Research article

Two classes of nearly optimal codebooks from generalized bent $ \mathbb{Z}_{4} $-valued quadratic forms

  • Published: 29 October 2025
  • MSC : 11T23, 11T71, 94A60, 94B05

  • Codebooks with small maximum cross-correlations are desirable in many fields, such as compressed sensing, direct spread code-division multiple-access (CDMA) systems, and space-time codes. The objective of this paper is the construction of codebooks. Based on the theory of $ \mathbb{Z}_{4} $-valued quadratic forms, we propose two classes of generalized bent functions over $ \mathbb{Z}_{4} $, and construct new families of codebooks from these functions. The codebooks obtained in this paper are nearly optimal with respect to the Welch bound, and could have a very small alphabet size, which is of importance in practical applications. Moreover, some Boolean bent functions are also derived.

    Citation: Junchao Zhou, Tingting Pang. Two classes of nearly optimal codebooks from generalized bent $ \mathbb{Z}_{4} $-valued quadratic forms[J]. AIMS Mathematics, 2025, 10(10): 24730-24754. doi: 10.3934/math.20251096

    Related Papers:

  • Codebooks with small maximum cross-correlations are desirable in many fields, such as compressed sensing, direct spread code-division multiple-access (CDMA) systems, and space-time codes. The objective of this paper is the construction of codebooks. Based on the theory of $ \mathbb{Z}_{4} $-valued quadratic forms, we propose two classes of generalized bent functions over $ \mathbb{Z}_{4} $, and construct new families of codebooks from these functions. The codebooks obtained in this paper are nearly optimal with respect to the Welch bound, and could have a very small alphabet size, which is of importance in practical applications. Moreover, some Boolean bent functions are also derived.



    加载中


    [1] D. V. Sarwate, Meeting the Welch bound with equality, In: Sequences and their applications, London: Springer, 1999, 79–102. https://doi.org/10.1007/978-1-4471-0551-0_6
    [2] L. Welch, Lower bounds on the maximum cross correlation of signal, IEEE T. Inform. Theory, 20 (1974), 397–399. https://doi.org/10.1109/TIT.1974.1055219 doi: 10.1109/TIT.1974.1055219
    [3] V. I. Levenshtein, Bounds for packing of metric spaces and some of their applications, Problemy Kiberneticki, 40 (1983), 43–110.
    [4] P. F. Xia, S. L. Zhou, G. B. Giannakis, Achieving the Welch bound with difference sets, IEEE T. Inform. Theory, 51 (2005), 1900–1907. https://doi.org/10.1109/TIT.2005.846411 doi: 10.1109/TIT.2005.846411
    [5] J. L. Massey, T. Mittelholzer, Welch's bound and sequence sets for code-division multiple-access systems, In: Sequences II, New York: Springer, 1993, 63–78. https://doi.org/10.1007/978-1-4613-9323-8_7
    [6] V. Tarokh, I. M. Kim, Existence and construction of noncoherent unitary space-time codes, IEEE T. Inform. Theory, 48 (2002), 3112–3117. https://doi.org/10.1109/TIT.2002.805075 doi: 10.1109/TIT.2002.805075
    [7] S. X. Li, G. N. Ge, Deterministic sensing matrices arising from near orthogonal systems, IEEE T. Inform. Theory, 60 (2014), 2291–2302. https://doi.org/10.1109/TIT.2014.2303973 doi: 10.1109/TIT.2014.2303973
    [8] J. H. Conway, R. H. Harding, N. J. A. Sloane, Packing lines, planes, etc.: packings in Grassmannian spaces, Exp. Math., 5 (1996), 139–159.
    [9] Z. L. Heng, Q. Yue, Optimal codebooks achieving the Levenshtein bound from generalized bent functions over $\mathbb{Z}_4$, Cryptogr. Commun., 9 (2017), 41–53. https://doi.org/10.1007/s12095-016-0194-5 doi: 10.1007/s12095-016-0194-5
    [10] Y. F. Qi, S. Mesnager, C. M. Tang, Codebooks from generalized bent $\mathbb{Z}_{4}$-valued quadratic forms, Discrete Math., 343 (2020), 111736. https://doi.org/10.1016/j.disc.2019.111736 doi: 10.1016/j.disc.2019.111736
    [11] C. S. Ding, T. Feng, A generic construction of complex codebooks meeting the Welch bound, IEEE T. Inform. Theory, 53 (2007), 4245–4250. https://doi.org/10.1109/TIT.2007.907343 doi: 10.1109/TIT.2007.907343
    [12] C. S. Ding, J. X. Yin, Signal sets from functions with optimum nonlinearity, IEEE T. Commun., 55 (2007), 936–940. https://doi.org/10.1109/TCOMM.2007.894113 doi: 10.1109/TCOMM.2007.894113
    [13] C. Ding, Complex codebooks from combinatorial designs, IEEE T. Inform. Theory, 52 (2006), 4229–4235. https://doi.org/10.1109/TIT.2006.880058 doi: 10.1109/TIT.2006.880058
    [14] C. S. Ding, T. Feng, Codebooks from almost difference sets, Des. Codes Cryptogr., 46 (2008), 113–126. https://doi.org/10.1007/s10623-007-9140-z doi: 10.1007/s10623-007-9140-z
    [15] Z. C. Zhou, X. H. Tang, New nearly optimal codebooks from relative difference sets, Adv. Math. Commun., 5 (2011), 521–527. https://doi.org/10.3934/amc.2011.5.521 doi: 10.3934/amc.2011.5.521
    [16] H. G. Hu, J. S. Wu, New constructions of codebooks nearly meeting the Welch bound with equality, IEEE T. Inform. Theory, 60 (2014), 1348–1355. https://doi.org/10.1109/TIT.2013.2292745 doi: 10.1109/TIT.2013.2292745
    [17] C. J. Li, Q. Yue, Y. W. Huang, Two families of nearly optimal codebooks, Des. Codes Cryptogr., 75 (2015), 43–57. https://doi.org/10.1007/s10623-013-9891-7 doi: 10.1007/s10623-013-9891-7
    [18] A. X. Zhang, K. Q. Feng, Construction of cyclotomic codebooks nearly meeting the Welch bound, Des. Codes Cryptogr., 63 (2012), 209–224. https://doi.org/10.1007/s10623-011-9549-2 doi: 10.1007/s10623-011-9549-2
    [19] N. Y. Yu, A construction of codebooks associated with binary sequences, IEEE T. Inform. Theory, 58 (2012), 5522–5533. https://doi.org/10.1109/TIT.2012.2196021 doi: 10.1109/TIT.2012.2196021
    [20] S. Hong, H. Park, J.-S. No, T. Helleseth, Y.-S. Kim, Near-optimal partial Hadamard codebook construction using binary sequences obtained from quadratic residue mapping, IEEE T. Inform. Theory, 60 (2014), 3698–3705. https://doi.org/10.1109/TIT.2014.2314298 doi: 10.1109/TIT.2014.2314298
    [21] P. Tan, Z. C. Zhou, D. Zhang, A construction of codebooks nearly achieving the Levenshtein bound, IEEE Signal Proc. Let., 23 (2016), 1306–1309. https://doi.org/10.1109/LSP.2016.2595106 doi: 10.1109/LSP.2016.2595106
    [22] W. Lu, X. Wu, X. W. Cao, M. Chen, Six constructions of asymptotically optimal codebooks via the character sums, Des. Codes Cryptogr., 88 (2020), 1139–1158. https://doi.org/10.1007/s10623-020-00735-w doi: 10.1007/s10623-020-00735-w
    [23] X. Wu, W. Lu, X. W. Cao, Two constructions of asymptotically optimal codebooks via the trace functions, Cryptogr. Commun., 12 (2020), 1195–1211. https://doi.org/10.1007/s12095-020-00448-w doi: 10.1007/s12095-020-00448-w
    [24] W. J. Yin, C. Xiang, F.-W. Fu, A further construction of asymptotically optimal codebooks with multiplicative characters, Appl. Algebr. Eng. Comm., 30 (2019), 453–469. https://doi.org/10.1007/s00200-019-00387-x doi: 10.1007/s00200-019-00387-x
    [25] Y. Yan, H. N. Chen, J. M. Wang, G. Wang, A new construction of asymptotically optimal codebooks, AIMS Mathematics, 9 (2024), 9631–9640. https://doi.org/10.3934/math.2024471 doi: 10.3934/math.2024471
    [26] Z. L. Heng, C. S. Ding, Q. Yue, New constructions of asymptotically optimal codebooks with multiplicative characters, IEEE T. Inform. Theory, 63 (2017), 6179–6187. https://doi.org/10.1109/TIT.2017.2693204 doi: 10.1109/TIT.2017.2693204
    [27] Z. L. Heng, Nearly optimal codebooks based on generalized Jacobi sums, Discrete Appl. Math., 250 (2018), 227–240. https://doi.org/10.1016/j.dam.2018.05.017 doi: 10.1016/j.dam.2018.05.017
    [28] G. J. Luo, X. W. Cao, Two constructions of asymptotically optimal codebooks via the hyper Eisenstein sum, IEEE T. Inform. Theory, 64 (2018), 6498–6505. https://doi.org/10.1109/TIT.2017.2777492 doi: 10.1109/TIT.2017.2777492
    [29] G. J. Luo, X. W. Cao, Two classes of near-optimal codebooks with respect to the Welch bound, Adv. Math. Commun., 15 (2021), 279–289. https://doi.org/10.3934/amc.2020066 doi: 10.3934/amc.2020066
    [30] G. Wang, D.-M. Xu, F.-W. Fu, Constructions of asymptotically optimal codebooks with respect to Welch bound and Levenshtein bound, Adv. Math. Commun., 17 (2023), 1526–1541. https://doi.org/10.3934/amc.2021065 doi: 10.3934/amc.2021065
    [31] D.-M. Xu, G. Wang, S. Mesnager, Y. Gao, F.-W. Fu, Jacobi sums over Galois rings of arbitrary characters and their applications in constructing asymptotically optimal codebooks, Des. Codes Cryptogr., 92 (2024), 1051–1073. https://doi.org/10.1007/s10623-023-01328-z doi: 10.1007/s10623-023-01328-z
    [32] O. S. Rothaus, On "bent" functions, J. Comb. Theory A, 20 (1976), 300–305. https://doi.org/10.1016/0097-3165(76)90024-8
    [33] S. Mesnager, Bent functions: fundamentals and results, Cham: Springer, 2016. https://doi.org/10.1007/978-3-319-32595-8
    [34] C. Carlet, S. Mesnager, Four decades of research on bent functions, Des. Codes Cryptogr., 78 (2016), 5–50. https://doi.org/10.1007/s10623-015-0145-8 doi: 10.1007/s10623-015-0145-8
    [35] A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, P. Solé, The ${\mathbb Z}_4$-linearity of Kerdock, Preparata, Goethals, and related codes, IEEE T. Inform. Theory, 40 (1994), 301–319. https://doi.org/10.1109/18.312154 doi: 10.1109/18.312154
    [36] E. H. Brown, Generalizations of the Kervaire invariant, Ann. Math., 95 (1972), 368–383. https://doi.org/10.2307/1970804 doi: 10.2307/1970804
    [37] K.-U. Schmidt, Quaternary constant-amplitude codes for multicode CDMA, IEEE T. Inform. Theory, 55 (2009), 1824–1832. https://doi.org/10.1109/TIT.2009.2013041 doi: 10.1109/TIT.2009.2013041
    [38] K.-U. Schmidt, ${\mathbb Z}_4$-Valued quadratic forms and quaternary sequence families, IEEE T. Inform. Theory, 55 (2009), 5803–5810. https://doi.org/10.1109/TIT.2009.2032818 doi: 10.1109/TIT.2009.2032818
    [39] P. Solé, N. Tokareva, Connections between quaternary and binary bent functions, Cryptology ePrint Archives, 2009. Available from: http://www.eprint.iacr.org/2009/544.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(274) PDF downloads(24) Cited by(0)

Article outline

Figures and Tables

Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog