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1. Introduction

The spectral fractional Laplacian is defined via the eigenvalues and eigenfunctions of the classical
Laplacian with homogeneous Dirichlet boundary conditions. For a bounded domain Q c R”, let {A;, ¢}
be the eigenvalues and eigenfunctions of —A. The spectral fractional Laplacian of order s € (0, 1) is
then:

(=Apo)'u(x) = D A, )2 de(x), (1.1)
k=1

where (u, ¢;) denotes the L?-inner product. This definition requires zero boundary conditions for the
eigenfunction expansion to converge, we use subscripts (D, 0) in (=Ap,)* to denote the case where the
boundary data is zero. Parallel to this, (—Ap)*® denotes the modified spectral fractional Laplace operator
with nonzero boundary conditions in the following contents.
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For nonzero boundary data, the spectral fractional Laplacian is modified by decomposing u into a
harmonic function v (satisfying v = g on d2) and a remainder w with zero boundary conditions:

u=v+w, (=Ap)'u=(=Ap)'v+ (=App)’w. (1.2)

Here, (—Ap)*v is defined via extension method (also known as the Caffarelli-Silvestre extension
or Dirichlet-to-Neumann map, see in [1]). The extension method transforms the nonlocal fractional
Laplacian (—A)’ into a local boundary value problem in one higher spatial dimension. For a function v
defined on 2 C R”, we construct an auxiliary function V(x, y) where x € Q, y > 0, that satisfies:

V-(""2VV) =0, inQ x(0,c),
V(x,0) = v(x), on Q x{y =0}, (1.3)
Vix,y) = g(x), on 0Q X [0, o).

Here, '~ is a degenerate weight that ensures the problem is well-posed. The parameter s € (0, 1)

corresponds to the fractional power of the Laplacian.
The fractional Laplacian (—Ap)°v is recovered from the normal derivative of V at y = 0:

. 0,0V
(~8p)'v = ~Cys lim y' ™2 2(x. ), (1.4)

where C, ; is a normalization constant depending on n and s. This formula shows that the fractional
Laplacian can be computed by solving a local PDE and then taking a derivative at the boundary. The
fractional Laplacian is inherently nonlocal, but the extension method localizes it by introducing an
extra dimension. For v harmonic (i.e., —Av = 0 in Q), the extension V inherits this property in the
x-variables, simplifying the computation of (—Ap)*v. Also, the method naturally incorporates nonzero
boundary data g. For further details on extension methods on fractional Laplacians, see the seminal
work by Caffarelli and Silvestre (2007) [1] or Stinga and Torrea (2010) [2].

While (—App)°w in (1.2) represents the spectral fractional Laplacian applied to a function w with
homogeneous Dirichlet boundary conditions (w = 0 on 0Q2). Its specific definition via standard spectral
decomposition relies on the eigenfunction expansion of the Dirichlet Laplacian, which is provided in
Section 2.

In [3], the authors studied

((ctorums ma
they use a standard lifting argument by constructing a fractional harmonic map
(-Ap)’v=0, inQ, v=g, onoQ. (1.6)
Solving (1.6) is equivalent to solving
f v(=Ayp) = f g0,p, Yo € dom(-A), (L.7)
Q o0

that is, the standard Laplace equation in the very-weak form. To attain the final answer of u, it remains
to find w solving

(Apo)'w=f, inQ, w=0, onQ. (1.8)
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then u = w + v. Hence, rather than seeking a direct solution for u, they transformed the problem into
solving Eq (1.5) separately for the variables v and w.

Let Q ¢ R” with n > 2 be a bounded open set with boundary dQ. The purpose of this paper is
to study existence, uniqueness, regularity of the following nonhomogeneous Dirichlet boundary value
problem

{ Wy (—Apyu=f, inQ (1.9)

u=g, on 0Q.

Here, f and g are defined as measurable functions, with f operating on the boundary 92 and g on the
domain Q itself. These functions adhere to specific conditions, which will be detailed in Section 2. To
simplify the problem, we assume u = 0 outside Q. The existence of solutions of (1.9) could be derived
from maximal regularity theory as shown in [4, 5].

In the classical extension method, to study the parabolic spectral fractional Laplacian (1.9), we first
study

(—Ap)'v=0, inQ, v=g, onod. (1.10)

According to the Caffarelli-Silvestre extension theory, v can be defined through the local problem in
a higher-dimensional domain, the fractional Laplace operator (—A)*v is related to the Dirichlet-to-
Neumann map of V as shown in (1.4).

Define a new function w(x, ) = u(x, t) — v(x, t), then w satisfies homogeneous boundary conditions

ow + (=Apo)'w = f(x,t) =0,y — (=Ap)’v = f(x,t) =dyv inQ x(0,T),
w(x, 1) =0, in 0Q x(0,T), (1.11)
w(x,0) = u(x,0) — v(x, 0), in Q.

Due to (—Ap)*v = 0, the equation simplifies to:
ow + (=Apo)’w = f(x,t) — Opv. (1.12)

If g explicitly depends on time ¢, then d,v needs to be computed through the variational formulation of
the extended equation. For example, by differentiating the weak form of V:

f y' VO,V - Vgdxdy = 0, V¢ € Hy;(C). (1.13)
C

Combining with the trace theorem, the expression for d,v can be derived, substitute d,v back to (1.12)
to solve w, then the final answer of (1.9) could be expressed. However, the computation is very
complicated and the solutions are not explicit in this approach.

To overcome this difficulty, in this article, we do not employ the classical extension method but
rather generalize the lifting argument methods in [3] to our problem (1.9). Here, a more ideal
framework would be:

ov

E +(=Ap)’v=0, inQ, v=g, ondQ. (1.14)
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Define a new function w(x, ) = u(x, t) — v(x, t), then w satisfies homogeneous boundary conditions.

ow + (=Apo)’'w = f(x,t) —dv — (=Ap)’v = f(x,t) inQ x(0,T),

w(x, t) =0, in 0Q x (0,T), (1.15)
w(x,0) = u(x,0) — v(x, 0), in Q.
To attain the final answer of u, it remains to find w solving
ow s .
m + (=Apo)'w=f, inQ, w=0, ondQ. (1.16)

Thus instead of looking for u directly, we are reduced to solving (1.9) for v and w, respectively.

The core challenge lies in the fact that, within the Caffarelli-Silvestre extension theory, one cannot
simply introduce the time variable ¢ into the extended function U(x, t) and ascribe a physical meaning
of time derivative to it, as the theory fundamentally focuses on the geometric extension of spatial
fractional operators, which is unrelated to temporal evolution.

The solution is to employ the theory of parameterized surfaces: Let the original two-dimensional
manifold £ C R® be given by the parameterization (x,7) — (x,t,u(x,1)). A coordinate transformation
can be defined as (yy, y2,y3) = (x, t, z—u(x, t)), which maps X onto the plane {y; = 0}, while points (x, r)
in the original space correspond to transformed points (x, ¢, z) satisfying z > u(x, 1), (i.e., y3 > 0). This
operation is essentially a local coordinate system transformation that transfers the original problem
from the surface X to the hyperplane y; = 0.

The fractional Laplacian (—Ap)*v is recovered from the normal derivative of V at y; = 0:

(=Ap)'v =-C, lim )%_zsa—v()’l,)’z,)@),
y3—0* 0y;
where C,, ; is a normalization constant depending on n and s.
By chain rule, we have

oV lim oV ( 6u)
ot o0t dy; Ot
therefore,
ov
=0,
ot
whenever
(=Ap)’v =0.

At this point, v(x) is extended to v(x, f), and the boundary condition becomes V(x,0,7) = v(x, f). A time
evolution operator U(¢) can be introduced such that v(x, r) = U(¢)v(x), where v(x) is the function at the
initial time ¢ = 0. For simplicity, we write it here as V(x, 0, f) = v(x, f), but here time ¢ serves only as a
parameter, not as a dimension.

By chain rule,

o _av v b
t  Otlwon  dylwon Ot
~—
=0
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since %—‘; = 0 holds throughout the domain, it follows that

v
ot lxon

Thus,

ov
vl 0+0=0,
which makes (1.14) hold.

The Extension Method is not only extensively applied in fractional Laplacian operators but also
finds wide-ranging uses in other types of partial differential equations. In [6], an extension method for
the inverse fractional Laplacian operator (—A)* is proposed, this method resolves the localization issue
of inverse operators, thereby expanding the applicability of fractional partial differential equations.
For high-dimensional partial differential equations, such as reaction-diffusion equations, a domain
extension method is proposed to transform boundary control problems on irregular domains into
equivalent problems on regular domains, as shown in [7]. The article [8] extends the results of
Caffarelli-Silvestre [1] to generators of integrated families of operators, particularly focusing on
infinitesimal generators of bounded Cy-semigroups and operators with purely imaginary symbols.

This paper is organized as follows: We state some prerequesite definitions and propositions in
Section 2. In Section 3, we show the details of how modified extension method be applied to
our problem (1.9) step by step. And we prove the existence and uniqueness of solutions to our
problem in Section 4. In Sections 5 and 6, we discussed the real-world domains as well as numerical
computation/simulation to which the theory in this paper can be applied.

2. Preliminaries

Refer to [3], we introduce the following definitions and propositions to serve the subsequent content:

Definition 2.1. The eigenfunctions {¢;} of a self-adjoint elliptic operator —A with homogeneous
Dirichlet conditions satisfy the orthogonality relation

f = pip;dx = 6ij,
Q

where ¢;; is the Kronecker delta, 6;; = 1 ifi = jand 6;; = 0 if i # j.

Proposition 2.1. The set {¢} is complete in L*>(Q), which means that for any u € L*(Q), we have

(o)
u= E APk,
k=1

where a; = fQ ugrdx and the series converges in the L*(Q) norm,

N
u- Z APk
k=1
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Definition 2.2. The Dirichlet Laplacian —Apy (with zero boundary conditions) is a self-adjoint,
positive-definite operator on L*(Q). Its spectrum consists of a countable sequence of eigenvalues
{A}, and corresponding eigenfunctions {¢i )7 -

(=Ap )i = i, inQ, ¢ =0 o0ndQ

where 0 < A} < A, < -+ — oo, and {¢;} form an orthonormal basis of L*(Q). Since w satisfies w = 0
on 09, it can be expanded in terms of the eigenfunctions

[ee)

w(x) = Z crdi(x), where ¢, = f w(x)pp(x)dx.

k=1 Q

Definition 2.3. The spectral fractional Laplacian is defined on the space C;(Q) by

(o8]

(o' = ) culign(a) with o = [ Wi

k=1 Q

with the inequality

f(_AD,O)SWV = Z AWivi = Z ;WA vie < Wl VI
Q k=1 k=1

forany v = Y vipr € H'(Q), the operator (—Ap)’u extends to an operator mapping from H*(Q) to
H™*(Q) by density.

Lemma 2.1. Ifwe let v = —(=A)'"Sw,, then:
< (=AY 'u, —(=A)'""w, >=< u, (~A)yw, > .

Proof. We prove the Lemma 2.1 using the Fourier transform representation, the fractional Laplacian
(—A)* of a function u(x, t) can be represented in the Fourier domain as:

FI(=D)’ul(é, 1) = |7, 1),

where F denotes the Fourier transform, and #(x, 7) is the Fourier transform of u(x, 7).
The inner product < f,g > of two functions f and g can be expressed in terms of their Fourier
transforms as:

<fig>= [ roogeian= [ fen@ie
R" R"
Consider the left-hand side of the lemma:
< (=A)’u, —(=A)’w, > .

Thus, the inner product becomes:
< (=AY u, =(=A)7wy >= = | EPUE DIERW(E, ndE = - f 17 A, DIEP> W, (€, DdE,
Rn Rn
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we have

€17 - 1677 = 1€P,

SO
< (=AU, =(=A)wy >= - f EPaE, w, (&, Ddé. (2.1)
Rn
Now consider the right-hand side of the lemma:

<u,(-Aw,) > .

The Laplacian —A in the Fourier domain is given by:

(=Mu(é, 1) = —|EPac, ),

SO

<u,(=Aw, >= - fR (&, DIEPw (&, ndé = —f EPaE, W, (&, Ddé. (2.2)

Rn
Therefore, (2.1) is equal to (2.2). O

If f is Lipschitz continuous, the regularity of (1.15) referenced from [9] is w € H'(0, T; L*(R")) N
L*>(0,T; H*(R")), the minimal regularity conditions on f should be f € L*(0, T; H*(R")).

In our research, we assume f is a measurable function and that w € L*(0, T; H®) is a weak solution.
We derive that its time derivative "a—vt” € (0,T; H™®) through the equation structure. Leveraging the
continuity of (-A)* : H* — H™*, combined with f € (0, T; H™*), we infer that %—Vtv € (0,T; H™®) implies
w € C([0,T]; H*) via the Aubin-Lions lemma. We apply Schauder estimates or Calder6n-Zygmund
theory to iteratively enhance regularity. By Approximating f with a sequence of smooth functions f,
we prove that the corresponding solutions w, converge to w in an appropriate topology while preserving

regularity.
3. Main theorems and results

We proceed to prove the main theorem of this paper, namely, obtaining the solution to problem (1.9)
through the modified extension method. We first provide a detailed process of how lifting argument are
applied, which was not clearly described in the original literature [3]. Building upon the framework,
we then proceed to establish the parabolic spectral Laplacian. The inclusion of the original proof serves
primarily to facilitate a comparative analysis with its parabolic counterpart. For example, when

ou _
or
(1.9) becomes (1.5), the very weak formulation of

&t (—Ap)u=f, inQ,
u=g, on 082

0,
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is given by

f u(~Apo)'v = f fr- f 20wy, Vv € HX(Q),
Q Q 0Q

where w, is defined as the solution to

(=Apo)' ™ w, = v, inQ,

w, =0, on 0Q.

(3.2) is achieved by the following proposition and Lemma in [3]:

Proposition 3.1. Let (—Apy)° be as in Definition 2.2, then the following holds refer to [3]:

(1) When s = 1 we obtain the standard Laplacian (—A).
(2) For any u € C there holds
(=Ap)’'u = (=App)’u
a.ein Q.
(3) Forany s € (0,1) and any u € C”(ﬁ) with fag o0,u = 0 there is the identity
(=Ap)’(=Ap)' ~*u = —Au
a.e. in L.

Based on Proposition 3.1, if # and w,, are symmetric, then the following holds:

Lemma 3.1. Ifwe let v = (=Apo)' ~*w,, then:

< (=Apo)’u, (=Ap0) " wy >=< 1, (=Ap )’ (=Apg) Wy >=< u, (=A)w, > .

By Lemma 3.1, we have the following relation:

f v(=Apo)'u = f u(=A)w,
Q Q

(-Ap)’u=0, inQ, u=g, onold.

where in the case

Combine (3.4) and (3.5), it is equivalent to solving

fu(—va) :f go,w,, Yw, € dom(-A).
Q Fle}

(3.1)

(3.2)
(3.3)

(3.4)

(3.5)

(3.6)

We employ a similar idea to handle boundary conditions in parabolic equations. We aim to prove

the following main theorem:
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Theorem 3.1. When

the weak solution of

&t (-Ap)u=f, inQ,
u=g, on 082

is given by
0 !
Z [e_ﬂ"t f (u(y, 0) = v(y, 0)pr(y)dy + f e~ =D f FO, D¢(y)dydr ] Pr(x)
= Q 0 Q
- 1 .
+ (f 80,¢ )—¢> et (3.7)
kZ:; . k)7 9%
where ¢y are eigenfunctions corresponding to w,, and w, is defined as the solution to

—(=Ap) *w, = v, inQ, (3.8)
w, =0, on 0Q, 3.9
and A; are eigenvalues corresponding to (—A)°, A is the eigenvalue corresponding to the eigenfunction

w, of =A.

We utilize the modified extension method, which has been introduced in the introduction, to prove
the main theorem. we first study

% +(-Ap)’v=0, inQ, v=g, ondQ. (3.10)
Let
v(x, 1) = i ar(D)pi(x), (3.11)
k=1
therefore,

[ee)

v(x,0) = > a0)ge(x).

k=1

By Definition 2.1, the eigenfunction ¢y satisfies the orthogonality condition:

f dr(X)P(x)dx = 6y
Q
where ¢ is the Kronecker delta function, which equals 1 when k = [ and O otherwise.

AIMS Mathematics Volume 10, Issue 10, 24691-24711.
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When ¢ = 0, the parabolic spectral fractional Laplacian degenerates into the spectral fractional
Laplacian. Therefore, it is equivalent to process the boundary conditions according to the method
applied in spectral fractional Laplacian.

However, Proposition (3.1) only applies when w € C. When f is Lipschitz continuous, w €
HY(0,T; L*(R™) N L=(0, T; H*(R")), membership in H*(R") does not imply that w is smooth, even if
s were very large, Sobolev embeddings only guarantee continuity or Holder continuity under certain
conditions, e.g., s > g for H* — C%®. In this case, we could not use Lemma 3.1 but Lemma 2.1.
Combine with (3.1), Let v = —(=A) *w,,

fu(—AD)sv:fv(—A)wv (3.12)
Q Q

where in the case
(-Ap)’v=0, inQ, v=g, onoQ. (3.13)

Combine with (3.6), it is equivalent to solving

fv(—AwV) :f go,w,, Yw, € dom(-A). (3.14)
Q oQ

To find the coefficient a;(0), we take the inner product of the original equation in the static case,
ignoring the time derivative with ¢:

(9]

[ (Y aoco)-smdx= [ g, (3.15)

Since w, is an eigenfunction of —A, we have —Aw, = Aw,, where A is the corresponding eigenvalue to
w,. Express w, as a linear combination of ¢;:

o0

Wy = ) (). (3.16)

=1

Substitute (3.16) back to left side of (3.15)

f ( D a 0D S ap =13 Y aOesu =13 aoe (3.17)
Q= I=1 =1 k=1 k=1

By utilizing the orthogonality of eigenfunctions, the summation in the above equation can be
simplified to:

A1) a(0)c =f go,w,.
; {Oe= |

Since

g(')vwv = C f gav¢’
«L‘Q ; : 0Q :

AIMS Mathematics Volume 10, Issue 10, 24691-24711.
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therefore

1Y aOc=Ya [ e (3.18)
k=1 =1 oQ

Assume A # 0, divide both sides of the Eq (3.18) by 4, solve for a;(0):

(o] 1 (o]
O)c, = = 0,9;.
;ak( )Ci /l;ﬂ[mg &

=1

By leveraging the linear independence of the orthogonal basis, compare the coeflicients of ¢, on both
sides of the equation:

1
ar(0)cy = zckf 80,¢y.
00

Divide both sides by ¢, to obtain:

1
a0) = 1 ﬁ R (3.19)

Substituting (3.11) into the (3.10) gives

D (@ (0) + Ba0)ge(0) = 0,
k=1

therefore,
ai(t) + Yax(t) = 0,
and
aw(t) = ar(0)e . (3.20)

By (3.19) and (3.20), we have

a(t) = (fag gay¢k)%e—lit_

Finally,
- 1 s
s = av — _/lkt, 3.21
v(x, 1) ;(fmg &) 3 (3.21)
and
= 1
w0 = Y fa 5030 (3.22)
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Define a new function w(x, 1) = u(x, t) — v(x, t), then w satisfies homogeneous boundary conditions.

ow + (=Apo)'w = f(x,1) =0,y — (=Ap)’v = f(x,t) inQ x(0,7T),
w(x,t) =0, in 0Q x (0, T), (3.23)
w(x,0) = u(x,0) —v(x,0), in Q.

To attain the final answer of u, it remains to find w solving

0

_av: + (—AD,O)SW =f, inQ, w=0, on Q. (3.24)
It is equivalent to solve

ow .

= = —(=Apo)'w+ f, inQ, w=0, ondQ. (3.25)

Let {¢«};, be an orthonormal basis of Hj(€2) consisting of eigenfunctions of (-A)*, i.e., (=A)’¢; =
A in Q and ¢ = 0 on 0Q, where A, > 0 and 4; — oo as k — co. We look for an approximate
solution

N

w6 ) = D cn(ge(x). (3.26)

k=1

Substitute wy into the weak formulation:

N N
Ck,Nf¢k¢jdx+ ch,N f(_A)S¢k¢jdx = ff(X, Ng(x)dx, j=1,---,N.

k= Q k=1 Q Q

1

Since fg drpidx = 6,; (Kronecker delta), the system of ordinary differential equations becomes
¢in(t) + Ajcin(t) = fQ fx,n¢i(x)dx, j=1,---,N (3.27)
with the initial conditions c¢jy(0) = fQ(u(x, 0) — v(x,0))¢(x)dx. Let
8= fQ f(x,0¢;(x)dx,
then the general solution of the first-order linear ODE

cin)+Aiein@® =gj, j=1,---,N

is given by

f
cin(t) = eV'en(0) + f eV Vg (T)dr. (3.28)
0

Substitute c¢;y(0) and g;(7) back to (3.28), and substitute (3.28) back to (3.26), we have

wix,0) = ) [ fg Uy, 0) = v(y, 0)gi(y)dy + fo e~ fg fO.DGG)dydrlgi(x).  (3.29)
k=1
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We show that as N — oo, wy converges weakly to a function w in L*(0, T;Hy(Q)) and d,wy
converges weakly to d,w in L*(0,T; H*()). The limit function w satisfies the weak formulation
of the original problem, which implies the existence of a solution: Where v(y, 0) is defined in (3.22).

Therefore, the problem has a unique solution w € L*(0,T; H(Q)) with d,w € L*(0,T; H(Q))
which can be represented by the above series or integral formulas depending on the domain and the
properties of the given functions f, u(y,0) and v.

4. Existence and uniqueness

We will show that both (3.22) and (3.29) are well-posed in the following, we will prove
solutions (3.22) and (3.29) exist and are unique.

First, we note that the coefficients
([, 504);
Cr = 80Pk |~
oQ A

need to be well-defined. By the trace theorem and the properties of eigenfunctions, d,¢; is well-defined
on Q).
Weyl’s Law ( [10, 11]) states that for a self-adjoint elliptic operator, the k-th eigenvalue A, satisfies:

A ~ ki, k— oo
Consider the partial sums
u 1
vy = (fgav(ﬁk)/_l(pke_/l}‘t-
Q
k=1
Then,
2 N 1 IR
VN = Vy = Z (fgav¢k)_¢ke_/lkt .
12(Q) WG VYo A 12(Q)
Since ||¢kll;2) = 1 for all k, we have
2 N 1 e
VN =V = Z ( f g0v¢k)—e‘”'k’ :
L@ Sy N Yo 4

As k — oo, % — 0 and e~% — 0 very fast. Using the fact that { fQ g@vv} is a bounded sequence (by

the continuity of the trace operator and the properties of eigenfunctions), we can show that

1 /l‘tz
gav¢ )—6_ k
(fg “Ja

2

VN — Vu < 00,

L Rty s

So, the series

Z( fg; gavfﬁk)iﬁbke_/lit

N
k=1
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converges in L*(€2), and thus the solution v exists in L*().
Suppose there are two solutions v; and v, of the problem such that

- 1 s
Vi = (fgavfﬁk)i%e_ﬂ"t
=1 v

and

o0 1 R (o)
V) = Z ( L gav¢k)z¢ke_/lkt + Z dir,
=1

k=1

where ., dy¢y is a non-zero function that is supposed to satisfy the homogeneous version of the
problem (i.e., with g = 0).

By substituting into the partial differential equation and using the orthogonality of the
eigenfunctions, we find that d; = O for all k. So, v; = v, and the solution is unique.

To prove (3.29) is well-posed, it is equivalent to prove w; and w, are well-posed. We write

W) = 37 e[ 0,00~ v 0OIN) @.1)
k=1
and
()= Y[ [ o nmndnn. 42)
k=1

Then w = wy + ws.

In (4.1), the coeflicients fg(u(y, 0) — v(y,0)¢r(y)dy are well-defined if u(-,0) — v(-,0) € L*(Q).
The series w;(x,) converges in L*(Q) for each ¢t > 0 because e~ decays exponentially and the
eigenfunctions ¢, form an orthonormal basis.

Since {¢} is an orthonormal basis of L*(Q), it satisfies:

f i (X)Pn(X)dx = Sion.
Q

And for any f € L*(Q),

2

2
”.f”LZ(Q) = Z
k=1

Expand the square and utilize orthogonality:

2
bl = [
Q

fg JOMe(y)dy
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(o8]

= Z e_Mktlcklz. (43)

k=1
By Weyl asymptotic law:
A ~ Cki(k — ), C > 0.

Then, for any ¢ > 0, there exist constants C; > 0 and @ > 0 such that:

d
e < CremkR, (4.4)

This exponential decay is much faster than any polynomial growth, thereby suppressing the divergence
of the series.
Since uy — v(-,0) € H*(€2), then its Fourier coefficients satisfy:

— . 2

|c |2 < ||I/l0 V( ’O)”H"(Q)
kKl = 1 s

k

combine with 4; ~ k%, we have
|Ck|2 < CzkiTzs (45)

Combine with (4.4) and (4.5),

2
— —akd =25
e M e? < C Cre™ kT,

If s is chosen to be sufficiently large (e.g., s > ‘2—1), the decay of k combined with the exponential decay
ensures the convergence of the series.
In (4.2), the inner integral fQ o, Ddr(»)dy is well-defined if f(-,7) € L*(Q) for almost every 7. The

outer integral fot e~ . dr is finite for each k and ¢. The series w»(x, f) converges in L*(Q) for each
t > 0 due to the exponential decay of e~ and the orthonormality of ¢;, the proof is similar with the
proof of w;(x, t). Thus, we have verified the existence of w; and w,, so as the existence of w = w; +w;.

Suppose there are two solutions w;(x,t) and w,(x,t) to the given series representation. Define
z2(x, 1) = wi(x, £) — wa(x, 1). Then z(x, t) satisfies:

)= Y le fQ 200, 0)p(y)dy + fo e fg 0 gu()dydrde(x).
k=1

Here, the source term is zero, and the initial condition term reduces to z(x, 0). Thus:

(o)

2(x, 1) = Ze‘”“( f 2y, 0)¢k(y)dy)¢k(X).

k=1 Q

Taking the L2(Q) inner product with ¢,,(x):
< Z('a t)a ¢m >= e_/lmt < Z('a 0)’ ¢m >
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Since e~ # 0 for ¢ > 0, this implies {z(-, 0), ¢,,) = 0 for all m. By the completeness of {¢;}, z(x,0) = 0
in L2(Q). Thus, z(x, ) = 0 for all t > 0, proving uniqueness.

When applying the method of moving planes or sliding techniques to analyze fractional Laplacian
equations, we typically assume a monotonic relationship (either increasing or decreasing) between
the function f and the spatial variable x. In this framework, the solution u(x,?) is compared with
its reflection u'(x,7) across a chosen plane. By examining the sign of the difference w(x,7) =
u(x,t) — u'(x, 1), we deduce the monotonicity properties of u(x, f). For further exploration of solution
monotonicity for (1.15) under varied conditions on f, we refer the reader to [5,9, 12].

5. Numerical simulations

In [13], the authors conducted an innovative four-variable vegetation-water reaction—diffusion
model that includes vegetation, inhibitory factors, water resources and promoting factors, and proposed
a high-precision Fourier spectral method based on generating functions. In [14-16], the authors
also constructed various fractional-order models. Based on these references, we develop a parabolic
fractional Laplacian system with non-homogeneous Dirichlet boundary conditions for modeling
vegetation-water interactions.

Based on four-variable vegetation-water reaction—diffusion model in [13], We created a simplified
two-variable vegetation-water reaction—diffusion model. In this model, the vegetation density u
represents the amount of vegetation. The value of u ranges from 0 to 1 (u € [0, 1]), where 1 indicates
the relative maximum vegetation density within the context of this model. The variable w represents
the concentration of nutrients or water resources in the soil. The value of w also ranges from O to 1
(w € [0, 1]), where 1 indicates the relative maximum resource density in the model.

The vegetation density u and water resource w satisfy the following system of equations:

ot 1
= D,,(-A)*w — Bw, (resource diffusion and consumption) .1y

w

{ W = D,(~A)’u+au, (vegetation diffusion and growth)
ot

where D,(—A)’u represents the diffusion of vegetation in space (e.g., seed dispersal or vegetation
spread), and au represents the growth of vegetation. Here, « is the vegetation growth rate coeflicient,
representing the maximum per capita growth rate under optimal water conditions. Similarly, D,,(—-A)*w
represents the diffusion of resources in space (e.g., water or nutrient flow), and —w represents the
consumption of water. Here, 3 is the water consumption rate coefficient, quantifying the water uptake
efficiency per unit vegetation density. Boundary conditions are set as u |go= 0.5 and w |3o= 1.0 to
simulate fixed resource inputs, where JQ denotes the boundary of the study region.

We apply Fourier spectral methods for fractional operator discretization and finite difference
methods for boundary condition enforcement, using finite element methods by constructing auxiliary
function g:

u=uy+g, gloo=2g

numerically enforced by direct assignment after each iteration. We use Fourier spectral implementation
to achieve fractional operator discretization, explicit Euler time integration with Ar = 0.001 ensures
stability. This linear model assumes that vegetation growth is solely related to its own density,
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neglecting the bidirectional coupling effects between vegetation and water resources, as well as the
impacts of spatial heterogeneity on growth.

Next, we verify the system has a unique solution under nonnegative initial conditions refer to
Theorem 2.4 from [16]. We transform the system (5.1) to Cauchy problem:

{ W = AU + F(U), Ulu,w) (5.2)

U@©)=U e X =H(Q) X H(Q),
where A; = diag(D,(—A)*, D,,(-A)®) is fractional Laplacian operator; F(u) = (au,—Bw) is linear
operator;

System (5.2) is transformed into an integral equation form:

1
U(r) = e“'Ug + f MIFU)dT
0

where ' is the contraction semigroup generated by the fractional Laplacian operator A,. According to
fractional operator theory, when A; satisfies dissipativity conditions (e.g.,< A;U, U >< 0), its generated
semigroup satisfies |le*||gs—ps < €, (w > 0), providing a foundation for contraction.

Define the Picard operator T acting on the Banach space X = C([0, T]; H*(Q2) X H*(Q2)), equipped
with the norm ||Ul|c = sup,cio 7 lU Ol zsxs:

t
U = e*'Uy + f MR ().
0

Since F(U) = (au, —fw) is a linear bounded operator, there exists Lr > 0 such that
WEU) = F(V)llssus < LU = Vlgsxas.

Using the exponential decay property of the semigroup, estimate the difference:
!
ITIUI@) = TIVIOlasxns < f e sl FU (D) = F(V (@)l dt
0
t
<Lr f N = VOl dr (5.3)
0

wT_l
<Lg-

U = Vllc.

Taking the supremum of 7 > 0 satisfying:

Le(e“T =1
g= r(e )<1
w

then T is a contraction map, with contraction constant p; The uniqueness proof of the system solution
is complete. To make A; satisfy dissipativity conditions, the coefficients D, and D, should both be
negative. We plot the convergence test with D, = —0.1 and D,, = —0.05. A negative D, corresponds
to the aggregation phenomenon of vegetation under resource competition, environmental stress, or
self-organizing behavior (e.g., forest patch formation, concentrated vegetation growth in specific
regions). A negative D,, may reflect the concentration trend of water resources in specific regions
(e.g., groundwater-rich zones, river confluences) or hydrological aggregation effects influenced by
topography and geological structures.
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Convergence test (Figure 1) validates the existence of solutions:

e Error Convergence Characteristics: The L? errors for both vegetation (blue curve) and water
resources (orange curve) exhibit exponential decay as grid resolution increases. A linear trend is
observed in double-logarithmic coordinates, indicating algebraic convergence. Errors approach
zero at the highest resolution, numerically verifying the existence of solutions.

e Numerical Stability: Solution morphologies remain consistent across different resolutions,
with no numerical oscillations observed. Boundary condition handling remains stable during
grid refinement. Time step sizes and spatial resolutions satisfy the Courant—Friedrichs—Lewy
condition [17].

e Theoretical Support: The slopes of convergence curves correspond to theoretical convergence
orders (approximately 2.0). Error distributions align with convergence theory for finite element
methods [18].

Convergence Test: Error vs Resolution

4% 10t =& Vegetation Convergence
Water Convergence

Ix 10t

2x10t

L2 Error

1

6x 107

102 103
Grid Resolution

Figure 1. Convergence test.
Numerical experiments (Figure 2) demonstrate that the solution of (5.1) remains continuous in the

space C([0,T]; H*). In ecology, a negative diffusion coefficient corresponds to the self-organizing
behavior of vegetation (such as forest patch formation).
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Final Vegetation Distribution (Uje-16+3.709119977e-3 Final Water Distribution (w)  1e-10+2.108262316e1
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Figure 2. Final distribution.

These numerical results, combined with theoretical analysis, form a complete proof chain that
rigorously verifies the existence and uniqueness of model solutions in appropriate function spaces.

6. Conclusions

Elliptic fractional Laplacian equations with nonhomogeneous Dirichlet problem has been widely
studied in recent years, such as in [19, 20], but solutions of parabolic fractional Laplacian with
nonhomogeneous Dirichlet boundary conditions have never been studied. However, there are some
numerical methods to solve fractional differential equations. Such as [21-24]. In [25], the authors used
Orthogonal Gauss Collocation Method for the numerical solution of a two-dimensional (2D) fourth-
order subdiffusion model, the fourth-order terms describe enhanced dispersion or nonlocal interactions,
which provides a precedent for our research on the numerical computation of nonlocal operators,
also, the orthogonal Gauss collocation method approximates the solution as a polynomial, which has
the similar structure with the expression of solutions in our research, it provides the possibility for
extending our research into numerical computation. The integral definition of the fractional Laplacian
necessitates global computation, and traditional local grids (such as uniform meshes) may fail to
efficiently capture nonlocal interactions. In such cases, adaptive meshes (including locally refined
or distorted meshes) can more precisely allocate computational resources by adjusting element sizes
and shapes, refer to the relevant literature [26,27].

Use of Generative-Al tools declaration

The author declares not to have used Artificial Intelligence (Al) tools in the creation of this article.

Acknowledgments

This research was funded in part by the CAS AMSS-PolyU Joint Laboratory of Applied
Mathematics.

AIMS Mathematics Volume 10, Issue 10, 24691-24711.



24710

Contflict of interest

The author declares no conflicts of interest in this paper.

References

1. L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Part.
Diff. Eq., 32 (2007), 1245-1260. https://doi.org/10.1080/03605300600987306

2. P. R. Stinga, J. L. Torrea, Extension problem and Harnack’s inequality for
some fractional operators, Commun. Part. Diff. Eg., 35 (2010), 2092-2122.
https://doi.org/10.1080/03605301003735680

3. A. Harbir, P. Johannes, R. Sergejs, Fractional operators with inhomogeneous boundary
conditions: Analysis, control, and discretization, Commun. Math. Sci., 16 (2018), 1395-1426.
https://doi.org/10.4310/CMS.2018.v16.n5.al1

4. X. Liu, The maximal regularity of nonlinear second-order hyperbolic boundary differential
equations, Axioms, 13 (2024), 884. https://doi.org/10.3390/axioms 13120884

5. X. Liu, Radial symmetry and monotonicity of solutions of fractional parabolic equations in the unit
ball, Symmetry, 17 (2025), 781. https://doi.org/10.3390/sym17050781

6. T. Félix, An extension problem related to inverse fractional operators, arXiv preprint, 2016.
https://doi.org/10.48550/arXiv.1603.07988

7. V. Rafael, Backstepping control laws for higher-dimensional PDEs: Spatial invariance and domain
extension methods, IMA J. Math. Control I., 2025. https://doi.org/10.48550/arXiv.2503.00225

8. E.G.José, J. M. Miana, P. R. Stingo, Extension problem and fractional operators: Semigroups and
wave equations, J. Evol. Equ., 13 (2013), 343-368. https://doi.org/10.1007/s00028-013-0182-6

9. X. Liu, A system of parabolic Laplacian equations that are interrelated and radial symmetry of
solutions, Symmetry, 17 (2025), 1112. https://doi.org/10.3390/sym17071112

10.D. Gromes, Uber die asymptotische Verteilung der eigenwerte des Laplace-operators
fir gebiete auf der kugeloberfliche, Comm. Math. Sci., 94 (1966), 110-121.
https://doi.org/10.1007/BF01118974

11. V. Ivrii, 100 years of Weyl’s law, Bull Math. Sci, 6 (2016), 379-452.
https://doi.org/10.1007/s13373-016-0089-y

12. X.  Liu, The  maximal regularity @ of nonlocal parabolic = Monge—Ampere
equations and its monotonicity in the whole space, Axioms, 14 (2025), 491.
https://doi.org/10.3390/axioms 14070491

13. H. Zhang, Y. Wang, J. Bi, S. Bao, Novel pattern dynamics in a vegetation-
water reaction-diffusion model, Math. Comput. Simul, 241 (2026), 379-452.
https://doi.org/10.1016/j.matcom.2025.09.020

14. X. Wang, H. Zhang, Y. Wang, Z. Li, Dynamic properties and numerical simulations of the fractional
Hastings—Powell model with the Griinwald-Letnikov differential derivative, Int. J. Bifurc. Chaos
Appl. Sci. Eng., 35 (2025), 2550145. https://doi.org/10.1142/S0218127425501457

15. S. Zhang, H. Zhang, Y. Wang, Z. Li, Dynamic properties and numerical simulations of
a fractional phytoplankton-zooplankton ecological model, AIMS Math., 20 (2025), 648-669.
https://doi.org/10.3934/nhm.2025028

AIMS Mathematics Volume 10, Issue 10, 24691-24711.


https://dx.doi.org/https://doi.org/10.1080/03605300600987306
https://dx.doi.org/https://doi.org/10.1080/03605301003735680
https://dx.doi.org/https://doi.org/10.4310/CMS.2018.v16.n5.a11
https://dx.doi.org/https://doi.org/10.3390/axioms13120884
https://dx.doi.org/https://doi.org/10.3390/sym17050781
https://dx.doi.org/https://doi.org/10.48550/arXiv.1603.07988
https://dx.doi.org/https://doi.org/10.48550/arXiv.2503.00225
https://dx.doi.org/https://doi.org/10.1007/s00028-013-0182-6
https://dx.doi.org/https://doi.org/10.3390/sym17071112
https://dx.doi.org/https://doi.org/10.1007/BF01118974
https://dx.doi.org/https://doi.org/10.1007/s13373-016-0089-y
https://dx.doi.org/https://doi.org/10.3390/axioms14070491
https://dx.doi.org/https://doi.org/10.1016/j.matcom.2025.09.020
https://dx.doi.org/https://doi.org/10.1142/S0218127425501457
https://dx.doi.org/https://doi.org/10.3934/nhm.2025028

24711

16.

17.

18.
19.
20.
21.
22.
23.
24.
25.
26.

27.

eé’h@f AIMS Press

X. Gao, H. Zhang, X. Li, Research on pattern dynamics of a class of predator-prey
model with interval biological coefficients for capture, AIMS Math., 9 (2024), 18506—18527.
https://doi.org/10.3934/math.2024901

D. Peterseim, M. Schedensack, Relaxing the CFL condition for the wave equation on adaptive
meshes, J. Sci. Comput., 72 (2017), 1196-1213. https://doi.org/10.1007/s10915-017-0394-y

C. Ye, H. Dong, J. Cui, Convergence rate of multiscale finite element method
for various boundary problems, J. Comput. Appl. Math., 274 (2020), 112754.
https://doi.org/10.1016/j.cam.2020.112754

N. Abatangelo, L. Dupaigne, Nonhomogeneous boundary conditions for the spectral
fractional Laplacian, Ann. Inst. H. Poincaré C Anal. Non Linéaire., 34 (2017), 439-467.
https://doi.org/10.1016/j.anithpc.2016.02.001

A. lannizzotto, D. Mugnai, Optimal solvability for the fractional p-Laplacian with Dirichlet
conditions, Fract. Calc. Appl. Anal., 27 (2024), 3291-3317. https://doi.org/10.1007/s13540-024-
00341-w

X. Yang, W. Wang, Z. Zhou, H. Zhang, An efficient compact difference method for
the fourth-order nonlocal subdiffusion problem, Taiwan. J. Math., 29 (2025), 35-66.
https://doi.org/10.11650/tjm/240906

H. Zhang, X. Yang, Y. Liu, Y. Liu, An extrapolated CN-WSGD OSC method for a
nonlinear time fractional reaction-diffusion equation, Appl. Numer. Math., 157 (2020), 619-633.
https://doi.org/10.1016/j.apnum.2020.07.017

H. Zhang, X. Jiang, F. Wang, X. Yang, The time two-grid algorithm combined with difference
scheme for 2D nonlocal nonlinear wave equation, J. Appl. Math. Comput., 70 (2024), 1127-1151.
https://doi.org/10.1007/s12190-024-02000-y

J. Zhang, X. Yang, S. Wang, A three-layer FDM for the Neumann initial-boundary value problem
of 2D Kuramoto-Tsuzuki complex equation with strong nonlinear effects, Commun. Nonlinear Sci.
Numer. Simul., 152 (2026), 109255. https://doi.org/10.1016/j.cnsns.2025.109255

X. Yang, Z. Zhang, Superconvergence analysis of a robust orthogonal Gauss collocation
method for 2D fourth-order subdiffusion equations, J. Sci. Comput., 100 (2024), 62.
https://doi.org/10.1007/s10915-024-02616-z

X. Yang, Z. Zhang, Analysis of a new NFV scheme preserving DMP for two-
dimensional sub-diffusion equation on distorted meshes, J. Sci. Comput., 99 (2024), 80.
https://doi.org/10.1007/s10915-024-02511-7

X. Yang, Z. Zhang, On conservative, positivity preserving, nonlinear FV scheme on distorted
meshes for the multi-term nonlocal Nagumo-type equations, Appl. Math. Lett., 150 (2024), 108972.
https://doi.org/10.1016/j.am1.2023.108972

©2025 the Author(s), licensee AIMS Press. This
i1s an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 10, Issue 10, 24691-24711.


https://dx.doi.org/https://doi.org/10.3934/math.2024901
https://dx.doi.org/https://doi.org/10.1007/s10915-017-0394-y
https://dx.doi.org/https://doi.org/10.1016/j.cam.2020.112754
https://dx.doi.org/https://doi.org/10.1016/j.anihpc.2016.02.001
https://dx.doi.org/https://doi.org/10.1007/s13540-024-00341-w
https://dx.doi.org/https://doi.org/10.1007/s13540-024-00341-w
https://dx.doi.org/https://doi.org/10.11650/tjm/240906
https://dx.doi.org/https://doi.org/10.1016/j.apnum.2020.07.017
https://dx.doi.org/https://doi.org/10.1007/s12190-024-02000-y
https://dx.doi.org/https://doi.org/10.1016/j.cnsns.2025.109255
https://dx.doi.org/https://doi.org/10.1007/s10915-024-02616-z
https://dx.doi.org/https://doi.org/10.1007/s10915-024-02511-7
https://dx.doi.org/https://doi.org/10.1016/j.aml.2023.108972
https://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Main theorems and results
	Existence and uniqueness
	Numerical simulations
	Conclusions

