

    where γΓ(λ),ζΓ(λ),χΓ(S(Υ)).

    Theorem 3.4. Assume that is a CR-lightlike submanifold of the golden semi-Riemannian manifold and ¯ is mixed geodesic if

    AξγΓ(λ0ψL1)

    and

    AχγΓ(λ0Rad(Υ)ψL1)

    for γΓ(λ),ξΓ(Rad(Υ)), and χΓ(S(Υ)).

    Proof. For γΓ(λ),ζΓ(λ), and χΓ(S(Υ)), we get

    Using (2.5),

    g(h(γ,ζ),ξ)=g(¯γζγζ,ξ)=g(ζ,¯γξ).

    Again using (2.5), we obtain

    g(h(γ,ζ),ξ)=g(ζ,γξ+h(γ,ξ))=g(ζ,γξ).

    Using (2.10), we have

    g(h(γ,ζ),ξ)=g(ζ,Aξγ+tγξ)g(ζ,Aξγ)=0.

    Since the CR-lightlike submanifold is mixed geodesic, we have

    g(h(γ,ζ),ξ)=0
    g(ζ,Aξγ)=0
    AξγΓ(λ0ψL1),

    where γΓ(λ),ζΓ(λ).

    From (2.5), we get

    g(h(γ,ζ),χ)=g(¯γζγζ,χ)=g(ζ,¯γχ).

    From (2.9), we get

    g(h(γ,ζ),χ)=g(ζ,Aχγ+sγχ+λl(γ,χ))g(h(γ,ζ),χ)=g(ζ,Aχγ).

    Since, is mixed geodesic, then g(h(γ,ζ),χ)=0

    g(ζ,Aχγ)=0.
    AχγΓ(λ0Rad(Υ)ψ1).

    Theorem 3.5. Suppose that is a CR-lightlike submanifold of a golden semi-Riemannian manifold ¯, then is λ-geodesic if Aχη and Aξη have no component in 2ψRad(Υ) for ηΓ(λ),ξΓ(Rad(Υ)), and χΓ(S(Υ)).

    Proof. From (2.5), we obtain

    g(h(η,β),χ)=g(¯ηβγζ,χ)=¯g(γζ,χ),

    where χ,βΓ(λ).

    Using (2.9), we have

    g(h(η,β),χ)=g(β,Aχη+sη+λl(η,χ))g(h(η,β),χ)=g(β,Aχη). (3.1)

    Since is λ-geodesic, then g(h(η,β),χ)=0.

    From (3.1), we get

    g(β,Aχη)=0.

    Now,

    g(h(η,β),ξ)=g(¯ηβηβ,ξ)=g(¯ηβ,ξ)=g(β,¯ηξ).

    From (2.10), we get

    g(h(η,β),ξ)=g(η,Aξη+tηξ)g(h(η,β),ξ)=g(Aξβ,η).

    Since is λ- geodesic, then

    g(h(η,β),ξ)=0
    g(Aξβ,η)=0.

    Thus, Aχη and Aξη have no component in M2ψRad(Υ).

    Lemma 3.6. Assume that ¯ is a golden semi-Riemannian manifold that has a CR-lightlike submanifold . Due to the distribution's integrability, the following criteria hold.

    (ⅰ) ψg(λl(ψγ,χ),ζ)g(λl(γ,χ),ψζ)=g(Aχψγ,ζ)g(Aχγ,ψζ),

    (ⅱ) g(λl(ψγ),ξ)=g(Aχγ,ψξ),

    (ⅲ) g(λl(γ,χ),ξ)=g(Aχψγ,ψξ)g(Aχγ,ψξ),

    where γ,ζΓ(Υ),ξΓ(Rad(Υ)), and χΓ(S(Υ)).

    Proof. From Eq (2.9), we obtain

    g(λl(ψγ,χ),ζ)=g(¯ψγχ+Aχψγsψγχ,ζ)=g(χ,¯ψγζ)+g(Aχψγ,ζ).

    Using (2.5), we get

    g(λl(ψγ,χ),ζ)=g(χ,ψγζ+h(ψγ,ζ))+g(Aχψγ,ζ)=g(χ,h(γ,ψζ))+g(Aχψγ,ζ).

    Again, using (2.5), we get

    g(λl(ψγ,χ),ζ)=g(χ,¯γψζγψζ)+g(Aχψγ,ζ)=g(¯γχ,ψζ)+g(Aχψγ,ζ).

    Using (2.9), we have

    g(λl(ψγ,χ),ζ)=g(Aχγ+sγχ+λl(γ,χ),ψζ)+g(λl(ψγ,χ),ζ)g(λl(γ,χ),ψζ)=g(Aχψγ,ζ)g(Aχγ,ψζ).

    (ⅱ) Using (2.9), we have

    g(λl(ψγ,χ),ξ)=g(Aχψγsψγχ+ψγχ,ξ)=g(Aχψγ,ξ)g(χ,¯ψγξ).

    Using (2.10), we get

    g(λl(ψγ,χ),ξ)=g(Aχψγ,ξ)+g(χ,Aξψγ)g(χ,tψγ,ξ)g(λl(ψγ),ξ)=g(Aχγ,ψξ).

    (ⅲ) Replacing ζ by ψξ in (ⅰ), we have

    ψg(λl(ψγ,χ),ψξ)g(λl(γ,χ),ψ2ξ)=g(Aχψγ,ψξ)g(Aχγ,ψ2ξ).

    Using Definition 2.1 in [18] p.g. 9, we get

    ψg(λl(ψγ,χ),ψξ)g(λl(γ,χ),(ψ+I)ξ)=g(Aχψγ,ψξ)g(Aχγ,(ψ+I)ξ)ψg(λl(ψγ,χ),ψξ)g(λl(γ,χ),ψξ)g(λl(γ,χ),ξ)=g(Aχψγ,ψξ)g(Aχγ,ψξ)g(Aχγ,ξ).g(λl(γ,χ),ξ)=g(Aχψγ,ψξ)g(Aχγ,ψξ).

    Definition 4.1. [12] A CR-lightlike submanifold of a golden semi-Riemannian manifold is totally umbilical if there is a smooth transversal vector field Htr Γ(Υ) that satisfies

    h(χ,η)=Hg(χ,η),

    where h is stands for second fundamental form and χ, η Γ(Υ).

    Theorem 4.2. Assume that the screen distribution is totally geodesic and that is a totally umbilical CR-lightlike submanifold of the golden semi-Riemannian manifold ¯, then

    Aψηχ=Aψχη,χ,ηΓλ.

    Proof. Given that ¯ is a golden semi-Riemannian manifold,

    ψ¯ηχ=¯ηψχ.

    Using (2.5) and (2.6), we have

    ψ(ηχ)+ψ(h(η,χ))=Aψχη+tηψχ. (4.1)

    Interchanging η and χ, we obtain

    ψ(χη)+ψ(h(χ,η))=Aψηχ+tχψη. (4.2)

    Subtracting Eqs (4.1) and (4.2), we get

    ψ(ηχχη)tηψχ+tχψη=AψηχAψχη. (4.3)

    Taking the inner product with γΓ(λ0) in (4.3), we have

    g(ψ(χη,γ)g(ψ(χη,γ)=g(Aψηχ,γ)g(Aψχη,γ).g(AψηχAψχη,γ)=g(χη,ψγ)g(χη,ψγ). (4.4)

    Now,

    g(χη,ψγ)=g(¯χηh(χ,η),ψγ)g(χη,ψγ)=g(η,(¯χψ)γψ(¯χγ)).

    Since ψ is parallel to ¯, i.e., ¯γψ=0,

    g(χη,ψγ)=ψ(¯χγ)).

    Using (2.7), we have

    g(χη,ψγ)=g(ψη,χγ+hs(χ,γ)+hl(χ,γ))g(χη,ψγ)=g(ψη,χγ)g(ψη,hs(χ,γ))g(ψη,hl(χ,γ)). (4.5)

    Since is a totally umbilical CR-lightlike submanifold and the screen distribution is totally geodesic,

    hs(χ,γ)=Hsg(χ,γ)=0

    and

    hl(χ,γ)=Hlg(χ,γ)=0,

    where χΓ(λ) and γΓ(λ0).

    From (4.5), we have

    g(χη,ψγ)=g(ψη,χγ).

    From Lemma 2.1, we get

    g(χη,ψγ)=0.

    Similarly,

    g(ηχ,ψγ)=0

    Using (4.4), we have

    g(AψηχAψχη,γ)=0.

    Since λ0 is nondegenerate,

    AψηχAψχη=0
    Aψηχ=Aψχη.

    Theorem 4.3. Let be the totally umbilical CR-lightlike submanifold of the golden semi-Riemannian manifold ¯. Consequently, 's sectional curvature, which is CR-lightlike, vanishes, resulting in ¯K(π)=0, for the entire CR-lightlike section π.

    Proof. We know that is a totally umbilical CR-lightlike submanifold of ¯, then from (2.13) and (2.14),

    (γhl)(ζ,ω)=g(ζ,ω)lγHlHl{(γg)(ζ,ω)}, (4.6)
    (γhs)(ζ,ω)=g(ζ,ω)sγHsHs{(γg)(ζ,ω)} (4.7)

    for a CR-lightlike section π=γω,γΓ(λ0),ωΓ(λ).

    From (2.12), we have (Ug)(ζ,ω)=0. Therefore, from (4.6) and (4.7), we get

    (γhl)(ζ,ω)=g(ζ,ω)lγHl, (4.8)
    (γhs)(ζ,ω)=g(ζ,ω)sγHs. (4.9)

    Now, from (4.8) and (4.9), we get

    {¯R(γ,ζ)ω}tr=g(ζ,ω)lγHlg(γ,ω)lζHl+g(ζ,ω)λl(γ,Hs)g(γ,ω)λl(ζ,Hs)+g(ζ,ω)sγHsg(γ,ω)sζHs+g(ζ,ω)λs(γ,Hl)g(γ,ω)λs(ζ,Hl). (4.10)

    For any βΓ(tr(Υ)), from Equation (4.10), we get

    ¯R(γ,ζ,ω,β)=g(ζ,ω)g(lγHl,β)g(γ,ω)g(lζHl,β)+g(ζ,ω)g(λl(γ,Hs),ζ)g(γ,ω)g(λl(ζ,Hs),β)+g(ζ,ω)g(sγHs,β)g(γ,ω)g(sζHs,β)+g(ζ,ω)g(λs(γ,Hl),β)g(γ,ω)g(λs(ζ,Hl,β).
    R(γ,ω,ψγ,ψω)=g(ω,ψγ)g(lγHl,ψω)g(γ,ψγ)g(lωHl,ψω)+g(ω,ψγ)g(λl(γ,Hs),ψω)g(γ,ψγ)g(λl(ω,Hs),ψω)+g(ω,ψγ)g(sγHs,ψω)g(γ,ψγ)g(sωHs,ψω)+g(ω,ψγ)g(λs(γ,Hl),ψω)g(γ,ψγ)g(λs(ω,Hl,ψU).

    For any unit vectors γΓ(λ) and ωΓ(λ), we have

    ¯R(γ,ω,ψγ,ψω)=¯R(γ,ω,γ,ω)=0.

    We have

    K(γ)=KN(γζ)=g(¯R(γ,ζ)ζ,γ),

    where

    ¯R(γ,ω,γ,ω)=g(¯R(γ,ω)γ,ω)

    or

    ¯R(γ,ω,ψγ,ψω)=g(¯R(γ,ω)ψγ,ψω)

    i.e.,

    ¯K(π)=0

    for all CR-sections π.

    Example 5.1. We consider a semi-Riemannian manifold R62 and a submanifold of co-dimension 2 in R62, given by equations

    υ5=υ1cosαυ2sinαυ3z4tanα,
    υ6=υ1sinαυ2cosαυ3υ4,

    where αR{π2+kπ; kz}. The structure on R62 is defined by

    ψ(υ1,υ2,υ3,υ4,υ5,υ6)=(¯ϕ υ1,¯ϕυ2,ϕυ3,ϕυ4,ϕυ5,ϕυ6).

    Now,

    ψ2(υ1,υ2,υ3,υ4,υ5,υ6)=((¯ϕ+1) υ1,(¯ϕ+1)υ2,(ϕ+1)υ3,(ϕ+1)υ4,
    (ϕ+1)υ5,(ϕ+1)υ6)
    ψ2=ψ+I.

    It follows that (R62,ψ) is a golden semi-Reimannian manifold.

    The tangent bundle Υ is spanned by

    Z0=sinα υ5cosα υ6ϕ υ2,
    Z1=ϕ sinα υ5ϕ cosα υ6+ υ2,
    Z2=υ5¯ϕ sinα υ2+υ1,
    Z3=¯ϕ cosα υ2+υ4+iυ6.

    Thus, is a 1-lightlike submanifold of R62 with RadΥ=Span{X0}. Using golden structure of R62, we obtain that X1=ψ(X0). Thus, ψ(RadΥ) is a distribution on . Hence, the is a CR-lightlike submanifold.

    In general relativity, particularly in the context of the black hole theory, lightlike geometry finds its uses. An investigation is made into the geometry of the golden semi-Riemannian manifolds that are CR-lightlike in nature. There are many intriguing findings on completely umbilical and completely geodesic CR-lightlike submanifolds that are examined. We present a required condition for a CR-lightlike submanifold to be completely geodesic. Moreover, it is demonstrated that the sectional curvature K of an entirely umbilical CR-lightlike submanifold of a golden semi-Riemannian manifold ¯ disappears.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The present work (manuscript number IU/R&D/2022-MCN0001708) received financial assistance from Integral University in Lucknow, India as a part of the seed money project IUL/IIRC/SMP/2021/010. All of the authors would like to express their gratitude to the university for this support. The authors are highly grateful to editors and referees for their valuable comments and suggestions for improving the paper. The present manuscript represents the corrected version of preprint 10.48550/arXiv.2210.10445. The revised version incorporates the identities of all those who have made contributions, taking into account their respective skills and understanding.

    Authors have no conflict of interests.



    [1] R. Dorfman, The detection of defective members of large populations, Ann. Math. Statist., 14 (1943), 436–440. http://dx.doi.org/10.1214/aoms/1177731363 doi: 10.1214/aoms/1177731363
    [2] S. Mallapaty, The mathematical strategy that could transform coronavirus testing, Nature, 583 (2020), 504–505. http://dx.doi.org/10.1038/d41586-020-02053-6 doi: 10.1038/d41586-020-02053-6
    [3] L. Mutesa, P. Ndishimye, Y. Butera, J. Souopgui, A. Uwineza, R. Rutayisire, et al., A pooled testing strategy for identifying SARS-CoV-2 at low prevalence, Nature, 589 (2021), 276–280. http://dx.doi.org/10.1038/s41586-020-2885-5 doi: 10.1038/s41586-020-2885-5
    [4] W. Chen, C. Tatsuoka, X. Lu, HiBGT: High-performance Bayesian group testing for COVID-19, In: 2022 IEEE 29th international conference on high performance computing, data, and analytics (HiPC), 2022,176–185. https://doi.org/10.1109/HiPC56025.2022.00033
    [5] D. J. Westreich, M. G. Hudgens, S. A. Fiscus, C. D. Pilcher, Optimizing screening for acute human immunodeficiency virus infection with pooled nucleic acid amplification tests, J. Clin. Microbiol., 46 (2008), 1785–1792. http://dx.doi.org/10.1128/jcm.00787-07 doi: 10.1128/jcm.00787-07
    [6] M. Krajden, D. Cook, A. Mak, K. Chu, N. Chahil, M. Steinberg, et al., Pooled nucleic acid testing increases the diagnostic yield of acute HIV infections in a high-risk population compared to 3rd and 4th generation HIV enzyme immunoassays, J. Clin. Virol., 61 (2014), 132–137. http://dx.doi.org/10.1016/j.jcv.2014.06.024 doi: 10.1016/j.jcv.2014.06.024
    [7] J. L. Lewis, V. M. Lockary, S. Kobic, Cost savings and increased efficiency using a stratified specimen pooling strategy for Chlamydia trachomatis and Neisseria gonorrhoeae, Sex. Transm. Dis., 39 (2012), 46–48. http://dx.doi.org/10.1097/OLQ.0b013e318231cd4a doi: 10.1097/OLQ.0b013e318231cd4a
    [8] T. T. Van, J. Miller, D. M. Warshauer, E. Reisdorf, D. Jernigan, R. Humes, et al., Pooling Nasopharyngeal/Throat swab specimens to increase testing capacity for influenza viruses by PCR, J. Clin. Microbiol., 50 (2012), 891–896. http://dx.doi.org/10.1128/jcm.05631-11 doi: 10.1128/jcm.05631-11
    [9] P. Saá, M. Proctor, G. Foster, D. Krysztof, C. Winton, J. M. Linnen, et al., Investigational testing for Zika virus among U.S. blood donors, N. Engl. J. Med., 378 (2018), 1778–1788. http://dx.doi.org/10.1056/NEJMoa1714977 doi: 10.1056/NEJMoa1714977
    [10] J. M. Tebbs, C. S. McMahan, C. R. Bilder, Two-stage hierarchical group testing for multiple infections with application to the infertility prevention project, Biometrics, 69 (2013), 1064–1073. http://dx.doi.org/10.1111/biom.12080 doi: 10.1111/biom.12080
    [11] C. S. McMahan, J. M. Tebbs, T. E. Hanson, C. R. Bilder, Bayesian regression for group testing data, Biometrics, 73 (2017), 1443–1452. http://dx.doi.org/10.1111/biom.12704 doi: 10.1111/biom.12704
    [12] A. Yuan, J. Piao, J. Ning, J. Qin, Semiparametric isotonic regression modelling and estimation for group testing data, Can. J. Stat., 49 (2021), 659–677. http://dx.doi.org/10.1002/cjs.11581 doi: 10.1002/cjs.11581
    [13] J. Ding, W. J. Xiong, Robust group testing for multiple traits with misclassification, J. Appl. Stat., 42 (2015), 2115–2125. https://doi.org/10.1080/02664763.2015.1019841 doi: 10.1080/02664763.2015.1019841
    [14] S. C. Mokalled, C. S. McMahan, J. M. Tebbs, D. Andrew Brown, C. R. Bilder, Incorporating the dilution effect in group testing regression, Stat. Med., 40 (2021), 2540–2555. http://dx.doi.org/10.1002/sim.8916 doi: 10.1002/sim.8916
    [15] X. Z. Huang, M. S. S. Warasi, Maximum likelihood estimators in regression models for error-prone group testing data, Scand. J. Stat., 44 (2017), 918–931. http://dx.doi.org/10.1111/sjos.12282 doi: 10.1111/sjos.12282
    [16] G. Haber, Y. Malinovsky, P. S. Albert, Sequential estimation in the group testing problem, Sequential Anal., 37 (2018), 1–17. http://dx.doi.org/10.1080/07474946.2017.1394716 doi: 10.1080/07474946.2017.1394716
    [17] J. L. Horowitz, Semiparametric and nonparametric methods in econometrics, 1 Eds., New York: Springer, 2009. https://doi.org/10.1007/978-0-387-92870-8
    [18] P. Radchenko, High dimensional single index models, J. Multivariate Anal., 139 (2015), 266–282. http://dx.doi.org/10.1016/j.jmva.2015.02.007 doi: 10.1016/j.jmva.2015.02.007
    [19] Z. C. Elmezouar, F. Alshahrani, I. M. Almanjahie, S. Bouzebda, Z. Kaid, A. Laksaci, Strong consistency rate in functional single index expectile model for spatial data, AIMS Mathematics, 9 (2024), 5550–5581. http://dx.doi.org/10.3934/math.2024269 doi: 10.3934/math.2024269
    [20] Y. N. Chen, R. J. Samworth, Generalized additive and index models with shape constraints, J. R. Stat. Soc. Ser. B Stat. Methodol., 78 (2016), 729–754. http://dx.doi.org/10.1111/rssb.12137 doi: 10.1111/rssb.12137
    [21] Z. Kereta, T. Klock, V. Naumova, Nonlinear generalization of the monotone single index model, Inf. Inference, 10 (2021), 987–1029. http://dx.doi.org/10.1093/imaiai/iaaa013 doi: 10.1093/imaiai/iaaa013
    [22] D. Wang, C. S. McMahan, C. M. Gallagher, A general regression framework for group testing data, which incorporates pool dilution effects, Stat. Med., 34 (2015), 3606–3621. http://dx.doi.org/10.1002/sim.6578 doi: 10.1002/sim.6578
    [23] K. B. Gregory, D. Wang, C. S. McMahan, Adaptive elastic net for group testing, Biometrics, 75 (2019), 13–23. http://dx.doi.org/10.1111/biom.12973 doi: 10.1111/biom.12973
    [24] H. Ko, K. Kim, H. Sun, Multiple group testing procedures for analysis of high-dimensional genomic data, Genomics Inform., 14 (2016), 187–195. http://dx.doi.org/10.5808/gi.2016.14.4.187 doi: 10.5808/gi.2016.14.4.187
    [25] A. Delaigle, P. Hall, Nonparametric methods for group testing data, taking dilution into account, Biometrika, 102 (2015), 871–887. http://dx.doi.org/10.1093/biomet/asv049 doi: 10.1093/biomet/asv049
    [26] S. Self, C. McMahan, S. Mokalled, Capturing the pool dilution effect in group testing regression: A Bayesian approach, Stat. Med., 41 (2022), 4682–4696. http://dx.doi.org/10.1002/sim.9532 doi: 10.1002/sim.9532
    [27] X. L. Zuo, J. Ding, J. J. Zhang, W. J. Xiong, Nonparametric additive regression for high-dimensional group testing data, Mathematics, 12 (2024), 686. http://dx.doi.org/10.3390/math12050686 doi: 10.3390/math12050686
    [28] R. J. Carroll, J. Fan, I. Gijbels, M. P. Wand, Generalized partially linear single-index models, J. Amer. Statist. Assoc., 92 (1997), 477–489. https://doi.org/10.1080/01621459.1997.10474001 doi: 10.1080/01621459.1997.10474001
    [29] L. Zhu, L. Xue, Empirical likelihood confidence regions in a partially linear single-index model, J. R. Stat. Soc. Ser. B Stat. Methodol., 68 (2006), 549–570. https://doi.org/10.1111/j.1467-9868.2006.00556.x doi: 10.1111/j.1467-9868.2006.00556.x
    [30] W. Lin, K. B. Kulasekera, Identifiability of single-index models and additive-index models, Biometrika, 94 (2007), 496–501. https://doi.org/10.1093/biomet/asm029 doi: 10.1093/biomet/asm029
    [31] X. Cui, W. K. Härdle, L. X. Zhu, The EFM approach for single-index models, Ann. Statist., 39 (2011), 1658–1688. http://dx.doi.org/10.1214/10-aos871 doi: 10.1214/10-aos871
    [32] X. Guo, C. Z. Niu, Y. P. Yang, W. L. Xu, Empirical likelihood for single index model with missing covariates at random, Statistics, 49 (2015), 588–601. http://dx.doi.org/10.1080/02331888.2014.881826 doi: 10.1080/02331888.2014.881826
    [33] W. Xiong, J. Ding, W. Zhang, A. Liu, Q. Li, Nested group testing procedure, Commun. Math. Stat., 11 (2023), 663–693. http://dx.doi.org/10.1007/s40304-021-00269-0 doi: 10.1007/s40304-021-00269-0
    [34] J. X. Lin, D. W. Wang, Q. Zheng, Regression analysis and variable selection for two-stage multiple-infection group testing data, Stat. Med., 38 (2019), 4519–4533. http://dx.doi.org/10.1002/sim.8311 doi: 10.1002/sim.8311
    [35] D. Wang, C. S. McMahan, C. M. Gallagher, K. B. Kulasekera, Semiparametric group testing regression models, Biometrika, 101 (2014), 587–598. https://doi.org/10.1093/biomet/asu007 doi: 10.1093/biomet/asu007
    [36] B. A. Zhang, C. R. Bilder, J. M. Tebbs, Group testing regression model estimation when case identification is a goal, Biometrical J., 55 (2013), 173–189. http://dx.doi.org/10.1002/bimj.201200168 doi: 10.1002/bimj.201200168
    [37] S. Vansteelandt, E. Goetghebeur, T. Verstraeten, Regression models for disease prevalence with diagnostic tests on pools of serum samples, Biometrics, 56 (2000), 1126–1133. http://dx.doi.org/10.1111/j.0006-341x.2000.01126.x doi: 10.1111/j.0006-341x.2000.01126.x
    [38] C. Boor, A practical guide to splines, New York: Springer, 1978.
    [39] R. Tibshirani, Regression shrinkage and selection via the Lasso, J. R. Stat. Soc. Ser. B Stat. Methodol., 58 (1996), 267–288. http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x doi: 10.1111/j.2517-6161.1996.tb02080.x
    [40] J. Fan, R. Z. Li, Variable selection via nonconcave penalized likelihood and its Oracle properties, J. Amer. Statist. Assoc., 96 (2001), 1348–1360. http://dx.doi.org/10.1198/016214501753382273 doi: 10.1198/016214501753382273
    [41] C. H. Zhang, Nearly unbiased variable selection under minimax concave penalty, Ann. Statist., 38 (2010), 894–942. http://dx.doi.org/10.1214/09-aos729 doi: 10.1214/09-aos729
    [42] W. C. Guo, X. H. Zhou, S. J. Ma, Estimation of optimal individualized treatment rules using a covariate-specific treatment effect curve with high-dimensional covariates, J. Amer. Statist. Assoc., 116 (2021), 309–321. http://dx.doi.org/10.1080/01621459.2020.1865167 doi: 10.1080/01621459.2020.1865167
    [43] J. Duchi, E. Hazan, Y. Singer, Adaptive subgradient methods for online learning and stochastic optimization, J. Mach. Learn. Res., 12 (2011), 2121–2159.
    [44] P. Breheny, J. Huang, Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection, Ann. Appl. Stat., 5 (2011), 232–253. http://dx.doi.org/10.1214/10-aoas388 doi: 10.1214/10-aoas388
    [45] S. J. Guan, M. T. Zhao, Y. H. Cui, Variable selection for single-index varying-coefficients models with applications to synergistic G x E interactions, Electron. J. Statist., 17 (2023), 823–857. http://dx.doi.org/10.1214/23-ejs2117 doi: 10.1214/23-ejs2117
    [46] L. Wang, L. J. Yang, Spline estimation of single-index models, Statist. Sinica, 19 (2009), 765–783.
    [47] K. N. Turi, D. M. Buchner, D. S. Grigsby-Toussaint, Predicting risk of type 2 diabetes by using data on easy-to-measure risk factors, Prev. Chronic. Dis., 14 (2017), 160244. http://dx.doi.org/10.5888/pcd14.160244 doi: 10.5888/pcd14.160244
    [48] K. Bai, X. Chen, R. Song, W. Shi, S. Shi, Association of body mass index and waist circumference with type 2 diabetes mellitus in older adults: a cross-sectional study, BMC Geriatr., 22 (2022), 489. http://dx.doi.org/10.1186/s12877-022-03145-w doi: 10.1186/s12877-022-03145-w
    [49] M. B. Snijder, P. Z. Zimmet, M. Visser, J. M. Dekker, J. C. Seidell, J. E. Shaw, Independent and opposite associations of waist and hip circumferences with diabetes, hypertension and dyslipidemia: the AusDiab Study, Int. J. Obes., 28 (2004), 402–409. http://dx.doi.org/10.1038/sj.ijo.0802567 doi: 10.1038/sj.ijo.0802567
    [50] C. Wittenbecher, O. Kuxhaus, H. Boeing, N. Stefan, M. B. Schulze, Associations of short stature and components of height with incidence of type 2 diabetes: Mediating effects of cardiometabolic risk factors, Diabetologia, 62 (2019), 2211–2221. https://doi.org/10.1007/s00125-019-04978-8 doi: 10.1007/s00125-019-04978-8
    [51] G. Colussi, A. Da Porto, A. Cavarape, Hypertension and type 2 diabetes: Lights and shadows about causality, J. Hum. Hypertens., 34 (2020), 91–93. http://dx.doi.org/10.1038/s41371-019-0268-x doi: 10.1038/s41371-019-0268-x
    [52] S. E. Richards, C. Wijeweera, A. Wijeweera, Lifestyle and socioeconomic determinants of diabetes: Evidence from country-level data, PLoS ONE, 17 (2022), e0270476. https://doi.org/10.1371/journal.pone.0270476 doi: 10.1371/journal.pone.0270476
    [53] J. Su, J. Y. Zhou, R. Tao, Y. N. Wan, Y. Qin, Y. Lu, et al., Association between family history of diabetes and incident diabetes of adults: A prospective study, Chin. J. Prev. Med., 54 (2020), 828–833. https://doi.org/10.3760/cma.j.cn112150-20200212-00091 doi: 10.3760/cma.j.cn112150-20200212-00091
    [54] S. Clotet-Freixas, O. Zaslaver, M. Kotlyar, C. Pastrello, A. T Quaile, C. M. McEvoy, et al., Sex differences in kidney metabolism may reflect sex-dependent outcomes in human diabetic kidney disease, Sci. Transl. Med., 16 (2024), eabm2090. https://doi.org/10.1126/scitranslmed.abm2090 doi: 10.1126/scitranslmed.abm2090
    [55] M. Yu, T. Liu, R. Valdez, M. Gwinn, M. J. Khoury, Application of support vector machine modeling for prediction of common diseases: The case of diabetes and pre-diabetes, BMC Med. Inform. Decis. Mak., 10 (2010), 16. https://doi.org/10.1186/1472-6947-10-16 doi: 10.1186/1472-6947-10-16
    [56] K. K. Aldossari, A. Aldiab, J. M. Al-Zahrani, S. H. Al-Ghamdi, M. Abdelrazik, M. A. Batais, et al., Prevalence of prediabetes, diabetes, and its associated risk factors among males in Saudi Arabia: A population-based survey, J. Diabetes Res., 2018 (2018), 2194604. https://doi.org/10.1155/2018/2194604 doi: 10.1155/2018/2194604
    [57] F. S. Yen, J. C. C. Wei, J. S. Liu, C. M. Hwu, Parental income level and risk of developing type 2 diabetes in youth, JAMA Netw. Open., 6 (2023), e2345812. https://doi.org/10.1001/jamanetworkopen.2023.45812 doi: 10.1001/jamanetworkopen.2023.45812
  • This article has been cited by:

    1. Bang-Yen Chen, Majid Ali Choudhary, Afshan Perween, A Comprehensive Review of Golden Riemannian Manifolds, 2024, 13, 2075-1680, 724, 10.3390/axioms13100724
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(552) PDF downloads(49) Cited by(0)

Figures and Tables

Figures(2)  /  Tables(12)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog