We use characterizations of spectral fractional Laplacian to tackle the problems of parabolic spectral fractional Laplacian incorporating nonhomogeneous Dirichlet boundary conditions. Compared with applying classical extension method in the study of the lower-order fractional operators with $ s \in (0, 1) $, we used a modified extensions to parabolic spectral fractional Laplacian incorporating boundary conditions, adapted from constructing harmonic extensions of the boundary data to spectral fractional Laplacian.
Citation: Xingyu Liu. The study of parabolic spectral fractional Laplacian with nonhomogeneous Dirichlet boundary conditions[J]. AIMS Mathematics, 2025, 10(10): 24691-24711. doi: 10.3934/math.20251094
We use characterizations of spectral fractional Laplacian to tackle the problems of parabolic spectral fractional Laplacian incorporating nonhomogeneous Dirichlet boundary conditions. Compared with applying classical extension method in the study of the lower-order fractional operators with $ s \in (0, 1) $, we used a modified extensions to parabolic spectral fractional Laplacian incorporating boundary conditions, adapted from constructing harmonic extensions of the boundary data to spectral fractional Laplacian.
| [1] |
L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Part. Diff. Eq., 32 (2007), 1245–1260. https://doi.org/10.1080/03605300600987306 doi: 10.1080/03605300600987306
|
| [2] |
P. R. Stinga, J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators, Commun. Part. Diff. Eq., 35 (2010), 2092–2122. https://doi.org/10.1080/03605301003735680 doi: 10.1080/03605301003735680
|
| [3] |
A. Harbir, P. Johannes, R. Sergejs, Fractional operators with inhomogeneous boundary conditions: Analysis, control, and discretization, Commun. Math. Sci., 16 (2018), 1395–1426. https://doi.org/10.4310/CMS.2018.v16.n5.a11 doi: 10.4310/CMS.2018.v16.n5.a11
|
| [4] |
X. Liu, The maximal regularity of nonlinear second-order hyperbolic boundary differential equations, Axioms, 13 (2024), 884. https://doi.org/10.3390/axioms13120884 doi: 10.3390/axioms13120884
|
| [5] |
X. Liu, Radial symmetry and monotonicity of solutions of fractional parabolic equations in the unit ball, Symmetry, 17 (2025), 781. https://doi.org/10.3390/sym17050781 doi: 10.3390/sym17050781
|
| [6] | T. Félix, An extension problem related to inverse fractional operators, arXiv preprint, 2016. https://doi.org/10.48550/arXiv.1603.07988 |
| [7] | V. Rafael, Backstepping control laws for higher-dimensional PDEs: Spatial invariance and domain extension methods, IMA J. Math. Control I., 2025. https://doi.org/10.48550/arXiv.2503.00225 |
| [8] |
E. G. José, J. M. Miana, P. R. Stingo, Extension problem and fractional operators: Semigroups and wave equations, J. Evol. Equ., 13 (2013), 343–368. https://doi.org/10.1007/s00028-013-0182-6 doi: 10.1007/s00028-013-0182-6
|
| [9] |
X. Liu, A system of parabolic Laplacian equations that are interrelated and radial symmetry of solutions, Symmetry, 17 (2025), 1112. https://doi.org/10.3390/sym17071112 doi: 10.3390/sym17071112
|
| [10] |
D. Gromes, Über die asymptotische Verteilung der eigenwerte des Laplace-operators für gebiete auf der kugeloberfläche, Comm. Math. Sci., 94 (1966), 110–121. https://doi.org/10.1007/BF01118974 doi: 10.1007/BF01118974
|
| [11] |
V. Ivrii, 100 years of Weyl's law, Bull. Math. Sci., 6 (2016), 379–452. https://doi.org/10.1007/s13373-016-0089-y doi: 10.1007/s13373-016-0089-y
|
| [12] |
X. Liu, The maximal regularity of nonlocal parabolic Monge–Ampère equations and its monotonicity in the whole space, Axioms, 14 (2025), 491. https://doi.org/10.3390/axioms14070491 doi: 10.3390/axioms14070491
|
| [13] |
H. Zhang, Y. Wang, J. Bi, S. Bao, Novel pattern dynamics in a vegetation-water reaction-diffusion model, Math. Comput. Simul., 241 (2026), 379–452. https://doi.org/10.1016/j.matcom.2025.09.020 doi: 10.1016/j.matcom.2025.09.020
|
| [14] |
X. Wang, H. Zhang, Y. Wang, Z. Li, Dynamic properties and numerical simulations of the fractional Hastings–Powell model with the Grünwald–Letnikov differential derivative, Int. J. Bifurc. Chaos Appl. Sci. Eng., 35 (2025), 2550145. https://doi.org/10.1142/S0218127425501457 doi: 10.1142/S0218127425501457
|
| [15] |
S. Zhang, H. Zhang, Y. Wang, Z. Li, Dynamic properties and numerical simulations of a fractional phytoplankton-zooplankton ecological model, AIMS Math., 20 (2025), 648–669. https://doi.org/10.3934/nhm.2025028 doi: 10.3934/nhm.2025028
|
| [16] |
X. Gao, H. Zhang, X. Li, Research on pattern dynamics of a class of predator-prey model with interval biological coefficients for capture, AIMS Math., 9 (2024), 18506–18527. https://doi.org/10.3934/math.2024901 doi: 10.3934/math.2024901
|
| [17] |
D. Peterseim, M. Schedensack, Relaxing the CFL condition for the wave equation on adaptive meshes, J. Sci. Comput., 72 (2017), 1196–1213. https://doi.org/10.1007/s10915-017-0394-y doi: 10.1007/s10915-017-0394-y
|
| [18] |
C. Ye, H. Dong, J. Cui, Convergence rate of multiscale finite element method for various boundary problems, J. Comput. Appl. Math., 274 (2020), 112754. https://doi.org/10.1016/j.cam.2020.112754 doi: 10.1016/j.cam.2020.112754
|
| [19] |
N. Abatangelo, L. Dupaigne, Nonhomogeneous boundary conditions for the spectral fractional Laplacian, Ann. Inst. H. Poincaré C Anal. Non Linéaire., 34 (2017), 439–467. https://doi.org/10.1016/j.anihpc.2016.02.001 doi: 10.1016/j.anihpc.2016.02.001
|
| [20] |
A. Iannizzotto, D. Mugnai, Optimal solvability for the fractional p-Laplacian with Dirichlet conditions, Fract. Calc. Appl. Anal., 27 (2024), 3291–3317. https://doi.org/10.1007/s13540-024-00341-w doi: 10.1007/s13540-024-00341-w
|
| [21] |
X. Yang, W. Wang, Z. Zhou, H. Zhang, An efficient compact difference method for the fourth-order nonlocal subdiffusion problem, Taiwan. J. Math., 29 (2025), 35–66. https://doi.org/10.11650/tjm/240906 doi: 10.11650/tjm/240906
|
| [22] |
H. Zhang, X. Yang, Y. Liu, Y. Liu, An extrapolated CN-WSGD OSC method for a nonlinear time fractional reaction-diffusion equation, Appl. Numer. Math., 157 (2020), 619–633. https://doi.org/10.1016/j.apnum.2020.07.017 doi: 10.1016/j.apnum.2020.07.017
|
| [23] |
H. Zhang, X. Jiang, F. Wang, X. Yang, The time two-grid algorithm combined with difference scheme for 2D nonlocal nonlinear wave equation, J. Appl. Math. Comput., 70 (2024), 1127–1151. https://doi.org/10.1007/s12190-024-02000-y doi: 10.1007/s12190-024-02000-y
|
| [24] |
J. Zhang, X. Yang, S. Wang, A three-layer FDM for the Neumann initial-boundary value problem of 2D Kuramoto-Tsuzuki complex equation with strong nonlinear effects, Commun. Nonlinear Sci. Numer. Simul., 152 (2026), 109255. https://doi.org/10.1016/j.cnsns.2025.109255 doi: 10.1016/j.cnsns.2025.109255
|
| [25] |
X. Yang, Z. Zhang, Superconvergence analysis of a robust orthogonal Gauss collocation method for 2D fourth-order subdiffusion equations, J. Sci. Comput., 100 (2024), 62. https://doi.org/10.1007/s10915-024-02616-z doi: 10.1007/s10915-024-02616-z
|
| [26] |
X. Yang, Z. Zhang, Analysis of a new NFV scheme preserving DMP for two-dimensional sub-diffusion equation on distorted meshes, J. Sci. Comput., 99 (2024), 80. https://doi.org/10.1007/s10915-024-02511-7 doi: 10.1007/s10915-024-02511-7
|
| [27] |
X. Yang, Z. Zhang, On conservative, positivity preserving, nonlinear FV scheme on distorted meshes for the multi-term nonlocal Nagumo-type equations, Appl. Math. Lett., 150 (2024), 108972. https://doi.org/10.1016/j.aml.2023.108972 doi: 10.1016/j.aml.2023.108972
|