Research article

Mitigating multicollinearity in zero-inflated negative binomial regression using the modified Kibria-Lukman estimator

  • Published: 13 October 2025
  • MSC : 62J05, 62J07, 62J12

  • Multicollinearity presents a significant challenge in zero-inflated negative binomial (ZINB) regression, leading to unstable maximum likelihood estimates (MLEs) and inflated prediction errors. To address this issue, we investigated the performance of the Kibria-Lukman estimator (ZINB-KLE) and proposed a modified Kibria-Lukman estimator (ZINB-MKLE) that introduces an enhanced bias-adjustment mechanism for improved coefficient stability. Using extensive Monte Carlo simulations under varying degrees of multicollinearity and overdispersion, we demonstrated that the ZINB-MKLE consistently achieves substantially lower scalar mean squared error (SMSE) than MLEs, ZINB-KLEs, and other competing estimators. Application to the Blood Transfusion dataset further confirmed the practical advantages of the ZINB-MKLE, yielding an SMSE of 1.8568 compared to 14,638.75 for the MLE and 685.81 for the ZINB-KLE, highlighting dramatic improvements in predictive accuracy. These findings establish the ZINB-MKLE as a robust and efficient alternative for handling multicollinearity in zero-inflated regression models, with broad implications for statistical modeling in biomedical, epidemiological, and other applied data settings.

    Citation: Masad A. Alrasheedi, Adewale F. Lukman, Rasha A. Farghali, Asamh Saleh M. Al Luhayb. Mitigating multicollinearity in zero-inflated negative binomial regression using the modified Kibria-Lukman estimator[J]. AIMS Mathematics, 2025, 10(10): 23169-23186. doi: 10.3934/math.20251028

    Related Papers:

  • Multicollinearity presents a significant challenge in zero-inflated negative binomial (ZINB) regression, leading to unstable maximum likelihood estimates (MLEs) and inflated prediction errors. To address this issue, we investigated the performance of the Kibria-Lukman estimator (ZINB-KLE) and proposed a modified Kibria-Lukman estimator (ZINB-MKLE) that introduces an enhanced bias-adjustment mechanism for improved coefficient stability. Using extensive Monte Carlo simulations under varying degrees of multicollinearity and overdispersion, we demonstrated that the ZINB-MKLE consistently achieves substantially lower scalar mean squared error (SMSE) than MLEs, ZINB-KLEs, and other competing estimators. Application to the Blood Transfusion dataset further confirmed the practical advantages of the ZINB-MKLE, yielding an SMSE of 1.8568 compared to 14,638.75 for the MLE and 685.81 for the ZINB-KLE, highlighting dramatic improvements in predictive accuracy. These findings establish the ZINB-MKLE as a robust and efficient alternative for handling multicollinearity in zero-inflated regression models, with broad implications for statistical modeling in biomedical, epidemiological, and other applied data settings.



    加载中


    [1] A. Lukman, B. Aladeitan, K. Ayinde, M. Abonazel, Modified ridge-type for the Poisson regression model: simulation and application, J. Appl. Stat., 49 (2022), 2124–2136. https://doi.org/10.1080/02664763.2021.1889998 doi: 10.1080/02664763.2021.1889998
    [2] A. Lukman, O. Albalawi, M. Arashi, J. Allohibi, A. Alharbi, R. Farghali, Robust negative binomial regression via the Kibria-Lukman strategy: methodology and application, Mathematics, 12 (2024), 2929. https://doi.org/10.3390/math12182929 doi: 10.3390/math12182929
    [3] Z. Algamal, A. Lukman, M. Abonazel, F. Awwad, Performance of the ridge and Liu estimators in the zero‐inflated Bell regression model, J. Math., 2022 (2022), 9503460. https://doi.org/10.1155/2022/9503460 doi: 10.1155/2022/9503460
    [4] S. Seifollahi, H. Bevrani, Z. Algamal, Shrinkage estimators in zero-inflated Bell regression model with application, J. Stat. Theory Pract., 19 (2025), 1. https://doi.org/10.1007/s42519-024-00415-1 doi: 10.1007/s42519-024-00415-1
    [5] Y. Al-Taweel, Z. Algamal, Some almost unbiased ridge regression estimators for the zero-inflated negative binomial regression model, Periodicals of Engineering and Natural Sciences, 8 (2020), 248–255.
    [6] B. Kibria, K. Månsson, G. Shukur, Some ridge regression estimators for the zero-inflated Poisson model, J. Appl. Stat., 40 (2013), 721–735. https://doi.org/10.1080/02664763.2012.752448 doi: 10.1080/02664763.2012.752448
    [7] M. Akram, N. Afzal, M. Amin, A. Batool, Modified ridge-type estimator for the zero-inflated negative binomial regression model, Commun. Stat.-Simul. C., 53 (2024), 5305–5322. https://doi.org/10.1080/03610918.2023.2179070 doi: 10.1080/03610918.2023.2179070
    [8] M. Akram, M. Amin, N. Afzal, B. Kibria, Kibria-Lukman estimator for the zero-inflated negative binomial regression model: theory, simulation and applications, Commun. Stat.-Simul. C., 54 (2025), 1464–1480. https://doi.org/10.1080/03610918.2023.2286436 doi: 10.1080/03610918.2023.2286436
    [9] M. Akram, M. Abonazel, M. Amin, B. Golam Kibria, N. Afzal, A new Stein estimator for the zero-inflated negative binomial regression model, Concurr. Comp.-Pract. Expe., 34 (2022), e7045. https://doi.org/10.1002/cpe.7045 doi: 10.1002/cpe.7045
    [10] T. Omer, P. Sjölander, K. Månsson, B. Kibria, Improved estimators for the zero-inflated Poisson regression model in the presence of multicollinearity: simulation and application of maternal death data, Communications in Statistics: Case Studies, Data Analysis and Applications, 7 (2021), 394–412. https://doi.org/10.1080/23737484.2021.1952493 doi: 10.1080/23737484.2021.1952493
    [11] M. Zeeshana, A. Khana, M. Amanullaha, M. Bakrb, A. Alshangitib, O. Balogun, et al., A new modified biased estimator for Zero inflated Poisson regression model, Heliyon, 10 (2024), e24225. https://doi.org/10.1016/j.heliyon.2024.e24225 doi: 10.1016/j.heliyon.2024.e24225
    [12] M. Amin, B. Ashraf, S. Siddiqa, Liu estimation method in the zero-inflated Conway Maxwell Poisson regression model, J. Stat. Theory Appl., 24 (2025), 71–90. https://doi.org/10.1007/s44199-024-00101-y doi: 10.1007/s44199-024-00101-y
    [13] A. Dempster, M. Schatzoff, N. Wermuth, A simulation study of alternatives to ordinary least squares, J. Am. Stat. Assoc., 72 (1977), 77–91.
    [14] D. Lambert, Zero-inflated Poisson regression, with an application to defects in manufacturing, Technometrics, 34 (1992), 1–14.
    [15] G. Nanjundan, An EM algorithmic approach to maximum likelihood estimation in a mixture model, Vignana Bharathi, 18 (2006), 7–13.
    [16] A. Hoerl, R. Kennard, Ridge regression: biased estimation for nonorthogonal problems, Technometrics, 12 (1970), 55–67.
    [17] M. Amin, M. Akram, M. Amanullah, On the James-Stein estimator for the Poisson regression model, Commun. Stat.-Simul. C., 51 (2022), 5596–5608. https://doi.org/10.1080/03610918.2020.1775851 doi: 10.1080/03610918.2020.1775851
    [18] B. Kibria, A. Lukman, A new ridge‐type estimator for the linear regression model: simulations and applications, Scientifica, 2020 (2020), 9758378. https://doi.org/10.1155/2020/9758378 doi: 10.1155/2020/9758378
    [19] L. Kejian, A new class of blased estimate in linear regression, Commun. Stat.-Theor. M., 22 (1993), 393–402. https://doi.org/10.1080/03610929308831027 doi: 10.1080/03610929308831027
    [20] B. Aladeitan, O. Adebimpe, A. Lukman, O. Oludoun, O. Abiodun, Modified Kibria-Lukman (MKL) estimator for the Poisson regression model: application and simulation, F1000Res., 10 (2021), 548. https://doi.org/10.12688/f1000research.53987.2 doi: 10.12688/f1000research.53987.2
    [21] R. Farebrother, Further results on the mean square error of ridge regression, J. R. Stat. Soc. B, 38 (1976), 248–250.
    [22] G. Trenkler, H. Toutenburg, Mean squared error matrix comparisons between biased estimators—an overview of recent results, Stat. Pap., 31 (1990), 165–179. https://doi.org/10.1007/BF02924687 doi: 10.1007/BF02924687
    [23] R. Farghali, A. Lukman, A. Ogunleye, Enhancing model predictions through the fusion of Stein estimator and principal component regression, J. Stat. Comput. Sim., 94 (2024), 1760–1775. https://doi.org/10.1080/00949655.2024.2302011 doi: 10.1080/00949655.2024.2302011
    [24] A. Lukman, E. Adewuyi, K. Månsson, B. Kibria, A new estimator for the multicollinear Poisson regression model: simulation and application, Sci. Rep., 11 (2021), 3732. https://doi.org/10.1038/s41598-021-82582-w doi: 10.1038/s41598-021-82582-w
    [25] A. Zeileis, C. Kleiber, S. Jackman, Regression models for count data in R, J. Stat. Softw., 27 (2008), 1–25. https://doi.org/10.18637/jss.v027.i08 doi: 10.18637/jss.v027.i08
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(395) PDF downloads(28) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog