Multicollinearity presents a significant challenge in zero-inflated negative binomial (ZINB) regression, leading to unstable maximum likelihood estimates (MLEs) and inflated prediction errors. To address this issue, we investigated the performance of the Kibria-Lukman estimator (ZINB-KLE) and proposed a modified Kibria-Lukman estimator (ZINB-MKLE) that introduces an enhanced bias-adjustment mechanism for improved coefficient stability. Using extensive Monte Carlo simulations under varying degrees of multicollinearity and overdispersion, we demonstrated that the ZINB-MKLE consistently achieves substantially lower scalar mean squared error (SMSE) than MLEs, ZINB-KLEs, and other competing estimators. Application to the Blood Transfusion dataset further confirmed the practical advantages of the ZINB-MKLE, yielding an SMSE of 1.8568 compared to 14,638.75 for the MLE and 685.81 for the ZINB-KLE, highlighting dramatic improvements in predictive accuracy. These findings establish the ZINB-MKLE as a robust and efficient alternative for handling multicollinearity in zero-inflated regression models, with broad implications for statistical modeling in biomedical, epidemiological, and other applied data settings.
Citation: Masad A. Alrasheedi, Adewale F. Lukman, Rasha A. Farghali, Asamh Saleh M. Al Luhayb. Mitigating multicollinearity in zero-inflated negative binomial regression using the modified Kibria-Lukman estimator[J]. AIMS Mathematics, 2025, 10(10): 23169-23186. doi: 10.3934/math.20251028
Multicollinearity presents a significant challenge in zero-inflated negative binomial (ZINB) regression, leading to unstable maximum likelihood estimates (MLEs) and inflated prediction errors. To address this issue, we investigated the performance of the Kibria-Lukman estimator (ZINB-KLE) and proposed a modified Kibria-Lukman estimator (ZINB-MKLE) that introduces an enhanced bias-adjustment mechanism for improved coefficient stability. Using extensive Monte Carlo simulations under varying degrees of multicollinearity and overdispersion, we demonstrated that the ZINB-MKLE consistently achieves substantially lower scalar mean squared error (SMSE) than MLEs, ZINB-KLEs, and other competing estimators. Application to the Blood Transfusion dataset further confirmed the practical advantages of the ZINB-MKLE, yielding an SMSE of 1.8568 compared to 14,638.75 for the MLE and 685.81 for the ZINB-KLE, highlighting dramatic improvements in predictive accuracy. These findings establish the ZINB-MKLE as a robust and efficient alternative for handling multicollinearity in zero-inflated regression models, with broad implications for statistical modeling in biomedical, epidemiological, and other applied data settings.
| [1] |
A. Lukman, B. Aladeitan, K. Ayinde, M. Abonazel, Modified ridge-type for the Poisson regression model: simulation and application, J. Appl. Stat., 49 (2022), 2124–2136. https://doi.org/10.1080/02664763.2021.1889998 doi: 10.1080/02664763.2021.1889998
|
| [2] |
A. Lukman, O. Albalawi, M. Arashi, J. Allohibi, A. Alharbi, R. Farghali, Robust negative binomial regression via the Kibria-Lukman strategy: methodology and application, Mathematics, 12 (2024), 2929. https://doi.org/10.3390/math12182929 doi: 10.3390/math12182929
|
| [3] |
Z. Algamal, A. Lukman, M. Abonazel, F. Awwad, Performance of the ridge and Liu estimators in the zero‐inflated Bell regression model, J. Math., 2022 (2022), 9503460. https://doi.org/10.1155/2022/9503460 doi: 10.1155/2022/9503460
|
| [4] |
S. Seifollahi, H. Bevrani, Z. Algamal, Shrinkage estimators in zero-inflated Bell regression model with application, J. Stat. Theory Pract., 19 (2025), 1. https://doi.org/10.1007/s42519-024-00415-1 doi: 10.1007/s42519-024-00415-1
|
| [5] | Y. Al-Taweel, Z. Algamal, Some almost unbiased ridge regression estimators for the zero-inflated negative binomial regression model, Periodicals of Engineering and Natural Sciences, 8 (2020), 248–255. |
| [6] |
B. Kibria, K. Månsson, G. Shukur, Some ridge regression estimators for the zero-inflated Poisson model, J. Appl. Stat., 40 (2013), 721–735. https://doi.org/10.1080/02664763.2012.752448 doi: 10.1080/02664763.2012.752448
|
| [7] |
M. Akram, N. Afzal, M. Amin, A. Batool, Modified ridge-type estimator for the zero-inflated negative binomial regression model, Commun. Stat.-Simul. C., 53 (2024), 5305–5322. https://doi.org/10.1080/03610918.2023.2179070 doi: 10.1080/03610918.2023.2179070
|
| [8] |
M. Akram, M. Amin, N. Afzal, B. Kibria, Kibria-Lukman estimator for the zero-inflated negative binomial regression model: theory, simulation and applications, Commun. Stat.-Simul. C., 54 (2025), 1464–1480. https://doi.org/10.1080/03610918.2023.2286436 doi: 10.1080/03610918.2023.2286436
|
| [9] |
M. Akram, M. Abonazel, M. Amin, B. Golam Kibria, N. Afzal, A new Stein estimator for the zero-inflated negative binomial regression model, Concurr. Comp.-Pract. Expe., 34 (2022), e7045. https://doi.org/10.1002/cpe.7045 doi: 10.1002/cpe.7045
|
| [10] |
T. Omer, P. Sjölander, K. Månsson, B. Kibria, Improved estimators for the zero-inflated Poisson regression model in the presence of multicollinearity: simulation and application of maternal death data, Communications in Statistics: Case Studies, Data Analysis and Applications, 7 (2021), 394–412. https://doi.org/10.1080/23737484.2021.1952493 doi: 10.1080/23737484.2021.1952493
|
| [11] |
M. Zeeshana, A. Khana, M. Amanullaha, M. Bakrb, A. Alshangitib, O. Balogun, et al., A new modified biased estimator for Zero inflated Poisson regression model, Heliyon, 10 (2024), e24225. https://doi.org/10.1016/j.heliyon.2024.e24225 doi: 10.1016/j.heliyon.2024.e24225
|
| [12] |
M. Amin, B. Ashraf, S. Siddiqa, Liu estimation method in the zero-inflated Conway Maxwell Poisson regression model, J. Stat. Theory Appl., 24 (2025), 71–90. https://doi.org/10.1007/s44199-024-00101-y doi: 10.1007/s44199-024-00101-y
|
| [13] | A. Dempster, M. Schatzoff, N. Wermuth, A simulation study of alternatives to ordinary least squares, J. Am. Stat. Assoc., 72 (1977), 77–91. |
| [14] | D. Lambert, Zero-inflated Poisson regression, with an application to defects in manufacturing, Technometrics, 34 (1992), 1–14. |
| [15] | G. Nanjundan, An EM algorithmic approach to maximum likelihood estimation in a mixture model, Vignana Bharathi, 18 (2006), 7–13. |
| [16] | A. Hoerl, R. Kennard, Ridge regression: biased estimation for nonorthogonal problems, Technometrics, 12 (1970), 55–67. |
| [17] |
M. Amin, M. Akram, M. Amanullah, On the James-Stein estimator for the Poisson regression model, Commun. Stat.-Simul. C., 51 (2022), 5596–5608. https://doi.org/10.1080/03610918.2020.1775851 doi: 10.1080/03610918.2020.1775851
|
| [18] |
B. Kibria, A. Lukman, A new ridge‐type estimator for the linear regression model: simulations and applications, Scientifica, 2020 (2020), 9758378. https://doi.org/10.1155/2020/9758378 doi: 10.1155/2020/9758378
|
| [19] |
L. Kejian, A new class of blased estimate in linear regression, Commun. Stat.-Theor. M., 22 (1993), 393–402. https://doi.org/10.1080/03610929308831027 doi: 10.1080/03610929308831027
|
| [20] |
B. Aladeitan, O. Adebimpe, A. Lukman, O. Oludoun, O. Abiodun, Modified Kibria-Lukman (MKL) estimator for the Poisson regression model: application and simulation, F1000Res., 10 (2021), 548. https://doi.org/10.12688/f1000research.53987.2 doi: 10.12688/f1000research.53987.2
|
| [21] | R. Farebrother, Further results on the mean square error of ridge regression, J. R. Stat. Soc. B, 38 (1976), 248–250. |
| [22] |
G. Trenkler, H. Toutenburg, Mean squared error matrix comparisons between biased estimators—an overview of recent results, Stat. Pap., 31 (1990), 165–179. https://doi.org/10.1007/BF02924687 doi: 10.1007/BF02924687
|
| [23] |
R. Farghali, A. Lukman, A. Ogunleye, Enhancing model predictions through the fusion of Stein estimator and principal component regression, J. Stat. Comput. Sim., 94 (2024), 1760–1775. https://doi.org/10.1080/00949655.2024.2302011 doi: 10.1080/00949655.2024.2302011
|
| [24] |
A. Lukman, E. Adewuyi, K. Månsson, B. Kibria, A new estimator for the multicollinear Poisson regression model: simulation and application, Sci. Rep., 11 (2021), 3732. https://doi.org/10.1038/s41598-021-82582-w doi: 10.1038/s41598-021-82582-w
|
| [25] |
A. Zeileis, C. Kleiber, S. Jackman, Regression models for count data in R, J. Stat. Softw., 27 (2008), 1–25. https://doi.org/10.18637/jss.v027.i08 doi: 10.18637/jss.v027.i08
|