In this paper, we construct a new four-step iterative method and show that our newly designed scheme converges faster than a number of iterative methods. We corroborate our claims by performing numerical experiments. We analyze the strong convergence result to approximate the fixed point of a contractive-like mapping and establish the weak $ \omega^{2} $-stability of our scheme. Further, strong and weak convergence results are incorporated for a generalized $ \alpha $-Reich-Suzuki nonexpansive mapping under some mild assumptions. We also illustrate numerical examples to validate our theoretical claims. Finally, we set forth our scheme to explore a Caputo-type nonlinear fractional Volterra-Fredholm integro-differential equation and a fractional diffusion equation.
Citation: Doaa Filali, Mohammad Akram, Mohammad Dilshad. Exploring the fractional Volterra-Fredholm integro-differential equation: An iterative approach[J]. AIMS Mathematics, 2025, 10(10): 23467-23495. doi: 10.3934/math.20251042
In this paper, we construct a new four-step iterative method and show that our newly designed scheme converges faster than a number of iterative methods. We corroborate our claims by performing numerical experiments. We analyze the strong convergence result to approximate the fixed point of a contractive-like mapping and establish the weak $ \omega^{2} $-stability of our scheme. Further, strong and weak convergence results are incorporated for a generalized $ \alpha $-Reich-Suzuki nonexpansive mapping under some mild assumptions. We also illustrate numerical examples to validate our theoretical claims. Finally, we set forth our scheme to explore a Caputo-type nonlinear fractional Volterra-Fredholm integro-differential equation and a fractional diffusion equation.
| [1] |
A. A. N. Abdou, Fixed point theorems: Exploring applications in fractional differential equations for economic growth, Fractal Fract., 8 (2024), 243. https://doi.org/10.3390/fractalfract8040243 doi: 10.3390/fractalfract8040243
|
| [2] | R. P. Agarwal, D. O'Regan, D. R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex Anal., 8 (2007), 61–79. |
| [3] |
J. Ahmad, K. Ullah, H. A. Hammad, R. George, A solution of a fractional differential equation via novel fixed-point approaches in Banach spaces, AIMS Math., 8 (2023), 12657–12670. https://doi.org/10.3934/math.2023636 doi: 10.3934/math.2023636
|
| [4] | K. H. Alam, Y. Rohen, Convergence of a refined iterative method and its application to fractional Volterra–Fredholm integro-differential equations, Comput. Appl. Math., 44 (2025), https://doi.org/10.1007/s40314-024-02964-4 |
| [5] | J. Ali, F. Ali, A new iterative scheme for approximating fixed points with an application to delay differential equation, J. Nonlinear Convex Anal., 21 (2020), 2151–2163. |
| [6] | F. Ali, J. Ali, Convergence, stability and data dependence of a new iterative algorithm with an application, Comput. Appl. Math., 39 (2020), 267. |
| [7] |
D. Ali, S. Ali, D. Pompei-Cosmin, T. Antoniu, A. A. Zaagan, A. M. Mahnashi, A quicker iteration method for approximating the fixed point of generalized $\alpha$-Reich-Suzuki nonexpansive mappings with applications, Fractal Fract., 7 (2023), 790. https://doi.org/10.3390/fractalfract7110790 doi: 10.3390/fractalfract7110790
|
| [8] | V. Berinde, On the approximation of fixed points of weak contractive mapping, Carpath J. Math., 17 (2003), 7–22. |
| [9] | V. Berinde, On the stability of some fixed point procedures, Bul. Ştiinţ. Univ. Baia Mare, Ser. B, Matematică Informatică, 18 (2002), 7–14. |
| [10] |
A. T. Bharucha-Reid, Fixed point theorems in probabilistic analysis, Bull. Amer. Math. Soc., 82 (1976), 641–657. https://doi.org/10.1090/S0002-9904-1976-14091-8 doi: 10.1090/S0002-9904-1976-14091-8
|
| [11] |
F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Natl. Acad. Sci., 54 (1965), 1041–1044. https://doi.org/10.1073/pnas.54.4.1041 doi: 10.1073/pnas.54.4.1041
|
| [12] | T. Cardinali, P. Rubbioni, A generalization of the Caristi fixed point theorem in metric spaces, Fixed Point Theory, 11 (2010), 3–10. |
| [13] |
D. Filali, N. H. E. Eljaneid, A. Alatawi, E. Alshaban, M. S. Ali, F. A. Khan, A novel and efficient iterative approach to approximating solutions of fractional differential equations, Mathematics, 13 (2025), 33. https://doi.org/10.3390/math13010033 doi: 10.3390/math13010033
|
| [14] | K. Goebel, W. A. Kirk, Topics in metric fixed point theory, Cambridge University Press, Cambridge, UK, 1990. https://doi.org/10.1017/CBO9780511526152 |
| [15] |
H. A. Hammad, S. F. Aljurbua, Solving fractional random differential equations by using fixed point methodologies under mild boundary conditions, Fractal Fract., 8 (2024), 384. https://doi.org/10.3390/fractalfract8070384 doi: 10.3390/fractalfract8070384
|
| [16] |
H. A. Hammad, H. Rehman, M. De la Sen, A new four-step iterative procedure for approximating fixed points with application to 2D volterra integral equations, Mathematics, 10 (2022), 4257. https://doi.org/10.3390/math10224257 doi: 10.3390/math10224257
|
| [17] |
H. A. Hammad, H. Rehman, M. Zayed, Applying faster algorithm for obtaining convergence, stability, and data dependence results with application to functional-integral equations, AIMS Math., 7 (2022), 19026–19056. https://doi.org/10.3934/math.20221046 doi: 10.3934/math.20221046
|
| [18] |
O. Hans, Reduzierende zufallige Transformationen, Czechoslovak Math. J., 7 (1957), 154–158. https://doi.org/10.21136/CMJ.1957.100238 doi: 10.21136/CMJ.1957.100238
|
| [19] | A. M. Harder, T. L. Hicks, Stability results for fixed point iteration procedures, Math. Japonica, 33 (1998), 693–706. |
| [20] |
G. H. Ibraheem, M. Turkyilmazoglu, M. A. AL-Jawary, Novel approximate solution for fractional differential equations by the optimal variational iteration method, J. Comput. Sci., 64 (2022), 101841. https://doi.org/10.1016/j.jocs.2022.101841 doi: 10.1016/j.jocs.2022.101841
|
| [21] | C. O. Imoru, M. O. Olatinwo, On the stability of Picard and Mann iteration processes, Carpathian J. Math., 19 (2003), 155–160. |
| [22] |
S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44 (1974), 147–150. https://doi.org/10.1090/S0002-9939-1974-0336469-5 doi: 10.1090/S0002-9939-1974-0336469-5
|
| [23] |
S. Itoh, Random fixed-point theorems with an application to random differential equations in Banach spaces, J. Math. Anal. Appl., 67 (1979), 261–273. https://doi.org/10.1016/0022-247X(79)90023-4 doi: 10.1016/0022-247X(79)90023-4
|
| [24] |
S. Khatoon, I. Uddin, D. Baleanu, Approximation of fixed point and its application to fractional differential equation, J. Appl. Math. Comput., 66 (2021), 507–525. https://doi.org/10.1007/s12190-020-01445-1 doi: 10.1007/s12190-020-01445-1
|
| [25] | C. Kongban, P. Kumam, J. Martinez-Moreno, A. F. R. L. Hierro, On random fixed point for generalizations of Suzuki's type with application to stochastic dynamic programming, Res. Fixed Point Theory Appl., 2019, 2018026. https://doi.org/10.30697/rfpta-2018-026 |
| [26] | A. Krogh, The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue, J. Phys., 52 (1919). https://doi.org/10.1113/jphysiol.1919.sp001839 |
| [27] | R. M. Leach, D. F. Treacher, ABC of oxygen, Oxygen transport-2, Tissue hypoxia, BMJ, 317 (1998), 1370–1373. https://doi.org/10.1136/bmj.317.7169.1370 |
| [28] |
R. L. Magin, Fractional calculus models of complex dynamics in biological tissues, Comput. Math. Appl., 59 (2010), 1586–1593. https://doi.org/10.1016/j.camwa.2009.08.039 doi: 10.1016/j.camwa.2009.08.039
|
| [29] |
S. R. Mahmoud, A. O. Nazek, A. Hala, New class of nonlinear fractional integro-differential equations with theoretical analysis via fixed point approach: Numerical and exact solutions, J. Appl. Anal. Comput., 13 (2023), 2767–2787. https://doi.org/10.11948/20220575 doi: 10.11948/20220575
|
| [30] |
A. Mamoud, K. P. Ghadle, M. S. B. Isa, G. Giniswami, Existence and uniqueness theorem for fractional Volterra-Fredholm integro-differential equations, Int. J. Appl. Math., 31 (2018), 333–348. https://doi.org/10.12732/ijam.v31i3.3 doi: 10.12732/ijam.v31i3.3
|
| [31] |
W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506–510. https://doi.org/10.1090/S0002-9939-1953-0054846-3 doi: 10.1090/S0002-9939-1953-0054846-3
|
| [32] | K. S. Miller, B. Ross, An introduction to fractional calculus and fractional differential equations, Wiley, New York, 1993. |
| [33] |
M. A. Noor, New approximation scheme for general variational inequalities, J. Math. Anal. Appl., 251 (2000), 217–229. https://doi.org/10.1006/jmaa.2000.7042 doi: 10.1006/jmaa.2000.7042
|
| [34] |
A. E. Ofem, J. A. Abuchu, G. C. Ugwunnadi, H. Isik, O. K. Narain, On a four-step iterative algorithm and its application to delay integral equations in hyperbolic spaces, Rend. Circ. Mat. Palermo. Series 2, 73 (2024), 189–224. https://doi.org/10.1007/s12215-023-00908-1 doi: 10.1007/s12215-023-00908-1
|
| [35] | M. O. Osilike, Some stability results for fixed point iteration procedures, J. Nigerian Math. Soc., 14 (1995), 17–29. |
| [36] | R. Pandey, R. Pant, V. Rakocevic, R. Shukla, Approximating fixed points of a general class of nonexpansive mappings in Banach spaces with applications, Results Math., 74 (2019), https://doi.org/10.1007/s00025-018-0930-6 |
| [37] |
R. Pant, R. Pandey, Existence and convergence results for a class of non-expansive type mappings in hyperbolic spaces, Appl. Gen. Topol., 20 (2019), 281–295. https://doi.org/10.4995/agt.2019.11057 doi: 10.4995/agt.2019.11057
|
| [38] |
H. Piri, B. Daraby, S. Rahrovi, M. Ghasemi, Approximating fixed points of generalized $\alpha$-non-expansive mappings in Banach spaces by new faster iteration process, Numer. Algorithms, 81 (2018), 1129–1148. https://doi.org/10.1007/s11075-018-0588-x doi: 10.1007/s11075-018-0588-x
|
| [39] |
M. Rahman, S. Ahmad, M. Arfan, A. Akgul, F. Jarad, Fractional order mathematical model of serial killing with different choices of control strategy, Fractal Fract., 6 (2022), 162. https://doi.org/10.3390/fractalfract6030162 doi: 10.3390/fractalfract6030162
|
| [40] |
B. E. Rhoades, Some fixed point iteration procedures, Int. J. Math. Math. Sci., 14 (1991), 1–16. https://doi.org/10.1155/S0161171291000017 doi: 10.1155/S0161171291000017
|
| [41] | B. E. Rhoades, Fixed point theorems and stability results for fixed point iteration procedures Ⅱ, Indian J. Pure Appl. Math., 24 (1993), 691–703. |
| [42] |
J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mapping, Bull. Aust. Math. Soc., 43 (1991), 153–159. https://doi.org/10.1017/S0004972700028884 doi: 10.1017/S0004972700028884
|
| [43] |
H. F. Senter, W. G. Dotson, Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc., 44 (1974), 375–380. https://doi.org/10.1090/S0002-9939-1974-0346608-8 doi: 10.1090/S0002-9939-1974-0346608-8
|
| [44] | V. Srivastava, K. N. Rai, A multi-term fractional diffusion equation for oxygen delivery through a capillary to tissues, Math. Comput. Model., 51 (2010), 616–624. |
| [45] | A. Spacek, Zufallige Gleichungen, Czechoslovak Math. J., 5 (1955), 462–466. https://doi.org/10.21136/CMJ.1955.100162 |
| [46] |
X. Su, Boundary value problem for a coupled system of nonlinear fractional differential equations, Appl. Math. Lett., 22 (2009), 64–69. https://doi.org/10.1016/j.aml.2008.03.001 doi: 10.1016/j.aml.2008.03.00
|
| [47] |
T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl., 340 (2008), 1088–1095. https://doi.org/10.1016/j.jmaa.2007.09.023 doi: 10.1016/j.jmaa.2007.09.023
|
| [48] |
T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc., 136 (2008), 1861–1869. https://doi.org/10.1090/S0002-9939-07-09055-7 doi: 10.1090/S0002-9939-07-09055-7
|
| [49] |
B. S. Thakur, D. Thakur, M. Postolache, A new iterative scheme for numerical reckoning fixed points of Suzuki's generalized nonexpansive mappings, Appl. Math. Comput., 275 (2016), 147–155. https://doi.org/10.1016/j.amc.2015.11.065 doi: 10.1016/j.amc.2015.11.065
|
| [50] | I. Timis, On the weak stability of Picard iteration for some contractive type mappings, Ann. Univ. Craiova Math. Comput. Sci. Ser., 37 (2010), 106–114. |
| [51] |
K. Ullah, M. Arshad, Numerical reckoning fixed points for Suzuki's generalized nonexpansive mappings via new iteration process, Filomat, 32 (2018), 187–196. https://doi.org/10.2298/FIL1801187U doi: 10.2298/FIL1801187U
|
| [52] |
J. Yu, Y. Feng, On the generalized time fractional reaction-diffusion equation: Lie symmetries, exact solutions and conservation laws, Chaos Soliton. Fract., 182 (2024), 114855. https://doi.org/10.1016/j.chaos.2024.114855 doi: 10.1016/j.chaos.2024.114855
|
| [53] | J. Yu, Y. Feng, Symmetry analysis, optimal system, conservation laws and exact solutions of time fractional diffusion-type equation, Int. J. Geom. Methods Mod. Phys., 2024, 2450286. https://doi.org/10.1142/S0219887824502864 |
| [54] | H. Yuan, Q. Zhu, The well-posedness and stabilities of mean-field stochastic differential equations driven by $G$-Brownian motion, SIAM J. Control Optim., 63 (2025). https://doi.org/10.1137/23M159368 |
| [55] |
Q. Zhu, Event-triggered sampling problem for exponential stability of stochastic nonlinear delay systems driven by Lévy processes, IEEE Trans. Autom. Control., 70 (2025), 1176–1183. https://doi.org/10.1109/TAC.2024.3448128 doi: 10.1109/TAC.2024.3448128
|