In this article, we introduced an extension of the chi-square distribution by employing a slash-type methodology that enhanced the weight of the right tail, thereby producing a heavy-tailed distribution. We explored two different representations of the proposed distribution and examined several of its key properties, such as the mode, cumulative distribution function, reliability and hazard functions, moments, and the skewness and kurtosis coefficients. Additionally, we demonstrated that the classical chi-square distribution was a special case of our proposed model. Parameter estimation was carried out using both the method of moments and the maximum likelihood estimation, the latter via the expectation-maximization (EM) algorithm. A simulation study was conducted to evaluate the performance of parameter recovery. Finally, we applied the new distribution to a wind speed dataset, showing that it provided a good fit, particularly in the presence of extreme values.
Citation: Eliseo Martínez, Emilio Gómez-Déniz, Diego I. Gallardo, Osvaldo Venegas, Héctor W. Gómez. The heavy-tailed chi-square model: properties, estimation and application to wind speed data[J]. AIMS Mathematics, 2025, 10(10): 23849-23868. doi: 10.3934/math.20251060
In this article, we introduced an extension of the chi-square distribution by employing a slash-type methodology that enhanced the weight of the right tail, thereby producing a heavy-tailed distribution. We explored two different representations of the proposed distribution and examined several of its key properties, such as the mode, cumulative distribution function, reliability and hazard functions, moments, and the skewness and kurtosis coefficients. Additionally, we demonstrated that the classical chi-square distribution was a special case of our proposed model. Parameter estimation was carried out using both the method of moments and the maximum likelihood estimation, the latter via the expectation-maximization (EM) algorithm. A simulation study was conducted to evaluate the performance of parameter recovery. Finally, we applied the new distribution to a wind speed dataset, showing that it provided a good fit, particularly in the presence of extreme values.
| [1] | N. L. Johnson, S. Kotz, N. Balakrishnan, Continuous univariate distributions, 2 Eds., New York: Wiley, 1994. |
| [2] |
W. H. Rogers, J. W. Tukey, Understanding some long-tailed symmetrical distributions, Stat. Neerl., 26 (1972), 211–226. https://doi.org/10.1111/j.1467-9574.1972.tb00191.x doi: 10.1111/j.1467-9574.1972.tb00191.x
|
| [3] | F. Mosteller, J. W. Tukey, Data analysis and regression, Pearson, 1977. |
| [4] |
K. Kafadar, A biweight approach to the one-sample problem, J. Am. Stat. Assoc., 77 (1982), 416–424. https://doi.org/10.2307/2287262 doi: 10.2307/2287262
|
| [5] |
J. Wang, M. G. Genton, The multivariate skew-slash distribution, J. Stat. Plan. Infer., 136 (2006), 209–220. https://doi.org/10.1016/j.jspi.2004.06.023 doi: 10.1016/j.jspi.2004.06.023
|
| [6] |
H. W. Gómez, F. A. Quintana, F. J. Torres, A new family of slash distributions with elliptical contours, Statist. Probab. Lett., 77 (2007), 717–725. https://doi.org/10.1016/j.spl.2006.11.006 doi: 10.1016/j.spl.2006.11.006
|
| [7] |
H. W. Gómez, O. Venegas, Erratum to: A new family of slash-distributions with elliptical contours [Statist. Probab. Lett. 77 (2007) 717–725], Statist. Probab. Lett., 78 (2008), 2273–2274. https://doi.org/10.1016/j.spl.2008.02.015 doi: 10.1016/j.spl.2008.02.015
|
| [8] |
A. I. Genc, A generalization of the univariate slash by a scale–mixture exponential power distribution, Commun. Stat. Simul. Comput., 36 (2007), 937–947. https://doi.org/10.1080/03610910701539161 doi: 10.1080/03610910701539161
|
| [9] |
A. I. Genc, A skew extension of the slash distribution via beta-normal distribution, Stat. Pap., 54 (2013), 427–442. https://doi.org/10.1007/s00362-012-0439-0 doi: 10.1007/s00362-012-0439-0
|
| [10] |
J. Reyes, Y. A. Iriarte, A new family of modified slash distributions with applications, Mathematics, 11 (2023), 3018. https://doi.org/10.3390/math11133018 doi: 10.3390/math11133018
|
| [11] | W. Gui, Statistical properties and applications of the Lindley slash distribution, J. Appl. Stat. Sci., 20 (2012), 283–298. |
| [12] |
N. M. Olmos, H. Varela, H. Bolfarine, H. W. Gómez, An extension of the generalized half-normal distribution, Stat. Pap., 55 (2014), 967–981. https://doi.org/10.1007/s00362-013-0546-6 doi: 10.1007/s00362-013-0546-6
|
| [13] |
Y. A. Iriarte, F. Vilca, H. Varela, H. W. Gómez, Slashed generalized Rayleigh distribution, Commun. Stat. Theory Methods, 46 (2017), 4686–4699. https://doi.org/10.1080/03610926.2015.1066811 doi: 10.1080/03610926.2015.1066811
|
| [14] |
J. S. Castillo, M. A. Rojas, J. Reyes, A more flexible extension of the Fréchet distribution based on the incomplete gamma function and applications, Symmetry, 15 (2023), 1608. https://doi.org/10.3390/sym15081608 doi: 10.3390/sym15081608
|
| [15] | T. Rolski, H. Schmidli, V. Schmidt, J. Teugel, Stochastic processes for insurance and finance, New York: John Wiley & Sons, 1999. https://doi.org/10.1002/9780470317044 |
| [16] |
A. A. M. Teamah, A. A. Elbanna, A. M. Gemeay, Heavy-tailed log-logistic distribution: properties, risk measures and applications, Stat. Optim. Inf. Comput., 9 (2021), 910–941. https://doi.org/10.19139/soic-2310-5070-1220 doi: 10.19139/soic-2310-5070-1220
|
| [17] |
A. Z. Afify, A. M. Gemeay, N. A. Ibrahim, The heavy-tailed exponential distribution: risk measures, estimation, and application to actuarial data, Mathematics, 8 (2020), 1–28. https://doi.org/10.3390/math8081276 doi: 10.3390/math8081276
|
| [18] | The R Core Team, R: A Language and Environment for Statistical Computing, 2025. Available from: https://cran.r-project.org/doc/manuals/r-release/fullrefman.pdf. |
| [19] | A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, J. R. Stat. Soc. B: Stat. Methodol., 39 (1977), 1–38. |
| [20] | E. J. Gumbel, Statistics of extremes, New York: Columbia University Press, 1958. |
| [21] |
Y. M. Gómez, H. Bolfarine, H. W. Gómez, Gumbel distribution with heavy tails and applications to environmental data, Math. Comput. Simul., 157 (2019), 115–129. https://doi.org/10.1016/j.matcom.2018.10.003 doi: 10.1016/j.matcom.2018.10.003
|
| [22] | S. Nadarajah, The exponentiated Gumbel distribution with climate application, Environmetrics, 17 (2006), 13–23. https://doi.org/10.1002/env.739 |
| [23] |
H. Akaike, A new look at the statistical model identification, IEEE Trans. Autom. Control, 19 (1974), 716–723. https://doi.org/10.1109/TAC.1974.1100705 doi: 10.1109/TAC.1974.1100705
|
| [24] |
G. Schwarz, Estimating the dimension of a model, Ann. Statist., 6 (1978), 461–464. https://doi.org/10.1214/aos/1176344136 doi: 10.1214/aos/1176344136
|
| [25] |
P. K. Dunn, G. K. Smyth, Randomized quantile residuals, J. Comput. Graph. Stat., 5 (1996), 236–244. https://doi.org/10.2307/1390802 doi: 10.2307/1390802
|